1
|
Lee N, Jeon K, Park MJ, Song W, Jeong S. Predicting survival in patients with SARS-CoV-2 based on cytokines and soluble immune checkpoint regulators. Front Cell Infect Microbiol 2024; 14:1397297. [PMID: 39654974 PMCID: PMC11625743 DOI: 10.3389/fcimb.2024.1397297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/31/2024] [Indexed: 12/12/2024] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) has been widespread for over four years and has progressed to an endemic stage. Accordingly, the evaluation of host immunity in infected patients and the development of markers for prognostic prediction in the early stages have been emphasized. Soluble immune checkpoints (sICs), which regulate T cell activity, have been reported as promising biomarkers of viral infections. Methods In this study, quantitative values of 17 sICs and 16 cytokines (CKs) were measured using the Luminex multiplex assay. A total of 148 serum samples from 100 patients with COVID-19 were collected and the levels were compared between survivors vs. non-survivors and pneumonic vs. non-pneumonic conditions groups. The impact of these markers on overall survival were analyzed using a machine learning algorithm. Results sICs, including sCD27, sCD40, herpes virus entry mediator (sHVEM), T-cell immunoglobulin and mucin-domain containing-3 (sTIM-3), and Toll-like receptor 2 (sTLR-2) and CKs, including chemokine CC motif ligand 2 (CCL2), interleukin-6 (IL-6), IL-8, IL-10, IL-13, granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor-α (TNF- α), were statistically significantly increased in the non-survivors compared to those of in the survivors. IL-6 showed the highest area under the receiver-operating curve (0.844, 95% CI = 0.751-0.913) to discriminate non-survival, with a sensitivity of 78.9% and specificity of 82.4%. In Kaplan-Meier analysis, patients with procalcitonin over 0.25 ng/mL, C-reactive protein (CRP) over 41.0 mg/dL, neutrophil-to-lymphocyte ratio over 18.97, sCD27 over 3828.8 pg/mL, sCD40 over 1283.6 pg/mL, and IL-6 over 21.6 pg/mL showed poor survival (log-rank test). In the decision tree analysis, IL-6, sTIM-3, and sCD40 levels had a strong impact on survival. Moreover, IL-6, CD40, and CRP levels were important to predict the probability of 90-d mortality using the SHapley Additive exPlanations method. Conclusion sICs and CKs, especially IL-6, sCD27, sCD40, and sTIM-3 are expected to be useful in predicting patient outcomes when used in combination with existing markers.
Collapse
Affiliation(s)
- Nuri Lee
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Kibum Jeon
- Department of Laboratory Medicine, Hallym University College of Medicine, Hangang Sacred Heart Hospital, Seoul, Republic of Korea
| | - Min-Jeong Park
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Wonkeun Song
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Seri Jeong
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| |
Collapse
|
2
|
Torki E, Gharezade A, Doroudchi M, Sheikhi S, Mansury D, Sullman MJM, Fouladseresht H. The kinetics of inhibitory immune checkpoints during and post-COVID-19: the knowns and unknowns. Clin Exp Med 2023; 23:3299-3319. [PMID: 37697158 DOI: 10.1007/s10238-023-01188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
The immune system is tightly regulated to prevent immune reactions to self-antigens and to avoid excessive immune responses during and after challenges from non-self-antigens. Inhibitory immune checkpoints (IICPs), as the major regulators of immune system responses, are extremely important for maintaining the homeostasis of cells and tissues. However, the high and sustained co-expression of IICPs in chronic infections, under persistent antigenic stimulations, results in reduced immune cell functioning and more severe and prolonged disease complications. Furthermore, IICPs-mediated interactions can be hijacked by pathogens in order to evade immune induction or effector mechanisms. Therefore, IICPs can be potential targets for the prognosis and treatment of chronic infectious diseases. This is especially the case with regards to the most challenging infectious disease of recent times, coronavirus disease-2019 (COVID-19), whose long-term complications can persist long after recovery. This article reviews the current knowledge about the kinetics and functioning of the IICPs during and post-COVID-19.
