1
|
Shigematsu M, Kawamura T, Deshpande DA, Kirino Y. Immunoactive signatures of circulating tRNA- and rRNA-derived RNAs in chronic obstructive pulmonary disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102285. [PMID: 39220268 PMCID: PMC11364045 DOI: 10.1016/j.omtn.2024.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is the most prevalent lung disease, and macrophages play a central role in the inflammatory response in COPD. We here report a comprehensive characterization of circulating short non-coding RNAs (sncRNAs) in plasma from patients with COPD. While circulating sncRNAs are increasingly recognized for their regulatory roles and biomarker potential in various diseases, the conventional RNA sequencing (RNA-seq) method cannot fully capture these circulating sncRNAs due to their heterogeneous terminal structures. By pre-treating the plasma RNAs with T4 polynucleotide kinase, which converts all RNAs to those with RNA-seq susceptible ends (5'-phosphate and 3'-hydroxyl), we comprehensively sequenced a wide variety of non-microRNA sncRNAs, such as 5'-tRNA halves containing a 2',3'-cyclic phosphate. We discovered a remarkable accumulation of the 5'-half derived from tRNAValCAC in plasma from COPD patients, whereas the 5'-tRNAGlyGCC half is predominant in healthy donors. Further, the 5'-tRNAValCAC half activates human macrophages via Toll-like receptor 7 and induces cytokine production. Additionally, we identified circulating rRNA-derived fragments that were upregulated in COPD patients and demonstrated their ability to induce cytokine production in macrophages. Our findings provide evidence of circulating, immune-active sncRNAs in patients with COPD, suggesting that they serve as inflammatory mediators in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Takuya Kawamura
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Deepak A. Deshpande
- Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
Yuan Z, Wang Q, Tan Y, Wei S, Shen J, Zhuang L, Yang Q, Xu Y, Luo Y. Methylprednisolone alleviates lung injury in sepsis by regulating miR-151-5p/USP38 pathway. Int Immunopharmacol 2024; 138:112548. [PMID: 38944949 DOI: 10.1016/j.intimp.2024.112548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is manifested by increased blood vessel permeability within the lungs and subsequent impairment of alveolar gas exchange. Methylprednisolone (MP) is commonly used as a treatment for ALI to reduce inflammation, yet its molecular mechanism remains unclear. This study aims to explore the underlying mechanisms of MP on ALI in a model induced by lipopolysaccharide (LPS). MATERIAL AND METHODS The proliferation, viability, apoptosis, and miR-151-5p expression of alveolar type II epithelial cells (AECII) were detected using the cell EdU assay, Annexin V/PI Apoptosis Kit, counting kit-8 (CCK-8) assay, and RT-qPCR. Western blot analysis was used to detect the Usp38 protein level. IL-6 and TNF-α were measured by ELISA. The combination of miR-151-5p and USP38 was determined by chromatin immunoprecipitation (ChIP)-PCR and dual-luciferase reporter assay. RESULTS MP greatly improved pulmonary function in vivo, reduced inflammation, and promoted the proliferation of the alveolar type II epithelial cells (AECII) in vitro. By comparing the alterations of microRNAs in lung tissues between MP treatment and control groups, we found that miR-151-5p exhibited a significant increase after LPS-treated AECII, but decreased after MP treatment. Confirmed by a luciferase reporter assay, USP38, identified as a downstream target of miR-151-5p, was found to increase after MP administration. Inhibition of miR-151-5p or overexpression of USP38 in AECII significantly improved the anti-inflammatory, anti-apoptotic, and proliferation-promotive effects of MP. CONCLUSION In summary, our data demonstrated that MP alleviates the inflammation and apoptosis of AECII induced by LPS, and promotes the proliferation of AECII partially via miR-151-5p suppression and subsequent USP38 activation.
