1
|
Wu CY, Wang KQ, Qin YY, Wang HW, Wu MM, Zhu XD, Lu XY, Zhu MM, Lu CS, Hu QQ. Micheliolide ameliorates severe acute pancreatitis in mice through potentiating Nrf2-mediated anti-inflammation and anti-oxidation effects. Int Immunopharmacol 2024; 143:113490. [PMID: 39467351 DOI: 10.1016/j.intimp.2024.113490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Severe acute pancreatitis (SAP) is an acute inflammatory injury disease with significant mortality rate and currently without effective strategy being available. Inflammation and oxidative stress play central roles in the etiology of SAP. Micheliolide (MCL), an active monomeric component isolated from Michelia champaca, has been proved its multiple therapeutic properties including anti-inflammatory, antioxidant and anti-cancer. Nevertheless, the therapeutic effect and underlying mechanism of MCL in SAP still remain unclear. Here, we found that caerulein with lipopolysaccharide (LPS)-induced SAP murine models exhibited severe pancreatic injury, including necrosis, edema, and vacuolation of acinar cells in the pancreas, elevated serum levels of amylase and lipase, and reduced number of the exocrine cells. As expected, MCL treatment alleviated these side effects. Mechanistically, MCL triggered nuclear factor erythroid 2-related factor 2 (Nrf2) activation, thereby activating Nrf2-regulated antioxidative pathways and inhibiting nuclear factor kappa B p65 (NF-κB p65)-mediated inflammatory response, resulting in protection against pancreatic injury in SAP mice. In addition, Nrf2 gene deficiency abolished the beneficial effects of MCL on SAP-induced pancreatic inflammation and oxidative stress and blocked the ability of MCL to alleviate the pancreatic injury in SAP mice. Collectively, these findings indicated that the suppression of SAP-induced pancreatic injury by MCL was at least in part due to Nrf2-mediated anti-oxidation effect and inhibition of inflammation.
Collapse
Affiliation(s)
- Chen-Yu Wu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ke-Qi Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yu-Ying Qin
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hong-Wei Wang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Min-Min Wu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xian-Dong Zhu
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xin-Yu Lu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; The First Clinical Medical College of Wenzhou Medical University, Wenzhou 325000, China
| | - Mian-Mian Zhu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chao-Sheng Lu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Qing-Qing Hu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
2
|
Niu C, Zhang J, Okolo PI. Therapeutic potential of plant polyphenols in acute pancreatitis. Inflammopharmacology 2024:10.1007/s10787-024-01584-y. [PMID: 39497005 DOI: 10.1007/s10787-024-01584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/06/2024]
Abstract
Acute pancreatitis is a potentially life-threatening inflammatory disorder of the exocrine pancreas characterized by early activation of pancreatic enzymes followed by macrophage-driven inflammation, and pancreatic acinar cell death. The most common causes are gallstones and excessive alcohol consumption. Inflammation and oxidative stress play critical roles in its pathogenesis. Despite increasing incidence, currently, no specific drug therapy is available to treat or prevent acute pancreatitis, in particular severe acute pancreatitis. New therapeutic agents are very much needed. Plant polyphenols have attracted extensive attention in the field of acute pancreatitis due to their diverse pharmacological properties. In this review, we discuss the potential of plant polyphenols in inhibiting the occurrence and development of acute pancreatitis via modulation of inflammation, oxidative stress, calcium overload, autophagy, and apoptosis, based on the currently available in vitro, in vivo animal and very few clinical human studies. We also outline the opportunities and challenges in the clinical translation of plant polyphenols for the treatment of the disease. We concluded that plant polyphenols have a potential therapeutic effect in the management and treatment of acute pancreatitis. Knowledge gained from this review will hopefully inspire new research ideas and directions for the development and application of plant polyphenols for treating this disease.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA.