Collapse
Affiliation(s)
- Ensiye Torki
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Gharezade
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Sheikhi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Mansury
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Retnakumar SV, Chauvin C, Bayry J. The implication of anti-PD-1 therapy in cancer patients for the vaccination against viral and other infectious diseases. Pharmacol Ther 2023; 245:108399. [PMID: 37001736 DOI: 10.1016/j.pharmthera.2023.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
The phenomenon of 'T cell exhaustion', a state of T cell dysfunction observed during chronic infections and cancers, has been a major obstacle in mounting appropriate immune responses against infectious agents or tumor antigens. The exhausted T cells are characterized by poor effector functions mainly due to the overexpression of inhibitory receptors such as programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin and mucin-domain containing 3 (TIM3), lymphocyte activation gene 3 (LAG3), and T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT), commonly referred to as immune checkpoint (ICP) molecules. ICP blockade, especially of PD-1 that can potentially reverse T cell exhaustion and thereby re-stimulate the impaired immune system, is widely used in clinics as a promising therapeutic strategy for various cancers and is more recently being investigated in infectious diseases as well. In fact, cancer patients represent a population of immunocompromised individuals who are more susceptible to infections and associated complications, and thus the need for protective vaccinations against these diseases is of prime importance in this category. When it comes to vaccinating anti-PD-1-treated cancer patients against infectious diseases including COVID-19 and influenza, a special focus should be brought on the revived immune cells, which could be dynamically affected by the antigenic stimulation. However, since cancer patients are not generally included in clinical trials for designing vaccines against infectious diseases, the possible interaction between vaccine immune responses and ICP therapy is largely unexplored. Mechanistically, the reversal of T cell exhaustion by ICP in an otherwise immunocompromised population could be beneficial for the vaccine's efficacy, helping the immune system to mount a robust immune response. Nevertheless, patients with cancer undergoing anti-PD-1 blockade are known to experience immune-related adverse effects (irAEs). The risk of increasing the irAEs due to the overstimulation of the immune system during vaccination is a major concern. Therefore, while routine vaccination is indispensable for the protection of cancer patients, the impact of PD-1 blockade on vaccine responses against infectious agents requires careful consideration to avoid undesirable adverse effects that could impair the efficacy of anti-cancer treatment.
Collapse
|
4
|
Singh DD, Han I, Choi EH, Yadav DK. A Clinical Update on SARS-CoV-2: Pathology and Development of Potential Inhibitors. Curr Issues Mol Biol 2023; 45:400-433. [PMID: 36661514 PMCID: PMC9857284 DOI: 10.3390/cimb45010028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
SARS-CoV-2 (severe acute respiratory syndrome) is highly infectious and causes severe acute respiratory distress syndrome (SARD), immune suppression, and multi-organ failure. For SARS-CoV-2, only supportive treatment options are available, such as oxygen supportive therapy, ventilator support, antibiotics for secondary infections, mineral and fluid treatment, and a significant subset of repurposed effective drugs. Viral targeted inhibitors are the most suitable molecules, such as ACE2 (angiotensin-converting enzyme-2) and RBD (receptor-binding domain) protein-based inhibitors, inhibitors of host proteases, inhibitors of viral proteases 3CLpro (3C-like proteinase) and PLpro (papain-like protease), inhibitors of replicative enzymes, inhibitors of viral attachment of SARS-CoV-2 to the ACE2 receptor and TMPRSS2 (transmembrane serine proteinase 2), inhibitors of HR1 (Heptad Repeat 1)-HR2 (Heptad Repeat 2) interaction at the S2 protein of the coronavirus, etc. Targeting the cathepsin L proteinase, peptide analogues, monoclonal antibodies, and protein chimaeras as RBD inhibitors interferes with the spike protein's ability to fuse to the membrane. Targeting the cathepsin L proteinase, peptide analogues, monoclonal antibodies, and protein chimaeras as RBD inhibitors interferes with the spike protein's ability to fuse to the membrane. Even with the tremendous progress made, creating effective drugs remains difficult. To develop COVID-19 treatment alternatives, clinical studies are examining a variety of therapy categories, including antibodies, antivirals, cell-based therapy, repurposed diagnostic medicines, and more. In this article, we discuss recent clinical updates on SARS-CoV-2 infection, clinical characteristics, diagnosis, immunopathology, the new emergence of variant, SARS-CoV-2, various approaches to drug development and treatment options. The development of therapies has been complicated by the global occurrence of many SARS-CoV-2 mutations. Discussion of this manuscript will provide new insight into drug pathophysiology and drug development.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
- Correspondence: (I.H.); (D.K.Y.); Tel.: +82-2-597-0365 (I.H. & D.K.Y.)
