1
|
Biswas M, Nurunnabi M, Khatun Z. Understanding Mucosal Physiology and Rationale of Formulation Design for Improved Mucosal Immunity. ACS APPLIED BIO MATERIALS 2024; 7:5037-5056. [PMID: 38787767 DOI: 10.1021/acsabm.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The oral and nasal cavities serve as critical gateways for infectious pathogens, with microorganisms primarily gaining entry through these routes. Our first line of defense against these invaders is the mucosal membrane, a protective barrier that shields the body's internal systems from infection while also contributing to vital functions like air and nutrient intake. One of the key features of this mucosal barrier is its ability to protect the physiological system from pathogens. Additionally, mucosal tolerance plays a crucial role in maintaining homeostasis by regulating the pH and water balance within the body. Recognizing the importance of the mucosal barrier, researchers have developed various mucosal formulations to enhance the immune response. Mucosal vaccines, for example, deliver antigens directly to mucosal tissues, triggering local immune stimulation and ultimately inducing systemic immunity. Studies have shown that lipid-based formulations such as liposomes and virosomes can effectively elicit both local and systemic immune responses. Furthermore, mucoadhesive polymeric particles, with their prolonged delivery to target sites, have demonstrated an enhanced immune response. This Review delves into the critical role of material selection and delivery approaches in optimizing mucosal immunity.
Collapse
Affiliation(s)
- Mila Biswas
- Department of Electrical and Computer Engineering, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Zehedina Khatun
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| |
Collapse
|
2
|
Lin YT, Tsai WC, Lu HY, Fang SY, Chan HW, Huang CH. Enhancing Therapeutic Efficacy of Cinnamon Essential Oil by Nanoemulsification for Intravaginal Treatment of Candida Vaginitis. Int J Nanomedicine 2024; 19:4941-4956. [PMID: 38828194 PMCID: PMC11144005 DOI: 10.2147/ijn.s458593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
Background Due to its prevalence, recurrence, and the emergence of drug-resistance, Candida vaginitis significantly impacts the well-being of women. Although cinnamon essential oil (CEO) possesses antifungal activity, its hydrophobic properties limit its clinical application. Purpose To overcome this challenge, a nanoemulsification technology was employed to prepare cinnamon essential oil-nanoemulsion (CEO@NE), and its therapeutic efficacy and action mechanism for Candida vaginitis was investigated in vivo and in vitro. Materials and Methods CEO@NE, composed of 4% CEO, 78% distilled water, and 18% Tween 80, was prepared by ultrasonic nanoemulsification. The physical properties, anti-Candida activity, cytotoxicity, immunomodulatory potential and storage stability of CEO@NE were explored. Subsequently, the effect of intravaginal CEO@NE treatment on Candida vaginitis was investigated in mice. To comprehend the possible mechanism of CEO@NE, an analysis was conducted to ascertain the production of intracellular reactive oxygen species (ROS) in C. albicans. Results CEO@NE, with the droplet size less than 100 nm and robust storage stability for up to 8 weeks, exhibited comparable anti-Candida activity with CEO. CEO@NE at the concentration lower than 400 μg/mL had no cytotoxic and immunomodulatory effects on murine splenocytes. Intravaginal treatment of CEO@NE (400 μg/mL, 20 μL/day/mouse for 5 consecutive days) curbed Candida colonization, ameliorated histopathological changes, and suppressed inflammatory cytokine production in mice intravaginally challenged with C. albicans. Notably, this treatment preserved the density of vaginal lactic acid bacteria (LAB) crucial for vaginal health. Co-culturing C. albicans with CEO@NE revealed concentration-dependent augmentation of intracellular ROS generation and ensuing cell death. In addition, co-culturing LPS-stimulated murine splenocytes with CEO@NE yielded a decrease in the generation of cytokines. Conclusion This discovery provides insight into the conceivable antifungal and anti-inflammatory mechanisms of CEO@NE to tackle Candida vaginitis. CEO@NE offers a promising avenue to address the limitations of current treatments, providing novel strategy for treating Candida vaginitis.