| | - Jing Zhang
- Rainier Springs Behavioral Health Hospital, 2805 NE 129th St, Vancouver, WA, 98686, USA
| | - Patrick I Okolo
- Division of Gastroenterology, Carillion Clinic, Roanoke, VA, 24014, USA
| |
Collapse
|
3
|
Sai Priya T, Ramalingam V, Suresh Babu K. Natural products: A potential immunomodulators against inflammatory-related diseases. Inflammopharmacology 2024:10.1007/s10787-024-01562-4. [PMID: 39196458 DOI: 10.1007/s10787-024-01562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
The incidence and prevalence of inflammatory-related diseases (IRDs) are increasing worldwide. Current approved treatments for IRDs in the clinic are combat against inhibiting the pro-inflammatory cytokines. Though significant development in the treatment in the IRDs has been achieved, the severe side effects and inefficiency of currently practicing treatments are endless challenge. Drug discovery from natural sources is efficacious over a resurgence and also natural products are leading than the synthetic molecules in both clinical trials and market. The use of natural products against IRDs is a conventional therapeutic approach since it is a reservoir of unique structural chemistry, accessibility and bioactivities with reduced side effects and low toxicity. In this review, we discuss the cause of IRDs, treatment of options for IRDs and the impact and adverse effects of currently practicing clinical drugs. As well, the significant role of natural products against various IRDs, the limitations in the clinical development of natural products and thus pave the way for development of natural products as immunomodulators against IRDs are also discussed.
Collapse
Affiliation(s)
- Telukuntla Sai Priya
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vaikundamoorthy Ramalingam
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Katragadda Suresh Babu
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Khawaja G, El-Orfali Y, Shoujaa A, Abou Najem S. Galangin: A Promising Flavonoid for the Treatment of Rheumatoid Arthritis-Mechanisms, Evidence, and Therapeutic Potential. Pharmaceuticals (Basel) 2024; 17:963. [PMID: 39065811 PMCID: PMC11279697 DOI: 10.3390/ph17070963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune disease characterized by progressive joint inflammation and damage. Oxidative stress plays a critical role in the onset and progression of RA, significantly contributing to the disease's symptoms. The complex nature of RA and the role of oxidative stress make it particularly challenging to treat effectively. This article presents a comprehensive review of RA's development, progression, and the emergence of novel treatments, introducing Galangin (GAL), a natural flavonoid compound sourced from various plants, as a promising candidate. The bioactive properties of GAL, including its anti-inflammatory, antioxidant, and immunomodulatory effects, are discussed in detail. The review elucidates GAL's mechanisms of action, focusing on its interactions with key targets such as inflammatory cytokines (e.g., TNF-α, IL-6), enzymes (e.g., SOD, MMPs), and signaling pathways (e.g., NF-κB, MAPK), which impact inflammatory responses, immune cell activation, and joint damage. The review also addresses the lack of comprehensive understanding of potential treatment options for RA, particularly in relation to the role of GAL as a therapeutic candidate. It highlights the need for further research and clinical studies to ascertain the effectiveness of GAL in RA treatment and to elucidate its mechanisms of action. Overall, this review provides valuable insights into the potential of GAL as a therapeutic option for RA, shedding light on its multifaceted pharmacological properties and mechanisms of action, while suggesting avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Ghada Khawaja
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon
| | - Youmna El-Orfali
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Aya Shoujaa
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon
| | - Sonia Abou Najem
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi P.O. Box 25026, United Arab Emirates;
| |
Collapse
|
5
|
Ali BM, Al-Mokaddem AK, Selim HMRM, Alherz FA, Saleh A, Hamdan AME, Ousman MS, El-Emam SZ. Pinocembrin's protective effect against acute pancreatitis in a rat model: The correlation between TLR4/NF-κB/NLRP3 and miR-34a-5p/SIRT1/Nrf2/HO-1 pathways. Biomed Pharmacother 2024; 176:116854. [PMID: 38824834 DOI: 10.1016/j.biopha.2024.116854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Acute pancreatitis (APS) is a prevalent acute pancreatic inflammation, where oxidative stress, inflammatory signaling pathways, and apoptosis activation contribute to pancreatic injury. METHODS Pinocembrin, the predominant flavonoid in propolis, was explored for its likely shielding effect against APS provoked by two intraperitoneal doses of L-arginine (250 mg / 100 g) in a rat model. RESULTS Pinocembrin ameliorated the histological and immunohistochemical changes in pancreatic tissues and lowered the activities of pancreatic amylase and lipase that were markedly elevated with L-arginine administration. Moreover, pinocembrin reinstated the oxidant/antioxidant equilibrium, which was perturbed by L-arginine, and boosted the pancreatic levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Pinocembrin markedly reduced the elevation in serum C-reactive protein (CRP) level induced by L-arginine. Additionally, it decreased the expression of high motility group box protein 1 (HMGB1), toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and NOD-like receptor (NLR) Family Pyrin Domain Containing 3 (NLRP3) inflammasome in the pancreas. Furthermore, it also reduced myeloperoxidase (MPO) activity. Pinocembrin markedly downregulated miR-34a-5p expression and upregulated the protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) and Sirtuin 1 (SIRT1) and the gene expression level of the inhibitor protein of NF-κB (IκB-α), along with normalizing the Bax/Bcl-2 ratio. CONCLUSIONS Pinocembrin notably improved L-arginine-induced APS by its antioxidant, anti-inflammatory, and anti-apoptotic activities. Pinocembrin exhibited a protective role in APS by suppressing inflammatory signaling via the TLR4/NF-κB/NLRP3 pathway and enhancing cytoprotective signaling via the miR-34a-5p/SIRT1/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Bassam Mohamed Ali
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Almaarefa University, P.O.Box 71666, Diriyah, Riyadh 13713, Saudi Arabia
| | - Fatemah A Alherz
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | - Mona S Ousman
- Emergency medical services, College of Applied Sciences, Almaarefa University, Diriyah, Riyadh 13713, Saudi Arabia
| | - Soad Z El-Emam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt.