| | - Eun-Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Dharmendra Kumar Yadav
- Department of R&D Center, Arontier Co., Seoul 06735, Republic of Korea
- Correspondence: (I.H.); (D.K.Y.); Tel.: +82-2-597-0365 (I.H. & D.K.Y.)
| |
Collapse
|
5
|
Cortellini A, Dettorre GM, Dafni U, Aguilar-Company J, Castelo-Branco L, Lambertini M, Gennatas S, Angelis V, Sita-Lumsden A, Rogado J, Pedrazzoli P, Viñal D, Prat A, Rossi M, Berardi R, Alonso-Gordoa T, Grisanti S, Dimopoulou G, Queirolo P, Pradervand S, Bertuzzi A, Bower M, Arnold D, Salazar R, Tucci M, Harrington KJ, Mazzoni F, Mukherjee U, Tsourti Z, Michielin O, Pommeret F, Brunet J, Vincenzi B, Tonini G, Patriarca A, Biello F, Krengli M, Tabernero J, Pentheroudakis G, Gennari A, Peters S, Romano E, Pinato DJ. Immune checkpoint inhibitor therapy and outcomes from SARS-CoV-2 infection in patients with cancer: a joint analysis of OnCovid and ESMO-CoCARE registries. J Immunother Cancer 2022; 10:jitc-2022-005732. [PMID: 36450384 PMCID: PMC9716413 DOI: 10.1136/jitc-2022-005732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND As management and prevention strategies against COVID-19 evolve, it is still uncertain whether prior exposure to immune checkpoint inhibitors (ICIs) affects COVID-19 severity in patients with cancer. METHODS In a joint analysis of ICI recipients from OnCovid (NCT04393974) and European Society for Medical Oncology (ESMO) CoCARE registries, we assessed severity and mortality from SARS-CoV-2 in vaccinated and unvaccinated patients with cancer and explored whether prior immune-related adverse events (irAEs) influenced outcome from COVID-19. FINDINGS The study population consisted of 240 patients diagnosed with COVID-19 between January 2020 and February 2022 exposed to ICI within 3 months prior to COVID-19 diagnosis, with a 30-day case fatality rate (CFR30) of 23.6% (95% CI 17.8 to 30.7%). Overall, 42 (17.5%) were fully vaccinated prior to COVID-19 and experienced decreased CFR30 (4.8% vs 28.1%, p=0.0009), hospitalization rate (27.5% vs 63.2%, p<0.0001), requirement of oxygen therapy (15.8% vs 41.5%, p=0.0030), COVID-19 complication rate (11.9% vs 34.6%, p=0.0040), with a reduced need for COVID-19-specific therapy (26.3% vs 57.9%, p=0.0004) compared with unvaccinated patients. Inverse probability of treatment weighting (IPTW)-fitted multivariable analysis, following a clustered-robust correction for the data source (OnCovid vs ESMO CoCARE), confirmed that vaccinated patients experienced a decreased risk of death at 30 days (adjusted OR, aOR 0.08, 95% CI 0.01 to 0.69).Overall, 38 patients (15.8%) experienced at least one irAE of any grade at any time prior to COVID-19, at a median time of 3.2 months (range 0.13-48.7) from COVID-19 diagnosis. IrAEs occurred independently of baseline characteristics except for primary tumor (p=0.0373) and were associated with a significantly decreased CFR30 (10.8% vs 26.0%, p=0.0462) additionally confirmed by the IPTW-fitted multivariable analysis (aOR 0.47, 95% CI 0.33 to 0.67). Patients who experienced irAEs also presented a higher median absolute lymphocyte count at COVID-19 (1.4 vs 0.8 109 cells/L, p=0.0098). CONCLUSION Anti-SARS-CoV-2 vaccination reduces morbidity and mortality from COVID-19 in ICI recipients. History of irAEs might identify patients with pre-existing protection from COVID-19, warranting further investigation of adaptive immune determinants of protection from SARS-CoV-2.
