1
|
Jin Q, Lin B, Lu L. Potential therapeutic value of dietary polysaccharides in cardiovascular disease: Extraction, mechanisms, applications, and challenges. Int J Biol Macromol 2025; 296:139573. [PMID: 39793800 DOI: 10.1016/j.ijbiomac.2025.139573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/22/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Dietary polysaccharides, recognised as significant natural bioactive compounds, have demonstrated promising potential for the prevention and treatment of cardiovascular disease (CVD). This review provides an overview of the biological properties and classification of polysaccharides, with particular emphasis on their extraction and purification methods. The paper then explores the diverse mechanisms by which polysaccharides exert their effects in CVD, including their antioxidant activity, protection against ischemia-reperfusion injury, anti-apoptotic properties, protection against diabetic cardiomyopathy, anticoagulant and antithrombotic effects, prevention of ventricular remodeling, and protection against vascular injury. Furthermore, this paper summarises the current status of clinical trials involving polysaccharides in CVD and analyzes the support and challenges posed by these studies for the practical application of polysaccharides. Finally, the major challenges facing the therapeutic use of polysaccharides in CVD are discussed, particularly the issues of low bioavailability and lack of standardized quality control. Through this review, we aimed to provide a reference and guidance for further research on and application of dietary polysaccharides in CVD.
Collapse
Affiliation(s)
- Qiqi Jin
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Bin Lin
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou 325000, China.
| | - Lingfen Lu
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou 325000, China.
| |
Collapse
|
2
|
Yang B, Ma J, Gu H, Xu Y, Long M, Xu T, Liu M, Yin H, Xu Q. Polysaccharides isolated from Ampelopsis grossedentata and their immunomodulatory activity. Int J Biol Macromol 2025; 286:138513. [PMID: 39647737 DOI: 10.1016/j.ijbiomac.2024.138513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/13/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
To explore the immunomodulatory activity of polysaccharides from Ampelopsis grossedentata, two polysaccharides named AGP1 and AGP2 were isolated and purified by DEAE-cellulose 52 column and Sephacryl S-300HR chromatography. AGP1 and AGP2 were composed of fucose, arabinose, rhamnose, galactose, glucose, mannose, galacturonic acid, and glucuronic acid, with a ratio of 0.5: 10.2: 0.9: 31.8: 7.4: 3.4: 21.6: 24.2 and 0.4: 6.0: 0.5: 23.3: 3.3: 6.2: 33.5: 26.8, respectively. The average molecular weights of AGP1 and AGP2 were found to be 6.60 × 105 Da and 7.24 × 105 Da, respectively. AGP1 contained →4,6)-Galp-(1 → glycosidic linkages, while AGP2 contained →2)-Galp-(1 → and →2,3,4)-Glcp-(1 → glycosidic linkages. The structures of AGPs were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance, and scanning electron microscope. The immunomodulatory activity of AGPs was investigated in RAW264.7 cells, and the results indicated that AGPs significantly activated macrophages, promoted cells differentiation and NO secretion, increased the expression of IL-6 and TNF-α, and induced macrophage M1 polarization. Transcriptomic analysis indicated that AGP1 and AGP2 regulated a total of 1043 and 970 differentially expressed genes respectively, which were identified in different immune related signaling pathways. Moreover, the immunoblot demonstrated that AGPs exerted immune-promoting effects through the TLR4, MAPK and NF-κB signaling pathways in macrophages. Consequently, AGPs have potent immunomodulatory activity and can be considered as immunomodulators in medical and food industries.
Collapse
Affiliation(s)
- Binghui Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jinlong Ma
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Hui Gu
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yunshu Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mingxin Long
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Tiantian Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mingzhi Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Qingsong Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
3
|
Zhang W, Huang G. Preparation, characteristics and antioxidant activity of mung bean peel polysaccharides. Sci Rep 2024; 14:22161. [PMID: 39333295 PMCID: PMC11436941 DOI: 10.1038/s41598-024-73068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
The mung bean peel polysaccharide (MBP) extracted by hot water was chemically modified. By changing the dosage of phosphorylation reagent and acetylation reagent, three kinds of phosphorylated MBP ( P-MBP-1, P-MBP-2, P-MBP-3 ) and acetylated MBP ( AC 0.6-MBP, AC 1-MBP, AC 1.4-MBP ) with different degrees of substitution were prepared. By measuring the sugar content and substitution degree of the modified products, it was found that the amount of reagent had a certain effect on both of them. The modified products were determined by infrared spectrum and nuclear magnetic resonance. The results showed that the chemical modification was successful. The in vitro antioxidant capacity (·OH scavenging ability, O2-·clearing ability, reducing capacity, resistance to lipid peroxidation) of seven polysaccharide were measured, which manifested that chemical modification could enhance the antioxidant ability of MBP to varying degrees, and the DS also had a certain impact on their antioxidant activity. This promoted the development of mung bean peel polysaccharide functional products and the utilization of mung bean peel resources.