| |
Collapse
|
6
|
Li X, Wang T, Zhou Q, Li F, Liu T, Zhang K, Wen A, Feng L, Shu X, Tian S, Liu Y, Gao Y, Xia Q, Xin G, Huang W. Isorhamnetin Alleviates Mitochondrial Injury in Severe Acute Pancreatitis via Modulation of KDM5B/HtrA2 Signaling Pathway. Int J Mol Sci 2024; 25:3784. [PMID: 38612598 PMCID: PMC11011973 DOI: 10.3390/ijms25073784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Severe acute pancreatitis (SAP), a widespread inflammatory condition impacting the abdomen with a high mortality rate, poses challenges due to its unclear pathogenesis and the absence of effective treatment options. Isorhamnetin (ISO), a naturally occurring flavonoid, demonstrates robust antioxidant and anti-inflammatory properties intricately linked to the modulation of mitochondrial function. However, the specific protective impact of ISO on SAP remains to be fully elucidated. In this study, we demonstrated that ISO treatment significantly alleviated pancreatic damage and reduced serum lipase and amylase levels in the mouse model of SAP induced by sodium taurocholate (STC) or L-arginine. Utilizing an in vitro SAP cell model, we found that ISO co-administration markedly prevented STC-induced pancreatic acinar cell necrosis, primarily by inhibiting mitochondrial ROS generation, preserving ATP production, maintaining mitochondrial membrane potential, and preventing the oxidative damage and release of mitochondrial DNA. Mechanistically, our investigation identified that high-temperature requirement A2 (HtrA2) may play a central regulatory role in mediating the protective effect of ISO on mitochondrial dysfunction in STC-injured acinar cells. Furthermore, through an integrated approach involving bioinformatics analysis, molecular docking analysis, and experimental validation, we uncovered that ISO may directly impede the histone demethylation activity of KDM5B, leading to the restoration of pancreatic HtrA2 expression and thereby preserving mitochondrial function in pancreatic acinar cells following STC treatment. In conclusion, this study not only sheds new light on the intricate molecular complexities associated with mitochondrial dysfunction during the progression of SAP but also underscores the promising value of ISO as a natural therapeutic option for SAP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Guang Xin
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Huang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Su M, Chen F, Han D, Song M, Wang Y. PRMT7-Dependent Transcriptional Activation of Hmgb2 Aggravates Severe Acute Pancreatitis by Promoting Acsl1-Induced Ferroptosis. J Proteome Res 2024; 23:1075-1087. [PMID: 38376246 DOI: 10.1021/acs.jproteome.3c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Severe acute pancreatitis (SAP) is a highly fatal abdominal emergency, and its association with protein arginine methyltransferase 7 (PRMT7), the sole known type III enzyme responsible for the monomethylation of arginine residue, remains unexplored. In this study, we observe an increase in the PRMT7 levels in the pancreas of SAP mice and Cerulein-LPS-stimulated AR42J cells. Overexpression of Prmt7 exacerbated pancreatic damage in SAP, while the inhibition of PRMT7 improved SAP-induced pancreatic damage. Furthermore, PRMT7 overexpression promoted inflammation, oxidative stress, and ferroptosis during SAP. Mechanically, PRMT7 catalyzed monomethylation at histone H4 arginine 3 (H4R3me1) at the promoter region of high mobility group proteins 2 (HMGB2), thereby enhancing its transcriptional activity. Subsequently, HMGB2 facilitated Acyl CoA synthase long-chain family member 1 (ACSL1) transcription by binding to its promoter region, resulting in the activation of ferroptosis. Inhibition of PRMT7 effectively alleviated ferroptosis in Cerulein-LPS-induced AR42J cells by suppressing the HMGB2-ACSL1 pathway. Overall, our study reveals that PRMT7 plays a crucial role in promoting SAP through its regulation of the HMGB2-ACSL1 pathway to accelerate ferroptosis.