Collapse
Affiliation(s)
- Alessio Cortellini
- Department of Surgery & Cancer, Hammersmith Hospital Campus, Imperial College London, London, UK,Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Roma, Italy
| | - Gino M Dettorre
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Urania Dafni
- Laboratory of Biostatistics, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Juan Aguilar-Company
- Medical Oncology, Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Barcelona, Spain,Infectious Disease, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Luis Castelo-Branco
- Scientific and Medical Division, ESMO (European Society for Medical Oncology), Lugano, Switzerland,NOVA National School of Publich Health, NOVA University, Lisbon, Portugal
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genoa, Genova, Italy,Medical Oncology Department, U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Spyridon Gennatas
- Medical Oncology Department, The Royal Marsden Hospital and NHS Foundation Trust, London, UK
| | - Vasileios Angelis
- Medical Oncology Department, The Royal Marsden Hospital and NHS Foundation Trust, London, UK
| | - Ailsa Sita-Lumsden
- Medical Oncology, Guy's and St Thomas' NHS Foundation Trust (GSTT), London, UK
| | - Jacobo Rogado
- Medical Oncology Department, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Paolo Pedrazzoli
- Medical Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy,Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - David Viñal
- Medical Oncology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Aleix Prat
- Department of Medical Oncology, Hospital Clinic de Barcelona, Barcelona, Spain,Translational Genomics and Targeted Therapies in Solid Tumors, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maura Rossi
- Oncology Department, ASO ‘SS Antonio Biagio e Cesare Arrigo’, Alessandria, Italy
| | - Rossana Berardi
- Medical Oncology, AOU Ospedali Riuniti, Polytechnic University of the Marche Region, Ancona, Italy
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Georgia Dimopoulou
- Laboratory of Biostatistics, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Paola Queirolo
- Melanoma Sarcoma and Rare Tumors, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sylvain Pradervand
- Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Alexia Bertuzzi
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mark Bower
- Department of Oncology and National Centre for HIV Malignancy, Chelsea and Westminster Hospital, London, UK
| | - Dirk Arnold
- Oncology, Haematology, Palliative Care Department, Asklepios Klinik Altona e Asklepios Kliniken, Hamburg, Germany
| | - Ramon Salazar
- Department of Medical Oncology, ICO L’Hospitalet, Oncobell Program (IDIBELL), CIBERONC, Hospitalet de Llobregat, Barcelona, Spain
| | - Marco Tucci
- Section of Medical Oncology, Department of Interdisciplinary Medicine (DIM), University of Bari 'Aldo Moro', Bari, Italy,IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Kevin J Harrington
- Division of Radiotherapy and Imaging, The Royal Marsden Hospital and The Institute of Cancer Research NIHR Biomedical Research Centre, London, UK
| | | | - Uma Mukherjee
- Medical Oncology, Barts Health NHS Trust, London, UK
| | - Zoi Tsourti
- Frontier Science Foundation-Hellas, Athens, Greece
| | - Olivier Michielin
- Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Fanny Pommeret
- Department of Cancer Medicine, Institut Gustave Roussy, University of Paris Saclay, 114 rue Edouard Vaillant, Villejuif, France
| | - Joan Brunet
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Josep Trueta, Girona, Spain
| | - Bruno Vincenzi
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Roma, Italy
| | - Giuseppe Tonini
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Roma, Italy