Collapse
Affiliation(s)
- Zhize Yuan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Qiuyun Wang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yongchang Tan
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Outcomes Research Consortium, Cleveland, OH, USA
| | - Jie Shen
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Lei Zhuang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Qianzi Yang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Yiqiong Xu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
3
|
Shigematsu M, Kawamura T, Deshpande DA, Kirino Y. Immunoactive signatures of circulating tRNA- and rRNA-derived RNAs in chronic obstructive pulmonary disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599707. [PMID: 38948719 PMCID: PMC11212963 DOI: 10.1101/2024.06.19.599707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is the most prevalent lung disease, and macrophages play a central role in the inflammatory response in COPD. We here report a comprehensive characterization of circulating short non-coding RNAs (sncRNAs) in plasma from patients with COPD. While circulating sncRNAs are increasingly recognized for their regulatory roles and biomarker potential in various diseases, the conventional RNA-seq method cannot fully capture these circulating sncRNAs due to their heterogeneous terminal structures. By pre-treating the plasma RNAs with T4 polynucleotide kinase, which converts all RNAs to those with RNA-seq susceptible ends (5'-phosphate and 3'-hydroxyl), we comprehensively sequenced a wide variety of non-microRNA sncRNAs, such as 5'-tRNA halves containing a 2',3'-cyclic phosphate. We discovered a remarkable accumulation of the 5'-half derived from tRNA ValCAC in plasma from COPD patients, whereas the 5'-tRNA GlyGCC half is predominant in healthy donors. Further, the 5'-tRNA ValCAC half activates human macrophages via Toll-like receptor 7 and induces cytokine production. Additionally, we identified circulating rRNA-derived fragments that were upregulated in COPD patients and demonstrated their ability to induce cytokine production in macrophages. Our findings provide evidence of circulating, immune-active sncRNAs in patients with COPD, suggesting that they serve as inflammatory mediators in the pathogenesis of COPD.
Collapse
|
4
|
Dai Z, Zhan Z, Chen Y, Li J. MiRNA-210 is involved in cigarette smoke extract-induced apoptosis of MLE-12 via the Shh signaling pathway. Tob Induc Dis 2024; 22:TID-22-92. [PMID: 38813585 PMCID: PMC11135024 DOI: 10.18332/tid/186643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/19/2023] [Accepted: 03/29/2024] [Indexed: 05/31/2024] Open
Abstract
INTRODUCTION The aim of the study is the regulatory effect of MicroRNA-210 (MiR-210) on cigarette smoke extract (CSE)-induced mouse lung epithelial type II cells (MLE-12) apoptosis and determine whether the MiR-210 is involved in cigarette smoke extract-induced apoptosis of MLE-12 via Shh signaling pathway. METHODS Expression of MiR-210 in CSE-induced MLE-12 was assessed by qRT-PCR. The emphysema mouse model and MiR-210 knockdown mice were each established by inhaling cigarette smoke or intratracheal lentiviral vector instillation. The Sonic hedgehog (Shh), Ptch1, Gli1, B-cell lymphoma-2 (Bcl-2), and Caspase 3 protein expressions were detected by Western blotting. mRNA expressions of MiR-210, Shh, Ptch1, and Gli1 were measured using quantitative real-time polymerase chain reaction (qRT-PCR). Apoptotic ratios in mice and CSE-induced HPVEC were assessed using TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assays and flow cytometry. RESULTS Our results showed that MiR-210 mRNA levels were significantly down-regulated in the CSE-induced MLE 12. MLE 12 apoptosis with down-regulated Shh, Ptch1, Gli1, and Bcl-2 expression, increased Caspase 3 expression in the emphysema mouse model and CSE-induced MLE 12. Knockdown MiR-210 can facilitate cell apoptosis and emphysema via the Shh signaling pathway in mice. In vitro, MiR-210 can attenuate the apoptosis of CSE-exposed MLE 12. Moreover, MiR-210 regulated the Shh pathway and promoted its expression. CONCLUSIONS MiRNA-210 is involved in cigarette smoke extract-induced apoptosis of MLE-12 via the Shh signaling pathway. The present study reveals that MiRNA-210 may be a key regulator of cellular apoptosis and could be explored as a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Zhongshang Dai