Collapse
Affiliation(s)
- Minghua Su
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Feng Chen
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Dong Han
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Menglong Song
- Emergency Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Yifan Wang
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| |
Collapse
|
8
|
Chen F, Su M, Han D, Wang Y, Song M. METTL14 depletion ameliorates ferroptosis in severe acute pancreatitis by increasing the N6-methyladenosine modification of ACSL4 and STA1. Int Immunopharmacol 2024; 128:111495. [PMID: 38237228 DOI: 10.1016/j.intimp.2024.111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024]
Abstract
Methyltransferase-like 14 (METTL14) is implicated in the regulation of various inflammatory disorders. However, its function and molecular mechanism in severe acute pancreatitis (SAP) remains unrevealed. Here we reported an increase in METTL14 in the pancreas of SAP mice and cerulein-LPS-treated AR42J cells. METTL14 depletion reversed inflammatory response and ferroptosis by reducing the expression of SAT1 (spermidine/spermine N1-acetyltransferase 1) and ACSL4 (acyl-CoA synthetase long chain family member 4) in an m6A-dependent manner. IGF2BP2 (insulin like growth factor 2 mRNA binding protein 2) could recognize m6A-modified SAT1 and ACSL4 mRNA and enhance their stability. Moreover, METTL14 depletion ameliorated pancreatic injury, inflammation, and ferroptosis induced by SAP. METTL14 overexpression aggravated SAP by promoting ferroptosis in vivo. Therefore, these results demonstrated that METTL14-induced ferroptosis promoted the progression of SAP, and targeting METTL14 or ferroptosis could be a potential strategy for the prevention and treatment of SAP.
Collapse
Affiliation(s)
- Feng Chen
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Minghua Su
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Dong Han
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Yifan Wang
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China.
| | - Menglong Song
- Emergency Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China.
| |
Collapse
|
9
|
Gong J, Xiong Z, Yu W, Song Z. Bone Marrow Mesenchymal Stem Cells Alleviate Acute Severe Pancreatitis and Promote Lung Repair via Inhibiting NLRP3 Inflammasome in Rat. Dig Dis Sci 2024; 69:135-147. [PMID: 38007702 DOI: 10.1007/s10620-023-08189-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Acute severe pancreatitis (SAP) is a severe acute abdominal disease, which can lead to pancreatic infection and necrosis as well as distant organ damage. Bone marrow mesenchymal stem cells (BMSCs) can exert anti-inflammatory effect on SAP, while NLRP3 inflammasomes play an important role in the inflammatory response. This study aimed to investigate whether BMSCs exert anti-inflammatory effect on SAP by inhibiting NLRP3 inflammasome. METHODS The rat SAP model was established. Serum amylase, lipase and inflammatory factor levels were measured by ELISA, and the level of tissue injury was assessed by HE staining. The expression of NLRP3 inflammasome was detected by PCR, Western Blot and immunohistochemistry. ML385 was used to block Nrf2 pathway, aiming to investigate whether Nrf2 pathway was involved in the therapeutic effect of BMSCs on SAP by regulating NLRP3 inflammasome expression. RESULTS In SAP rats, NLRP3 inflammasome was activated, which became more evident over time. After transplantation of BMSCs, the NLRP3 inflammasome expression decreased at both mRNA and protein levels, the serum levels of amylase, lipase and inflammatory factors decreased, and the pathological scores of the pancreas and lung were both improved. After blocking the Nrf2 pathway, the NLRP3 inflammasome expression increased in the injured pancreas and lung, and the inflammation deteriorated, which inhibited the therapeutic effects of BMSCs on SAP. CONCLUSION The therapeutic effect of BMSC on SAP is at least partially ascribed to the inhibition of NLRP3 inflammasome, and Nrf2 pathway mediates the therapeutic effect of BMSC on SAP by inhibiting NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jian Gong
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072, Shanghai, China
| | - Zhaoming Xiong
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072, Shanghai, China
| | - Weidi Yu
- Department of General Surgery, Shanghai Fourth People's Hospital, Tongji University School of Medicine, 200072, Shanghai, China
| | - Zhenshun Song
- Department of General Surgery, Shanghai Fourth People's Hospital, Tongji University School of Medicine, 200072, Shanghai, China.