| | - Andrea Patriarca
- Division of Haematology, Department of Translational Medicine, University of Piemonte Orientale and Azienda Ospedaliera Maggiore della Carità, Novara, Italy
| | - Federica Biello
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale and Azienda Ospedaliera Maggiore della Carità, Novara, Italy
| | - Marco Krengli
- Division of Radiotherapy, Department of Translational Medicine, University of Piemonte Orientale and Azienda Ospedaliera Maggiore Della Carita, Novara, Italy
| | - Josep Tabernero
- Medical Oncology, Vall d'Hebron University Hospital and Institute of Oncology (VHIO), IOB-Quiron, UVic-UCC, Barcelona, Spain
| | - George Pentheroudakis
- Scientific and Medical Division, ESMO (European Society for Medical Oncology), Lugano, Switzerland
| | - Alessandra Gennari
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale and Azienda Ospedaliera Maggiore della Carità, Novara, Italy
| | - Solange Peters
- Scientific and Medical Division, ESMO (European Society for Medical Oncology), Lugano, Switzerland,Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Emanuela Romano
- Center for Cancer Immunotherapy, Department of Oncology, PSL Research University, Institut Curie, Paris, France
| | - David J Pinato
- Department of Surgery & Cancer, Hammersmith Hospital Campus, Imperial College London, London, UK,Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale and Azienda Ospedaliera Maggiore della Carità, Novara, Italy
| |
Collapse
|
6
|
Ravaglia C, Doglioni C, Chilosi M, Piciucchi S, Dubini A, Rossi G, Pedica F, Puglisi S, Donati L, Tomassetti S, Poletti V. Clinical, radiological and pathological findings in patients with persistent lung disease following SARS-CoV-2 infection. Eur Respir J 2022; 60:2102411. [PMID: 35301248 PMCID: PMC8932282 DOI: 10.1183/13993003.02411-2021] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 02/13/2022] [Indexed: 12/18/2022]
Abstract
Some patients experience pulmonary sequelae after SARS-CoV-2 infection, ranging from self-limited abnormalities to major lung diseases. Morphological analysis of lung tissue may help our understanding of pathogenic mechanisms and help to provide consistent personalised management. The aim of this study was to ascertain morphological and immunomolecular features of lung tissue. Transbronchial lung cryobiopsy was carried out in patients with persistent symptoms and computed tomography suggestive of residual lung disease after recovery from SARS-CoV-2 infection. 164 patients were referred for suspected pulmonary sequelae after COVID-19; 10 patients with >5% parenchymal lung disease underwent lung biopsy. The histological pattern of lung disease was not homogeneous and three different case clusters could be identified, which was mirrored by their clinical and radiological features. Cluster 1 ("chronic fibrosing") was characterised by post-infection progression of pre-existing interstitial pneumonias. Cluster 2 ("acute/subacute injury") was characterised by different types and grades of lung injury, ranging from organising pneumonia and fibrosing nonspecific interstitial pneumonia to diffuse alveolar damage. Cluster 3 ("vascular changes") was characterised by diffuse vascular increase, dilatation and distortion (capillaries and venules) within otherwise normal parenchyma. Clusters 2 and 3 had immunophenotypical changes similar to those observed in early/mild COVID-19 pneumonias (abnormal expression of STAT3 in hyperplastic pneumocytes and PD-L1, IDO and STAT3 in endothelial cells). This is the first study correlating histological/immunohistochemical patterns with clinical and radiological pictures of patients with post-COVID lung disease. Different phenotypes with potentially different underlying pathogenic mechanisms have been identified.