Collapse
Affiliation(s)
- Yi-Ting Lin
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Wei-Chung Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Hsueh-Yu Lu
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Shih-Yuan Fang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Hsiang-Wen Chan
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| |
Collapse
|
3
|
Tsai WC, Liu FL, Huang MH, Huang CH. Enhancing Immunity and Modulating Vaginal Microflora Against Candidal Vaginitis Through Nanoemulsion Supplemented with Porphyra Oligosaccharide as an Intravaginal Vaccine Adjuvant. Int J Nanomedicine 2023; 18:6333-6346. [PMID: 37954454 PMCID: PMC10637204 DOI: 10.2147/ijn.s431009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023] Open
Abstract
Background Intravaginal vaccination is an encouraging approach to prevent infectious vaginitis, with nanoemulsions showing effectiveness as mucosal adjuvants. Purpose This study aimed to formulate a nanoemulsion incorporating Porphyra oligosaccharide (PO@NE) and assess its effectiveness as a mucosal adjuvant in intravaginal vaccines against candidal vaginitis. Materials and Methods PO@NE was prepared, and the stability, immunomodulatory activity and cytotoxicity were screened in vitro. Further, the preventive effect of PO@NE as adjuvants for heat-killed Candida albicans (HK-CA) vaccines was explored in a murine model of candidal vaginitis, in comparison with those supplemented with polysaccharide (PP@NE). The mice were intravaginally vaccinated with 106 HK-CA cells, suspended in 1% NE without or with either PO or PP at a final concentration of 6.5 μg/mL, in a total volume of 20 μL. This vaccination was intravaginally administered once a week for 3 weeks. One week following the final vaccination, the mice underwent an intravaginal challenge with 107 C. albicans cells. One week after the challenge, the mice were euthanized to isolate serum, spleen, vaginal washes, and vaginal tissues for analysis. Results PP@NE and PO@NE, with diameters approximately around 100 nm, exhibited exceptional stability at 4°C and low cytotoxicity when used at a concentration of 1% (v/v). Intravaginal vaccination with HK-CA adjuvanted with PO@NE effectively protected against candidal vaginitis evidenced by less Candida hyphae colonization, milder mucosal damage and cell infiltration. Moreover, enhanced mucosal antibody production, induction of T helper (Th)1 and Th17-related immune responses, enlarged the population of CD8+ cells, and elevated vaginal microflora diversity were observed in vaccinated mice. Interestingly, the potency was rather attenuated when PO@NE was replaced with PP@NE. Conclusion These findings indicate PO@NE as a HK-CA vaccine adjuvant for candidal vaginitis prevention via enhancement of both cellular and humoral immunity and modulation of vaginal microflora, emphasizing further intravaginal vaccination development.
Collapse
Affiliation(s)
- Wei-Chung Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Fang-Ling Liu
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
4
|
Lu HY, Tsai WC, Liu JS, Huang CH. Preparation and evaluation of Cordyceps militaris polysaccharide- and sesame oil-loaded nanoemulsion for the treatment of candidal vaginitis in mice. Biomed Pharmacother 2023; 167:115506. [PMID: 37716120 DOI: 10.1016/j.biopha.2023.115506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Candida albicans is the most prevalent fungal pathogen, affecting over 75% of women who have experienced candidal vaginitis. Given the identification of drug-resistant C. albicans strains, there is an urgent need to develop therapeutic methods for treating vaginal Candida infection. Polysaccharide is the major bioactive component of Cordyceps militaris, known to modulate immune responses and alleviate inflammation. Sesame oil is known with anti-microbial and anti-inflammatory activities. METHODS C. militaris polysaccharide was prepared and formulated with sesame oil to prepare emulsion and nanoemulsion, which are ideal mucosal delivery systems for both hydrophobic and hydrophilic compounds concurrently. The physical property and storage stability of these formulations were illustrated, and their effects on ameliorating vaginitis were investigated in a murine model of vaginal Candida infection. RESULTS C. militaris polysaccharide-containing nanoemulsion showed smaller particle size, lower polydispersity index, higher zeta-potential and better stability than emulsion. Intravaginal administration of C. militaris polysaccharide-containing nanoemulsion significantly attenuated C. militaris colonization and vaginitis. Notably, these formulations exerted distinct effects on modulating cell infiltration and splenic cytokine production. Moreover, different profile of vaginal microflora was observed among the treatment groups, revealing the potential action mechanisms of these formulations to mitigate vaginal Candida infection. CONCLUSION C. militaris polysaccharide- and sesame oil-containing nanoemulsion is potential to be developed as intravaginal therapeutic strategy for C. albicans-induced vaginitis.