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zijie Zhan
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Jinhua Li
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
5
|
Bi X, Wang L, Li H, Ma Y, Guo R, Yue J, Kong L, Gong X, Jiao F, Chinn E, Hu J. MiR-383-5p inhibits the proliferation and migration of lung adenocarcinoma cells by targeting SHMT2. J Cancer 2024; 15:2746-2758. [PMID: 38577602 PMCID: PMC10988301 DOI: 10.7150/jca.89733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/18/2024] [Indexed: 04/06/2024] Open
Abstract
Purpose: To explore the effects of miR-383-5p and serine hydroxymethyltransferase 2 (SHMT2) on the proliferation and migration of lung adenocarcinoma cells. Methods: SHMT2 expression in lung adenocarcinoma and normal tissues was investigated using The Cancer Genome Atlas database. Immunohistochemical analysis was performed to confirm SHMT2 expression in lung adenocarcinoma and adjacent normal lung tissues. Bioinformatics analysis and luciferase reporter assays were used to analyze the relationship between miR-383-5p and SHMT2 expression. The protein expression levels of SHMT2, vimentin, N-cadherin, E-cadherin, Bcl-2, and cyclinD1 were analyzed using western blotting. The reverse transcription-quantitative polymerase chain reaction was used to detect SHMT2 knockdown efficiency, miR-383-5p overexpression, and inhibition efficiency. The proliferative ability of cells was detected using the Cell Counting Kit-8 assay. The Transwell assay was used to detect the migration ability of cells. Results: SHMT2 expression was significantly increased in patients with lung adenocarcinoma compared to that in control patients; the higher the SHMT2 expression the worse the outcomes were in patients with lung adenocarcinoma. SHMT2 knockdown inhibited the proliferation, migration, and epithelial-mesenchymal transition of lung adenocarcinoma A549 and H1299 cells. MiR-383-5p directly targeted and downregulated SHMT2 in A549 and H1299 cells. The effects of miRNA-383-5p on the proliferation and migration of these cells differed from those of SHMT2. Exogenous overexpression of SHMT2 reversed the miR-383-5p-induced proliferation and migration inhibition in A549 and H1299 cells. Conclusion: MiR-383-5p inhibits the proliferation and migration of lung adenocarcinoma cells by targeting and downregulating SHMT2.
Collapse
Affiliation(s)
- Xianxia Bi
- Peninsula Cancer Research Center of Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Luwei Wang
- Peninsula Cancer Research Center of Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Hua Li
- Yantai Environmental Sanitation Management Center, YanTai, Shandong 264000, P.R. China
| | - Ying Ma
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Ruoyu Guo
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Jicheng Yue
- Peninsula Cancer Research Center of Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Lijun Kong
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Xiangqian Gong
- Department of Gastrointestinal Surgery, Yuhuangding Hospital, YanTai, Shandong 265499, P.R. China
| | - Fei Jiao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Eugene Chinn
- Peninsula Cancer Research Center of Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Jinxia Hu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| |
Collapse
|
6
|