Collapse
Affiliation(s)
- Claudia Ravaglia
- Dept of Thoracic Diseases, G.B. Morgagni Hospital/University of Bologna, Forlì, Italy
| | - Claudio Doglioni
- Dept of Pathology, University Vita-Salute, Milan and San Raffaele Scientific Institute, Milan, Italy
| | - Marco Chilosi
- Dept of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Sara Piciucchi
- Dept of Radiology, G.B. Morgagni Hospital/University of Bologna, Forlì, Italy
| | - Alessandra Dubini
- Dept of Pathology, G.B. Morgagni Hospital/University of Bologna, Forlì, Italy
| | - Giulio Rossi
- Dept of Pathology, Fondazione Poliambulanza Istituto Ospedaliero Multispecialistico, Brescia, Italy
| | - Federica Pedica
- Dept of Pathology, San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Puglisi
- Dept of Thoracic Diseases, G.B. Morgagni Hospital/University of Bologna, Forlì, Italy
| | - Luca Donati
- Biostatistics and Clinical Trial Unit, Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori"-IRST S.r.l., IRCCS, Meldola, Italy
| | - Sara Tomassetti
- Dept of Experimental and Clinical Medicine, Careggi University Hospital, Firenze, Italy
| | - Venerino Poletti
- Dept of Thoracic Diseases, G.B. Morgagni Hospital/University of Bologna, Forlì, Italy
- DIMES, University of Bologna, Bologna, Italy
- Dept of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
7
|
COVID-19 Outcomes in Stage IV Cancer Patients Receiving Immune Checkpoint Inhibitors. SN COMPREHENSIVE CLINICAL MEDICINE 2022; 4:193. [PMID: 36043120 PMCID: PMC9411835 DOI: 10.1007/s42399-022-01277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 11/26/2022]
Abstract
Cancer patients are a vulnerable population in the current coronavirus disease 2019 (COVID-19) outbreak. The impact of immune checkpoint inhibitors (ICIs) on the outcomes of COVID-19 infection in cancer patients remains largely unclear. We retrospectively investigated all solid cancer patients who received at least one cycle of ICIs at a single institution between August 2020 and August 2021. All stage IV solid cancer patients who were on or ceased ICI treatment when diagnosed with COVID-19 were eligible. All COVID-19 infections were confirmed by RT-PCR. Risk factors for hospitalization, severe symptoms, and death were analyzed. A total of 56 patients were included in our study. Twenty (35.7%) patients require hospitalization, 12 (21.4%) developed severe symptoms, and 10 (17.9%) died from COVID-19 infection. ICI treatment was interrupted in 37 patients (66.1%), 24 of whom (64.9%) had treatment resumed. Eight (80%) COVID-19-related death occurred in unvaccinated individuals. Reinfection occurred in seven patients (12.5%), and three of them died from their second COVID-19 infection. Factors associated with hospitalization were high Charlson comorbidity score (OR 1.56, 95% CI 1.10–2.23, p = 0.01) and lymphocyte ≤ 1500 mm3 (OR 10.05, 95% CI 2.03–49.85, p = 0.005). Age, chemoimmunotherapy, and ICI treatment duration were not associated with increased risk of hospitalization, severe symptoms, or COVID-19-related mortality. ICI therapy does not impose an increased risk for severe COVID-19 infection in stage IV cancer patients. Vaccination should be encouraged among this population. Clinicians should be cognizant of a potential worse outcome in COVID-19-reinfected patients.
Collapse
|
8
|
Lee N, Jeong S, Jeon K, Park MJ, Song W. Prognostic impacts of soluble immune checkpoint regulators and cytokines in patients with SARS-CoV-2 infection. Front Immunol 2022; 13:903419. [PMID: 36045684 PMCID: PMC9423766 DOI: 10.3389/fimmu.2022.903419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been a pandemic for the past two years. Predicting patient prognosis is critical. Although immune checkpoints (ICs) were shown to be involved in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, quantitative studies of ICs in clinical practice are limited. In this study, various soluble ICs (sICs) and cytokine levels in patients with SARS-CoV-2 infection at different time points were compared between survivors and deaths; we also examined whether sICs are useful for predicting prognosis. sICs and cytokines were measured in serum samples from 38 patients diagnosed with COVID-19 in the first and second week post-diagnosis. All assays were performed by bead-based multiplexed immunoassay system using Luminex Bio-Plex 200 system. The correlation of sICs and cytokines with laboratory markers was evaluated, and the levels of sICs in survivors were compared with those in deaths. Among the sICs, the second-week levels of soluble cluster of differentiation (sCD27, p = 0.012), sCD40 (p< 0.001), cytotoxic T-lymphocyte-associated protein 4 (sCTLA-4, p< 0.001), herpes virus entry mediator (sHVEM, p = 0.026), and T-cell immunoglobulin and mucin-domain containing-3 (sTIM-3, p = 0.002) were significantly higher in deaths than in survivors. The levels of nine cytokines assessed in the second week of deaths were significantly higher than those in survivors. The sICs sCD27, sCD40, sCTLA-4, and sTIM-3 and cytokines chemokine CC motif ligand 2 (CCL2), GM-CSF, IL-10, and IL-8 showed significant positive correlations with the levels of C-reactive protein (CRP) and procalcitonin and were negatively correlated with the absolute lymphocyte count and platelet values. Increased levels of sICs including sCD27, sCD40, sCTLA-4, and sTIM-3 and cytokines were significant factors for poor prognosis. sICs, together with cytokines and inflammatory markers, may be useful as prognostic stratification markers in SARS-CoV-2-infected patients.