Collapse
Affiliation(s)
- Hsueh-Yu Lu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wei-Chung Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Jia-Shan Liu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
5
|
Zhao L, Shu M, Chen H, Shi K, Li Z. Preparation of graphene oxide-stabilized Pickering emulsion adjuvant for Pgp3 recombinant vaccine and enhanced immunoprotection against Chlamydia Trachomatis infection. Front Immunol 2023; 14:1148253. [PMID: 37143655 PMCID: PMC10152066 DOI: 10.3389/fimmu.2023.1148253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Background Traditional emulsion adjuvants are limited in clinical application because of their surfactant dependence. Graphene oxide (GO) has unique amphiphilic properties and therefore has potential to be used as a surfactant substitute to stabilize Pickering emulsions. Methods In this study, GO-stabilized Pickering emulsion (GPE) was prepared and used as an adjuvant to facilitate an enhanced immune response to the Chlamydia trachomatis (Ct) Pgp3 recombinant vaccine. Firstly, GPE was prepared by optimizing the sonication conditions, pH, salinity, GO concentration, and water/oil ratio. GPE with small-size droplets was characterized and chosen as the candidate. Subsequently, controlled-release antigen delivery by GPE was explored. Cellular uptake behaviors, M1 polarization, and cytokine stimulation by GPE + Pgp3 was considered in terms of the production of macrophages. Finally, GPE's adjuvant effect was evaluated by vaccination with Pgp3 recombinant in BALB/c mouse models. Results GPE with the smallest droplet sizes was prepared by sonication under 163 W for 2 min at 1 mg/mL GO in natural salinity with a pH of 2 when the water/oil ratio was 10:1 (w/w). The optimized average GPE droplet size was 1.8 μm and the zeta potential was -25.0 ± 1.3 mv. GPE delivered antigens by adsorption onto the droplet surface, demonstrating the controlled release of antigens both in vitro and in vivo. In addition, GPE promoted antigen uptake, which stimulated proinflammatory tumor necrosis factor alpha (TNF-α), enhancing the M1 polarization of macrophages in vitro. Macrophage recruitment was also significantly promoted by GPE at the injection site. In the GPE + Pgp3 treatment group, higher levels of immunoglobin (IgG), immunoglobin G1 (IgG1), immunoglobin G2a (IgG2a) sera, and immunoglobin A (IgA) were detected in vaginal fluid, and higher levels of IFN-γ and IL-2 secretion were stimulated, than in the Pgp3 group, showing a significant type 1 T helper (Th1)-type cellular immune response. Chlamydia muridarum challenging showed that GPE enhanced Pgp3's immunoprotection through its advanced clearance of bacterial burden and alleviation of chronic pathological damage in the genital tract. Conclusion This study enabled the rational design of small-size GPE, shedding light on antigen adsorption and control release, macrophage uptake, polarization and recruitment, which enhanced augmented humoral and cellular immunity and ameliorated chlamydial-induced tissue damage in the genital tract.