Langyue H, Ying Z, Jianfeng J, Yue Z, Huici Y, Hongyan L. IRF4-mediated Treg phenotype switching can aggravate hyperoxia-induced alveolar epithelial cell injury. BMC Pulm Med 2024; 24:130. [PMID: 38491484 PMCID: PMC10941512 DOI: 10.1186/s12890-024-02940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is characterized by alveolar dysplasia, and evidence indicates that interferon regulatory factor 4 (IRF4) is involved in the pathogenesis of various inflammatory lung diseases. Nonetheless, the significance and mechanism of IRF4 in BPD remain unelucidated. Consequently, we established a mouse model of BPD through hyperoxia exposure, and ELISA was employed to measure interleukin-17 A (IL-17 A) and interleukin-6 (IL-6) expression levels in lung tissues. Western blotting was adopted to determine the expression of IRF4, surfactant protein C (SP-C), and podoplanin (T1α) in lung tissues. Flow cytometry was utilized for analyzing the percentages of FOXP3+ regulatory T cells (Tregs) and FOXP3+RORγt+ Tregs in CD4+ T cells in lung tissues to clarify the underlying mechanism. Our findings revealed that BPD mice exhibited disordered lung tissue structure, elevated IRF4 expression, decreased SP-C and T1α expression, increased IL-17 A and IL-6 levels, reduced proportion of FOXP3+ Tregs, and increased proportion of FOXP3+RORγt+ Tregs. For the purpose of further elucidating the effect of IRF4 on Treg phenotype switching induced by hyperoxia in lung tissues, we exposed neonatal mice with IRF4 knockout to hyperoxia. These mice exhibited regular lung tissue structure, increased proportion of FOXP3+ Tregs, reduced proportion of FOXP3+RORγt+ Tregs, elevated SP-C and T1α expression, and decreased IL-17 A and IL-6 levels. In conclusion, our findings demonstrate that IRF4-mediated Treg phenotype switching in lung tissues exacerbates alveolar epithelial cell injury under hyperoxia exposure.
Collapse
Affiliation(s)
- He Langyue
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Zhu Ying
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Jiang Jianfeng
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Zhu Yue
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Yao Huici
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Lu Hongyan
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China.
| |
Collapse
|
7
|
Li K, Ye X, Xu M, Xu C, Lu P, Li J, Yuan G, Zhang C. MiR-23a-3p alleviates cigarette smoke extract-induced pulmonary vascular endothelial cell apoptosis by targeting DNAJB1 in emphysema. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:1223-1232. [PMID: 37828807 PMCID: PMC10730501 DOI: 10.1111/crj.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Cigarette smoke (CS) is an important risk factor for chronic obstructive pulmonary disease, including emphysema. MicroRNAs (miRNAs) are important regulators of emphysema progression. However, miR-23a-3p role in emphysema is unclear. METHODS CS exposure was used to construct emphysema mice models, and cigarette smoke extract (CSE)-induced pulmonary vascular endothelial cells (PMVECs) were used to mimic emphysema cell models. Mouse lung tissue was stained by immunohistochemical staining, hematoxylin and eosin staining, and TUNEL staining. MiR-23a-3p and DnaJ homolog subfamily B member 1 (DNAJB1) levels were tested using quantitative real-time PCR. DNAJB1 and apoptosis-related markers' protein levels were examined via western blot analysis. Cell viability and apoptosis were analyzed by MTT assay and flow cytometry. The interaction between miR-23a-3p and DNAJB1 was evaluated by dual-luciferase reporter assay and RIP assay. RESULTS MiR-23a-3p was downregulated, and DNAJB1 was upregulated in CS-induced emphysema mice models and CSE-induced PMVECs. MiR-23a-3p overexpression promoted viability and repressed apoptosis in CSE-induced PMVECs. MiR-23a-3p targeted DNAJB1 and negatively regulated DNAJB1 expression. Moreover, DNAJB1 knockdown repressed CSE-induced PMVECs apoptosis, and miR-23a-3p inhibitor reversed this effect. Additionally, miR-23a-3p alleviated lung tissue injury and improved emphysema in mice by reducing DNAJB1 expression. CONCLUSION MiR-23a-3p alleviated emphysema progression, which could inhibit CSE-induced PMVECs apoptosis by targeting DNAJB1.