Collapse
Affiliation(s)
- Nuri Lee
- Department of Laboratory Medicine, Hallym University College of Medicine, Seoul, South Korea
| | - Seri Jeong
- Department of Laboratory Medicine, Hallym University College of Medicine, Seoul, South Korea
- *Correspondence: Seri Jeong,
| | - Kibum Jeon
- Department of Laboratory Medicine, Hallym University College of Medicine, Hangang Sacred Heart Hospital, Seoul, South Korea
| | - Min-Jeong Park
- Department of Laboratory Medicine, Hallym University College of Medicine, Seoul, South Korea
| | - Wonkeun Song
- Department of Laboratory Medicine, Hallym University College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Kandeel EZ, Refaat L, Bayoumi A, Nooh HA, Hammad R, Khafagy M, Abdellateif MS. The Role of Lymphocyte Subsets, PD-1, and FAS (CD95) in COVID-19 Cancer Patients. Viral Immunol 2022; 35:491-502. [PMID: 35930238 DOI: 10.1089/vim.2022.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lymphocytes are the main orchestrators that regulate the immune response in SARS-COV-2 infection. The exhaustion of T lymphocytes is a contributing factor to lymphopenia, which is responsible for the COVID-19 adverse outcome. However, it is still not demonstrated on a large scale, including cancer patients. Peripheral blood samples were obtained from 83 SARS-CoV2 infected cancer patients, and 29 COVID-19 infected noncancer patients compared to 28 age-matched healthy controls. Lymphocyte subsets were assessed for CD3, CD4, CD8, CD56, PD-1, and CD95 using flow cytometry. The data were correlated to the patients' clinical features, COVID-19 severity and outcomes. Lymphopenia, and decreased CD4+ T cells and CD8+ T cells were significantly observed in COVID-19 cancer and noncancer patients compared to the control group (p < 0.001, for all). There was a significantly increased expression of CD95 and PD-1 on the NK cells, CD4+ T cells, and CD8+ T cells in COVID-19 cancer and noncancer patients in comparison to the control group. The increased expression of CD95 on CD8+ T cells, as well as the increased expression of PD-1 on CD8+ T cells and NK cells are significantly associated with the severity of COVID-19 infection in cancer patients. The increased expression of CD95 and PD-1 on the CD4+ T cells, CD8+ T cells, and NK cells was observed significantly in nonsurviving patients and those who were admitted to the intensive care unit in COVID-19 cancer and noncancer patients. The increased expression of PD-1 and CD95 could be possible prognostic factors for COVID-19 severity and adverse outcomes in COVID-19 cancer and noncancer patients.