| |
Collapse
|
10
|
Sharma V, Arora A, Bansal S, Semwal A, Sharma M, Aggarwal A. Role of bio-flavonols and their derivatives in improving mitochondrial dysfunctions associated with pancreatic tumorigenesis. Cell Biochem Funct 2024; 42:e3920. [PMID: 38269510 DOI: 10.1002/cbf.3920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024]
Abstract
Mitochondria, a cellular metabolic center, efficiently fulfill cellular energy needs and regulate crucial metabolic processes, including cellular proliferation, differentiation, apoptosis, and generation of reactive oxygen species. Alteration in the mitochondrial functions leads to metabolic imbalances and altered extracellular matrix dynamics in the host, utilized by solid tumors like pancreatic cancer (PC) to get energy benefits for fast-growing cancer cells. PC is highly heterogeneous and remains unidentified for a longer time because of its complex pathophysiology, retroperitoneal position, and lack of efficient diagnostic approaches, which is the foremost reason for accounting for the seventh leading cause of cancer-related deaths worldwide. PC cells often respond poorly to current therapeutics because of dense stromal barriers in the pancreatic tumor microenvironment, which limit the drug delivery and distribution of antitumor immune cell populations. As an alternative approach, various natural compounds like flavonoids are reported to possess potent antioxidant and anticancerous properties and are less toxic than current chemotherapeutic drugs. Therefore, we aim to summarize the current state of knowledge regarding the pharmacological properties of flavonols in PC in this review from the perspective of mitigating mitochondrial dysfunctions associated with cancer cells. Our literature survey indicates that flavonols efficiently regulate cellular metabolism by scavenging reactive oxygen species, mitigating inflammation, and arresting the cell cycle to promote apoptosis in tumor cells via intrinsic mitochondrial pathways. In particular, flavonols proficiently inhibit the cancer-associated proliferation and inflammatory pathways such as EGFR/MAPK, PI3K/Akt, and nuclear factor κB in PC. Overall, this review provides in-depth evidence about the therapeutic potential of flavonols for future anticancer strategies against PC; still, more multidisciplinary human interventional studies are required to dissect their pharmacological effect accurately.
Collapse
Affiliation(s)
- Vinit Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ankita Arora
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sakshi Bansal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ankita Semwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Mayank Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anjali Aggarwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
11
|
Ergashev A, Shi F, Liu Z, Pan Z, Xie H, Kong L, Wu L, Sun H, Jin Y, Kong H, Geng D, Ibrohimov A, Obeng E, Wang Y, Ma F, Chen G, Zhang T. KAN0438757, a novel PFKFB3 inhibitor, prevent the progression of severe acute pancreatitis via the Nrf2/HO-1 pathway in infiltrated macrophage. Free Radic Biol Med 2024; 210:130-145. [PMID: 37984751 DOI: 10.1016/j.freeradbiomed.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Acute pancreatitis (AP) is a non-infectious pancreatic enzyme-induced disorder, a life-threatening inflammatory condition that can cause multi-organ dysfunction, characterized by high morbidity and mortality. Several therapies have been employed to target this disorder; however, few happen to be effectively employable even in the early phase. PFKFB3(6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3) is a critical regulator of glycolysis and is upregulated under inflammatory, mitogenic, and hypoxia conditions. Essential information on the targeting of the inflammatory pathway will present the termination of the disorder and recovery. Herein we investigated the protective function of KAN0438757, a potent inhibitor of PFKFB3, and its mechanism of impeding AP induced in mice. KAN0438757 was confirmed to activate the Nrf2/HO-1 inflammatory signaling pathways in response to caerulein induced acute pancreatitis (CAE-AP) and fatty acid ethyl ester induced severe acute pancreatitis (FAEE-SAP). Additionally, KAN0438757 alleviated the inflammatory process in infiltrated macrophage via the Nrf2/HO-1 inflammatory signaling pathway and demonstrated a significant effect on the growth of mice with induced AP. And more importantly, KAN0438757 displayed negligible toxicity in vivo. Taken together our data suggest KAN0438757 directly suppresses the inflammatory role of PFKFB3 and induces a protective role via the Nrf2/HO-1 pathway, which could prove as an excellent therapeutic platform for SAP amelioration.