Collapse
Affiliation(s)
- Ke Li
- Department of Respiratory and Critical Care MedicineGuizhou Provincial People's HospitalGuiyang CityPeople's Republic of China
| | - Xianwei Ye
- Department of Respiratory and Critical Care MedicineGuizhou Provincial People's HospitalGuiyang CityPeople's Republic of China
| | - Mei Xu
- Department of Respiratory and Critical Care MedicineGuizhou Provincial People's HospitalGuiyang CityPeople's Republic of China
| | - Chuan Xu
- Department of Thoracic SurgeryGuizhou Provincial People's HospitalGuiyang CityPeople's Republic of China
| | - Ping Lu
- Department of Respiratory and Critical Care MedicineGuizhou Provincial People's HospitalGuiyang CityPeople's Republic of China
| | - Jiayi Li
- Department of Respiratory and Critical Care MedicineGuizhou Provincial People's HospitalGuiyang CityPeople's Republic of China
| | - Guohang Yuan
- Department of Respiratory and Critical Care MedicineGuizhou Provincial People's HospitalGuiyang CityPeople's Republic of China
| | - Cheng Zhang
- Department of Respiratory and Critical Care MedicineGuizhou Provincial People's HospitalGuiyang CityPeople's Republic of China
| |
Collapse
|
8
|
Luo H, Xiao T, Sun X, Song Y, Shi W, Lu K, Chen D, Sun C, Bian Q. The regulation of circRNA_kif26b on alveolar epithelial cell senescence via miR-346-3p is involved in microplastics-induced lung injuries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163512. [PMID: 37084911 DOI: 10.1016/j.scitotenv.2023.163512] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs), the emerging environmental contaminants, can be inhaled and lead to lung injuries, including inflammation and fibrosis. Alveolar epithelial cell senescence is associated with several lung diseases, but its mechanism in MPs-induced lung injuries remains unknown. In this study, polystyrene microplastics (PS-MPs) in the form of microspheres with a particle size of 100 nm were used for a 35-day inhalation exposure in SPF-grade Sprague-Dawley (SD) rats. The plethysmograph showed lung dysfunction. The hematoxylin and eosin (H&E) staining revealed lung histological lesions with a significant accumulation of inflammatory cells. The β-galactosidase staining indicated increased senescent cells in lung tissues. The ELISA suggested increased senescence-associated secretory phenotype (SASP) in bronchoalveolar lavage fluid (BALF). Treatment of mouse alveolar epithelial cell line MLE12 with PS-MPs raised levels of senescence-related markers p21, p16, and p27 and SASP secretion. circ_kif26b, a ring-structured non-coding RNA (ncRNA), is homologous in human, rat, and mouse and was elevated in PS-MPs-exposed rat lung tissues as well as in PS-MPs-treated MLE12 cells. The luciferase reporter gene revealed that circ_kif26b was bound to miR-346-3p and co-regulated p21, a target gene of miR-346-3p. circ_kif26b knockdown or miR-346-3p overexpression attenuated PS-MPs-induced MLE12 cell senescence and secretion of the SASP cytokines IL-6 and IL-8. However, down-regulation of circ_kif26b and miR-346-3p reversed this depressive effect. Overall, circ_kif26b mediates alveolar epithelial cell senescence through miR-346-3p and participates in PS-MPs-induced lung inflammation. These findings provide new insights into the mechanisms of MPs inhalation toxicity and lay a mechanistic foundation for health risk assessment of MPs.
Collapse
Affiliation(s)
- Hangjun Luo
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Tian Xiao
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Xiaoxue Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yan Song
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 211198, China
| | - Weiqing Shi
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Kuikui Lu
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Dongya Chen
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qian Bian
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; Jiangsu Province Engineering Research Center of Health Emergency, Nanjing 210009, China.