Collapse
Affiliation(s)
- Lanhua Zhao
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Mingyi Shu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Hongliang Chen
- ILaboratory Department of Chenzhou First People's Hospital, Chenzhou, Hunan, China
| | - Keliang Shi
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, The School of Nursing, University of South China, Hengyang, Hunan, China
| |
Collapse
|
6
|
Ho HM, Huang CY, Yang CH, Liu SJ, Chen HW, Yu GY, Chen JK, Chuang TH, Huang MH. Formulation of SARS-CoV-2 Spike Protein with CpG Oligodeoxynucleotides and Squalene Nanoparticles Modulates Immunological Aspects Following Intranasal Delivery. Pharmaceutics 2022; 14:pharmaceutics14112539. [PMID: 36432730 PMCID: PMC9693849 DOI: 10.3390/pharmaceutics14112539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Nasal spray vaccination is viewed as a promising strategy for inducing both mucosal and systemic protection against respiratory SARS-CoV-2 coronavirus. Toward this goal, a safe and efficacious mucosal adjuvant is necessary for the transportation of the antigen across the mucosal membrane and antigen recognition by the mucosal immune system to generate broad-spectrum immune responses. This study describes the immunological aspects of SARS-CoV-2 spike (S)-protein after being formulated with CpG oligodeoxynucleotides (ODNs) and squalene nanoparticles (termed PELC). Following intranasal delivery in mice, higher expression levels of major histocompatibility complex (MHC) class II and costimulatory molecules CD40 and CD86 on CD11c+ cells were observed at the draining superficial cervical lymph nodes in the CpG-formulated S protein group compared with those vaccinated with S protein alone. Subsequently, the activated antigen-presenting cells downstream modulated the cytokine secretion profiles and expanded the cytotoxic T lymphocyte activity of S protein-restimulated splenocytes. Interestingly, the presence of PELC synergistically enhanced cell-mediated immunity and diminished individual differences in S protein-specific immunogenicity. Regarding humoral responses, the mice vaccinated with the PELC:CpG-formulated S protein promoted the production of S protein-specific IgG in serum samples and IgA in nasal and bronchoalveolar lavage fluids. These results indicate that PELC:CpG is a potential mucosal adjuvant that promotes mucosal/systemic immune responses and cell-mediated immunity, a feature that has implications for the development of a nasal spray vaccine against COVID-19.
Collapse
Affiliation(s)
- Hui-Min Ho
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chiung-Yi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chung-Hsiang Yang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence:
| |
Collapse
|
7
|
Mucosal vaccine delivery: A focus on the breakthrough of specific barriers. Acta Pharm Sin B 2022; 12:3456-3474. [PMID: 35818435 PMCID: PMC9259023 DOI: 10.1016/j.apsb.2022.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 12/30/2022] Open
Abstract
Mucosal vaccines can effectively induce an immune response at the mucosal site and form the first line of defense against microbial invasion. The induced mucosal immunity includes the proliferation of effector T cells and the production of IgG and IgA antibodies, thereby effectively blocking microbial infection and transmission. However, after a long period of development, the transformation of mucosal vaccines into clinical use is still relatively slow. To date, fewer than ten mucosal vaccines have been approved. Only seven mucosal vaccines against coronavirus disease 2019 (COVID-19) are under investigation in clinical trials. A representative vaccine is the adenovirus type-5 vectored COVID-19 vaccine (Ad5-nCoV) developed by Chen and coworkers, which is currently in phase III clinical trials. The reason for the limited progress of mucosal vaccines may be the complicated mucosal barriers. Therefore, this review summarizes the characteristics of mucosal barriers and highlights strategies to overcome these barriers for effective mucosal vaccine delivery.
Collapse
|
8
|
Ivanova YO, Kostromicheva MM, Ofitserov EN, Koroleva MY. Nanoemulsions with Amaranth and Sea Buckthorn Oils. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Yang L, Shuyuan S, Huang G, Yingchong C, Shen B, Yue P. Nanocrystals based mucosal delivery system: Research Advances. Drug Dev Ind Pharm 2022; 47:1700-1712. [PMID: 35287534 DOI: 10.1080/03639045.2022.2053985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nanocrystal technology is a new way to increase the solubility and bioavailability of poorly soluble drugs. As an intermediate preparation technology, nanocrystals are widely used in drug delivery for oral, venous, percutneous and inhalation administration, which exhibits a broad application prospect. By referring to the domestic anforeign literatures, this paper mainly reviews the preparation methods of nanocrystals for poorly soluble natural products and its application in the mucosal delivery for skin, eye, oral cavity and nasal cavity. This can provide the reference for the research and development of nanocrystal technology in natural product preparations.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, NanChang 330004, China
| | - Shuai Shuyuan
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, NanChang 330004, China
| | - Guiting Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, NanChang 330004, China
| | - Chen Yingchong
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, NanChang 330004, China
| | - Baode Shen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, NanChang 330004, China
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, NanChang 330004, China
| |
Collapse
|