Collapse
Affiliation(s)
- Akmal Ergashev
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Fengyu Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Zhu Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Zhenyan Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Haonan Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Lingming Kong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Lijun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Hongwei Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
| | - Yuepeng Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
| | - Hongru Kong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
| | - Dandan Geng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Alisherjon Ibrohimov
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Enoch Obeng
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Feng Ma
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, China.
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China.
| | - Tan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
12
|
Wang D, Chen J, Pu L, Yu L, Xiong F, Sun L, Yu Q, Cao X, Chen Y, Peng F, Peng C. Galangin: A food-derived flavonoid with therapeutic potential against a wide spectrum of diseases. Phytother Res 2023; 37:5700-5723. [PMID: 37748788 DOI: 10.1002/ptr.8013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023]
Abstract
Galangin is an important flavonoid with natural activity, that is abundant in galangal and propolis. Currently, various biological activities of galangin have been disclosed, including anti-inflammation, antibacterial effect, anti-oxidative stress and aging, anti-fibrosis, and antihypertensive effect. Based on the above bioactivities, more and more attention has been paid to the role of galangin in neurodegenerative diseases, rheumatoid arthritis, osteoarthritis, osteoporosis, skin diseases, and cancer. In this paper, the natural sources, pharmacokinetics, bioactivities, and therapeutic potential of galangin against various diseases were systematically reviewed by collecting and summarizing relevant literature. In addition, the molecular mechanism and new preparation of galangin in the treatment of related diseases are also discussed, to broaden the application prospect and provide reference for its clinical application. Furthermore, it should be noted that current toxicity and clinical studies of galangin are insufficient, and more evidence is needed to support its possibility as a functional food.
Collapse
Affiliation(s)
- Daibo Wang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Pu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Xiong
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luyao Sun
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Zhang F, Yan Y, Zhang LM, Li DX, Li L, Lian WW, Xia CY, He J, Xu JK, Zhang WK. Pharmacological activities and therapeutic potential of galangin, a promising natural flavone, in age-related diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155061. [PMID: 37689035 DOI: 10.1016/j.phymed.2023.155061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND The extension of average life expectancy and the aggravation of population aging have become the inevitable trend of human development. In an aging society, various problems related to medical care for the elderly have become increasingly prominent. However, most of the age-related diseases have the characteristics of multiple diseases at the same time, prone to complications, and atypical clinical manifestations, which bring great difficulties to its treatment. Galangin (3,5,7-trihydroxyflavone) is a natural active compound extracted from the root of Alpinia officinarum Hance (Zingiberaceae). Recently, many studies have shown that galangin has potential advantages in the treatment of neurodegenerative diseases and cardiovascular and cerebrovascular diseases, which are common in the elderly. In addition, it also showed that galangin had prospective activities in the treatment of tumor, diabetes, liver injury, asthma and arthritis. PURPOSE This review aims to systematically summarize and discuss the effects and the underlying mechanism of galangin in the treatment of age-related diseases. METHODS We searched PubMed, SciFinder, Web of Science and CNKI literature database resources, combined with the keywords "galangin", "neurodegenerative disease", "tumor", "diabetes", "pharmacological activity", "drug combination", "pharmacokinetics", "drug delivery system" and "safety", and comprehensively reviewed the pharmacological activities and mechanism of galangin in treating age-related diseases. RESULTS According to the previous studies on galangin, the anti-neurodegenerative activity, cardiovascular and cerebrovascular protective activity, anti-tumor activity, anti-diabetes activity, anti-arthritis activity, hepatoprotective activity and antiasthmatic activity of galangin were discussed, and the related mechanisms were classified and summarized in detail. In addition, the drug combination, pharmacokinetics, drug delivery system and safety of galangin were furtherly discussed. CONCLUSIONS This review will provide reference for galangin in the treatment of age-related diseases. Meanwhile, further experimental research and long-term clinical trials are needed to determine the therapeutic safety and efficacy of galangin.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China; School of Chinese Materia Medica & School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Lin-Mei Zhang
- School of Chinese Materia Medica & School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dong-Xu Li
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li Li
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Wen-Wen Lian