| |
Collapse
|
9
|
Zhang Q, Luo T, Yuan D, Liu J, Fu Y, Yuan J. Qilongtian ameliorate bleomycin-induced pulmonary fibrosis in mice via inhibiting IL-17 signal pathway. Sci Rep 2023; 13:6002. [PMID: 37045911 PMCID: PMC10092933 DOI: 10.1038/s41598-023-31439-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/11/2023] [Indexed: 04/14/2023] Open
Abstract
Pulmonary fibrosis (PF) is a special type of pulmonary parenchymal disease, with chronic, progressive, fibrosis, and high mortality. There is a lack of safe, effective, and affordable treatment methods. Qilongtian (QLT) is a traditional Chinese prescription that is composed of Panax notoginseng, Earthworm, and Rhodiola, and shows the remarkable clinical curative effect of PF. However, the mechanism of QLT remains to be clarified. Therefore, we studied the effectivity of QLT in treating Bleomycin (BLM) induced PF mice. 36 C57BL/6 J mice were randomized into the control group, the model group, the low-, medium- and high-dose QLT group, and Pirfenidone group. After establishing a model of pulmonary fibrosis in mice, the control and model groups were infused with a normal saline solution, and the delivery group was infused with QLT. Pulmonary function in the mice from each group was detected. Pulmonary tissue morphologies and collagen deposition were stained by HE and Masson. The content of hydroxyproline (HYP) was detected by alkaline hydrolysis and the mRNA and protein expression of related genes in pulmonary tissues were detected by using q-PCR, ELISA, and Western blot. Our studies have shown that QLT significantly reduced the inflammatory injury, hydroxy-proline content, and collagen deposition of pulmonary tissue in BLM-induced PF mice and down-regulated the cytokine related to inflammation and fibrosis and PF expression on the mRNA and protein level in PF mice. To identify the mechanism of QLT, the Transcriptome was measured and the IL-17 signal pathway was screened out for further research. Further studies indicated that QLT reduced the mRNAs and protein levels of interleukin 17 (IL-17), c-c motif chemokine ligand 12 (CCL12), c-x-c motif chemokine ligand 5 (CXCL5), fos-like antigen 1 (FOSL1), matrix metalloproteinase-9 (MMP9), and amphiregulin (AREG), which are inflammation and fibrosis-related genes in the IL-17 signal pathway. The results indicated that the potential mechanism for QLT in the prevention of PF progression was by inhibiting inflammation resulting in the IL-17 signal pathway. Our study provides the novel scientific basis of QLT and represents new therapeutics for PF in clinical.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China.
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Ting Luo
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Dezheng Yuan
- Yunnan University of Chinese Medicine, Kunming, 650500, China
- The third Affiliated Hospital of Yunnan University of Chinese Medicine: Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, 650500, China
| | - Jing Liu
- Yunnan University of Chinese Medicine, Kunming, 650500, China
- The third Affiliated Hospital of Yunnan University of Chinese Medicine: Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, 650500, China
| | - Yi Fu
- Yunnan University of Chinese Medicine, Kunming, 650500, China
- The third Affiliated Hospital of Yunnan University of Chinese Medicine: Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, 650500, China
| | - Jiali Yuan
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| |
Collapse
|
10
|
Li S, Huang Q, He B. SIRT1 as a Potential Therapeutic Target for Chronic Obstructive Pulmonary Disease. Lung 2023; 201:201-215. [PMID: 36790647 DOI: 10.1007/s00408-023-00607-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common, preventable, and treatable disease characterized by irreversible airflow obstruction and lung function decline. It is well established that COPD represents a major cause of morbidity and mortality globally. Due to the substantial economic and social burdens associated with COPD, it is necessary to discover new targets and develop novel beneficial therapies. Although the pathogenesis of COPD is complex and remains to be robustly elucidated, numerous studies have shown that oxidative stress, inflammatory responses, cell apoptosis, autophagy, and aging are involved in the pathogenesis of COPD. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to the silent information regulator 2 (Sir2) family. Multiple studies have indicated that SIRT1 plays an important role in oxidative stress, apoptosis, inflammation, autophagy, and cellular senescence, which contributes to the pathogenesis and development of COPD. This review aimed to discuss the functions and mechanisms of SIRT1 in the progression of COPD and concluded that SIRT1 activation might be a potential therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Siqi Li
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Baimei He
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China. .,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
11
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|