Collapse
Affiliation(s)
- Eman Z Kandeel
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Lobna Refaat
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ahmed Bayoumi
- Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hend A Nooh
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Reham Hammad
- Department of Clinical Pathology, Al-Azhar University, Cairo, Egypt
| | - Medhat Khafagy
- Department of Surgical Oncology, Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mona S Abdellateif
- Department of Medical Biochemistry and Molecular Biology, Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Programmed Cell Death-1/Programmed Cell Death-1 Ligand as Prognostic Markers of Coronavirus Disease 2019 Severity. Cells 2022; 11:cells11121978. [PMID: 35741107 PMCID: PMC9222173 DOI: 10.3390/cells11121978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Current research proves that immune dysregulation is a common feature of coronavirus disease 2019 (COVID-19), and immune exhaustion is associated with increased disease mortality. Immune checkpoint molecules, including the programmed cell death-1 (PD-1)/PD-1 ligand (PD-L1) axis, may serve as markers of disease severity. Accordingly, in this study, we evaluated the expression of PD-1/PD-L1 in patients with COVID-19. Blood immunophenotypes of hospitalized patients with moderate (n = 17, requiring oxygen support) and severe (n = 35, requiring mechanical ventilation in the intensive care setting) COVID-19 were compared and associated with clinical, laboratory, and survival data. The associations between severity and lymphocyte profiles were analysed at baseline and after 7 and 14 days of in-hospital treatment. Forty patients without COVID-19 infection were used as controls. For PD-1-positive T and B lymphocyte subsets, notable increases were observed between controls and patients with moderate or severe COVID-19 for CD4+PD-1+ T cells, CD8+PD-1+ T and CD19+PD-1+ B cells. Similar trends were observed for PD-L1-positive lymphocytes, namely, CD4+PD-L1+ T cells, CD8+PD-L1+ T cells and CD19+PD-L1+ B cells. Importantly, all markers associated with PD-1 and PD-L1 were stable over time for the analysed time points in the moderate and severe COVID-19 groups. Increased abundances of PD-1+ and PD-L1+ lymphocytes were associated with disease severity and mortality and were stable over time in patients with moderate to severe COVID-19. These immune exhaustion parameters may be attractive biomarkers of COVID-19 severity.
Collapse
|
11
|
Significance of Immune Status of SARS-CoV-2 Infected Patients in Determining the Efficacy of Therapeutic Interventions. J Pers Med 2022; 12:jpm12030349. [PMID: 35330349 PMCID: PMC8955701 DOI: 10.3390/jpm12030349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is now being investigated for its distinctive patterns in the course of disease development which can be indicated with miscellaneous immune responses in infected individuals. Besides this series of investigations on the pathophysiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), significant fundamental immunological and physiological processes are indispensable to address clinical markers of COVID-19 disease and essential to identify or design effective therapeutics. Recent developments in the literature suggest that deficiency of type I interferon (IFN) in serum samples can be used to represent a severe progression of COVID-19 disease and can be used as the basis to develop combined immunotherapeutic strategies. Precise control over inflammatory response is a significant aspect of targeting viral infections. This account presents a brief review of the pathophysiological characteristics of the SARS-CoV-2 virus and the understanding of the immune status of infected patients. We further discuss the immune system’s interaction with the SARS-CoV-2 virus and their subsequent involvement of dysfunctional immune responses during the progression of the disease. Finally, we highlight some of the implications of the different approaches applicable in developing promising therapeutic interventions that redirect immunoregulation and viral infection.
Collapse
|
12
|
Liu Y, Zhou X, Liu X, Jiang X. The immunology and immunotherapy for COVID-19. Expert Rev Mol Med 2021; 23:e24. [PMID: 34915958 PMCID: PMC8723987 DOI: 10.1017/erm.2021.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
The ongoing global pandemic of coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and significantly impacts the world economy and daily life. Symptoms of COVID-19 range from asymptomatic to fever, dyspnoea, acute respiratory distress and multiple organ failure. Critical cases often occur in the elderly and patients with pre-existing conditions. By binding to the angiotensin-converting enzyme 2 receptor, SARS-CoV-2 can enter and replicate in the host cell, exerting a cytotoxic effect and causing local and systemic inflammation. Currently, there is no specific treatment for COVID-19, and immunotherapy has consistently attracted attention because of its essential role in boosting host immunity to the virus and reducing overwhelming inflammation. In this review, we summarise the immunopathogenic features of COVID-19 and highlight recent advances in immunotherapy to illuminate ideas for the development of new potential therapies.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xinsheng Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Liu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaotao Jiang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|