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Cong-Yuan Xia
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Jie-Kun Xu
- School of Chinese Materia Medica & School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
14
|
Thapa R, Afzal O, Alfawaz Altamimi AS, Goyal A, Almalki WH, Alzarea SI, Kazmi I, Jakhmola V, Singh SK, Dua K, Gilhotra R, Gupta G. Galangin as an inflammatory response modulator: An updated overview and therapeutic potential. Chem Biol Interact 2023; 378:110482. [PMID: 37044286 DOI: 10.1016/j.cbi.2023.110482] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/26/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Numerous chronic diseases, such as cancer, diabetes, rheumatoid arthritis, cardiovascular disease, and gastrointestinal disorders, all have an inflammation-based etiology. In cellular and animal models of inflammation, flavonols were used to show potent anti-inflammatory activity. The flavonols enhanced the synthesis of the anti-inflammatory cytokines transforming growth factor and interleukin-10 (IL-10) and reduced the synthesis of the prostaglandins IL-6, tumor necrosis factor-alpha (TNF-α), and prostaglandin E2 (PGE2), IL-1. Galangin (GAL), a natural flavonol, has a strong ability to control apoptosis and inflammation. GAL was discovered to suppress extracellular signal-regulated kinase (ERK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)p65 phosphorylation, which results in anti-inflammatory actions. Arthritis, inflammatory bronchitis, stroke, and cognitive dysfunction have all been treated with GAL. The current review aimed to demonstrate the anti-inflammatory properties of GAL and their protective effects in treating various chronic illnesses, including those of the heart, brain, skin, lungs, liver, and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, U.P, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Vikash Jakhmola
- Uttaranchal Institute of pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW, 2007, Australia
| | - Ritu Gilhotra
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
15
|
Zhang CY, Hu XC, Zhang GZ, Liu MQ, Chen HW, Kang XW. Role of Nrf2 and HO-1 in intervertebral disc degeneration. Connect Tissue Res 2022; 63:559-576. [PMID: 35736364 DOI: 10.1080/03008207.2022.2089565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intervertebral disc degeneration (IDD) is a common age-related disease with clinical manifestations of lumbar and leg pain and limited mobility. The pathogenesis of IDD is mainly mediated by the death of intervertebral disc (IVD) cells and the imbalance of extracellular matrix (ECM) synthesis and degradation. Oxidative stress and inflammatory reactions are the important factors causing this pathological change. Therefore, the regulation of reactive oxygen species and production of inflammatory factors may be an effective strategy to delay the progression of IDD. In recent years, nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream regulated protein heme oxygenase-1 (HO-1) have received special attention due to their antioxidant, anti-inflammatory and anti-apoptotic protective effects. Recent studies have elucidated the important role of these two proteins in the treatment of IDD disease. However, Nrf2 and HO-1 have not been systematically reported in IDD-related diseases. Therefore, this review describes the biological characteristics of Nrf2 and HO-1, the relationship between Nrf2- and HO-1-regulated oxidative stress and the inflammatory response and IDD, and the progress in research on some extracts targeting Nrf2 and HO-1 to improve IDD. Understanding the role and mechanism of Nrf2 and HO-1 in IDD may provide novel ideas for the clinical treatment and development of Nrf2- and HO-1-targeted drugs.
Collapse
Affiliation(s)
- Cang-Yu Zhang
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Xu-Chang Hu
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Guang-Zhi Zhang
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Ming-Qiang Liu
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Hai-Wei Chen
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Xue-Wen Kang
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| |
Collapse
|
16
|
Ning YP, Mou L, Li K. Echinacoside alleviates pancreatic injury via exerting anti-inflammatory and anti-oxidant activities in a rat model of acute pancreatitis. Shijie Huaren Xiaohua Zazhi 2022; 30:631-638. [DOI: 10.11569/wcjd.v30.i14.631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Echinacoside (ECH) has anti-inflammatory and antioxidant effects, and can improve multiple organ injuries. However, the effect and potential mechanism of action of ECH on severe acute pancreatitis (SAP) are still unclear.
AIM To investigate the protective effect of ECH on the pancreas of SAP model rats and the potential mechanism involved.
METHODS Rats were randomly divided into sham group (Sham), ECH control group (Sham + ECH), SAP model group (SAP), and ECH treatment group (SAP + ECH), with 10 rats each. Ascites volume and the activities of amylase and lipase in serum were determined. HE staining was used to analyze the histological changes in each group, and TUNEL assay was used to observe the apoptosis of pancreatic acinar cells. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and malondialdehyde (MDA) and the activities of glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), and myeloperoxidase (MPO) in pancreatic tissues were measured by tissue biochemistry. The expression levels of B cell lymphoma-2 (Bcl-2), Bcl2-associated X protein (Bax), cleaved caspase-3, nuclear factor E2-related factor 2 (NRF-2), Toll-like receptor 4 (TLR-4), and nuclear factor κB (NF-κB) p65 proteins in pancreatic tissue were detected by Western blot.
RESULTS Compared with the SAP group, ascites volume and serum amylase and lipase activities in the SAP + ECH group were decreased (P < 0.05); pancreatic tissue edema, inflammatory cell infiltration, and necrosis scores and total histological score were decreased (P < 0.05); the number of TUNEL positive cells was reduced; the levels of TNF-α, IL-6, MDA, and MPO activity in pancreatic tissue homogenate were decreased (P < 0.05), and the activities of SOD and GSH-Px were increased (P < 0.05); the expression levels of Bax, cleaved caspase-3, TLR-4, and NF-κB p65 were decreased (P < 0.05), and the expression levels of Bcl-2 and NRF-2 were increased (P < 0.05).
CONCLUSION ECH has anti-inflammatory, anti-oxidant, and anti-injury effects in pancreatic tissues of SAP model rats, which may be related to the downregulation of TLR-4, NF-κB p65, and Bax expression and the upregulation of NRF-2 and Bcl-2 expression.
Collapse
Affiliation(s)
- Yi-Ping Ning
- Department of Critical Care Medicine, Lishui People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Li Mou
- Department of Emergency Surgery, Lishui People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Ke Li
- Department of Critical Care Medicine, Lishui People's Hospital, Lishui 323000, Zhejiang Province, China
| |
Collapse
|
17
|
卢 一, 吴 俊, 蒋 文, 刘 江, 且 华, 孙 红, 汤 礼. [Abdominal puncture drainage alleviates severe acute pancreatitis in rats by activating Nrf-2/HO-1 pathway and promoting autophagy]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:561-567. [PMID: 35527492 PMCID: PMC9085580 DOI: 10.12122/j.issn.1673-4254.2022.04.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To assess the effect of early abdominal puncture drainage (APD) on autophagy and Nrf-2/HO-1 pathway in rats with severe acute pancreatitis (SAP) and explore the possibile mechanism. METHODS Thirty-two male SD rats were randomly divided into sham-operated (SO) group, SAP group with retrograde injection of 4% sodium taurocholate, APD group with insertion of a drainage tube into the lower right abdomen after SAP induction, and APD + ZnPP group with intraperitoneal injection of 30 mg/kg ZnPP 12 h before APD modeling. Blood samples were collected from the rats 12 h after modeling for analysis of amylase and lipase levels and serum inflammatory factors. The pathological changes of the pancreatic tissue were observed with HE staining. Oxidative stress in the pancreatic tissue was detected with colorimetry, and sub-organelle structure and autophagy in pancreatic acinar cells were observed by transmission electron microscopy. The expressions of autophagy-related proteins and Nrf-2/HO-1 pathway were detected using RT-PCR and Western blotting. RESULTS Compared with those in SAP group, the rats with APD treatment showed significantly alleviated pathologies in the pancreas, reduced serum levels of lipase, amylase and inflammatory factors, lowered levels of oxidative stress, and activated expressions of Nrf-2/HO-1 pathway in the pancreas. The ameliorating effect of ADP was significantly inhibited by ZnPP treatment before modeling. APD obviously reversed mitochondrial and endoplasmic reticulum damages and p62 accumulation induced by SAP. CONCLUSION APD treatment can suppress oxidative stress and repair impaired autophagy in rats with SAP by activating the Nrf-2/HO-1 pathway, thereby reducing the severity of SAP.
Collapse
Affiliation(s)
- 一琛 卢
- 西南交通大学医学院,四川 成都 610063School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点 实验室,四川 成都 610083Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - 俊 吴
- 西南交通大学医学院,四川 成都 610063School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点 实验室,四川 成都 610083Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - 文 蒋
- 西南交通大学医学院,四川 成都 610063School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点 实验室,四川 成都 610083Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - 江涛 刘
- 西南交通大学医学院,四川 成都 610063School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点 实验室,四川 成都 610083Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - 华吉 且
- 西南交通大学医学院,四川 成都 610063School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点 实验室,四川 成都 610083Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - 红玉 孙
- 西南交通大学医学院,四川 成都 610063School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点 实验室,四川 成都 610083Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - 礼军 汤
- 西南交通大学医学院,四川 成都 610063School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点 实验室,四川 成都 610083Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| |
Collapse
|