Collapse
Affiliation(s)
- Wenting Zhang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing, 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
4
|
Zhang Y, Lin X, Xia L, Xiong S, Xia B, Xie J, Lin Y, Lin L, Wu P. Progress on the Anti-Inflammatory Activity and Structure-Efficacy Relationship of Polysaccharides from Medical and Edible Homologous Traditional Chinese Medicines. Molecules 2024; 29:3852. [PMID: 39202931 PMCID: PMC11356930 DOI: 10.3390/molecules29163852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Medicinal food varieties developed according to the theory of medical and edible homologues are effective at preventing and treating chronic diseases and in health care. As of 2022, 110 types of traditional Chinese medicines from the same source of medicine and food have been published by the National Health Commission. Inflammation is the immune system's first response to injury, infection, and stress. Chronic inflammation is closely related to many diseases such as atherosclerosis and cancer. Therefore, timely intervention for inflammation is the mainstay treatment for other complex diseases. However, some traditional anti-inflammatory drugs on the market are commonly associated with a number of adverse effects, which seriously affect the health and safety of patients. Therefore, the in-depth development of new safe, harmless, and effective anti-inflammatory drugs has become a hot topic of research and an urgent clinical need. Polysaccharides, one of the main active ingredients of medical and edible homologous traditional Chinese medicines (MEHTCMs), have been confirmed by a large number of studies to exert anti-inflammatory effects through multiple targets and are considered potential natural anti-inflammatory drugs. In addition, the structure of medical and edible homologous traditional Chinese medicines' polysaccharides (MEHTCMPs) may be the key factor determining their anti-inflammatory activity, which makes the underlying the anti-inflammatory effects of polysaccharides and their structure-efficacy relationship hot topics of domestic and international research. However, due to the limitations of the current analytical techniques and tools, the structures have not been fully elucidated and the structure-efficacy relationship is relatively ambiguous, which are some of the difficulties in the process of developing and utilizing MEHTCMPs as novel anti-inflammatory drugs in the future. For this reason, this paper summarizes the potential anti-inflammatory mechanisms of MEHTCMPs, such as the regulation of the Toll-like receptor-related signaling pathway, MAPK signaling pathway, JAK-STAT signaling pathway, NLRP3 signaling pathway, PI3K-AKT signaling pathway, PPAR-γ signaling pathway, Nrf2-HO-1 signaling pathway, and the regulation of intestinal flora, and it systematically analyzes and evaluates the relationships between the anti-inflammatory activity of MEHTCMPs and their structures.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiulian Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Li Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Suhui Xiong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bohou Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingchen Xie
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yan Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Limei Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ping Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
5
|
Ma Y, Zhu H, Jiang X, Zhou Z, Zhou Y, Tian Y, Tu L, Lu J, Niu Y, Du L, Si Z, Fang H, Liu H, Liu Y, Chen P. Synthesis and Biological Activity of 2-Chloro-8-methoxy-5-methyl-5 H-indolo [2,3- b] Quinoline for the Treatment of Colorectal Cancer by Modulating PI3K/AKT/mTOR Pathways. ACS OMEGA 2024; 9:30698-30707. [PMID: 39035959 PMCID: PMC11256334 DOI: 10.1021/acsomega.4c03101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024]
Abstract
Developing novel drugs from natural products has proven to be a very effective strategy. Neocryptolepine was isolated from Cryptolepis sanguinolenta, a traditional endemic African herb, which exerts a wide range of biological activities such as antimalaria, antibacterial, and antitumor. 2-Chloro-8-methoxy-5-methyl-5H-indolo [2,3-b] quinoline (compound 49) was synthesized, and its cytotoxicity was assessed on pancreatic cancer PANC-1 cells, colorectal cancer HCT116 cells, liver cancer SMMC-7721 cells, and gastric cancer AGS cells in vitro. The results of the in vitro assay showed that compound 49 exerted remarkable cytotoxicity on colorectal cancer HCT116 and Caco-2 cells. The cytotoxicity of compound 49 to colorectal cancer HCT116 cells was 17 times higher than that of neocryptolepine and to human normal intestinal epithelial HIEC cells was significantly reduced. Compound 49 exhibited significant cytotoxicity against the colorectal cancer HCT116 and Caco-2 cells, with IC50 of 0.35 and 0.54 μM, respectively. The mechanism of cytotoxicity of compound 49 to colorectal cancer HCT116 and Caco-2 cells was further investigated. The results showed that compound 49 could inhibit colony formation and cell migration. Moreover, compound 49 could arrest the cell cycle at the G2/M phase, promote the production of reactive oxygen species, reduce mitochondrial membrane potential, and induce apoptosis. The results of Western blot indicated that compound 49 showed cytotoxicity on HCT116 and Caco-2 cells by modulating the PI3K/AKT/mTOR signaling pathway. In conclusion, these results suggested that compound 49 may be a potentially promising lead compound for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Yunhao Ma
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Hongmei Zhu
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Xinrong Jiang
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Zhongkun Zhou
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Yong Zhou
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Yanan Tian
- Faculty
of Applied Sciences, Macao Polytechnic University, R. de Luís Gonzaga Gomes, Macao, Macau 999078, China
| | - Lixue Tu
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Juan Lu
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Yuqing Niu
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Liqian Du
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Zhenzhen Si
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Hong Fang
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Huanxiang Liu
- Faculty
of Applied Sciences, Macao Polytechnic University, R. de Luís Gonzaga Gomes, Macao, Macau 999078, China
| | - Yingqian Liu
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Peng Chen
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| |
Collapse
|
6
|
Zhao F, Wang J, Zhang Y, Hu J, Li C, Liu S, Li R, Du R. In vivo Fate of Targeted Drug Delivery Carriers. Int J Nanomedicine 2024; 19:6895-6929. [PMID: 39005963 PMCID: PMC11246094 DOI: 10.2147/ijn.s465959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
This review aimed to systematically investigate the intracellular and subcellular fate of various types of targeting carriers. Upon entering the body via intravenous injection or other routes, a targeting carrier that can deliver therapeutic agents initiates their journey. If administered intravenously, the carrier initially faces challenges presented by the blood circulation before reaching specific tissues and interacting with cells within the tissue. At the subcellular level, the car2rier undergoes processes, such as drug release, degradation, and metabolism, through specific pathways. While studies on the fate of 13 types of carriers have been relatively conclusive, these studies are incomplete and lack a comprehensive analysis. Furthermore, there are still carriers whose fate remains unclear, underscoring the need for continuous research. This study highlights the importance of comprehending the in vivo and intracellular fate of targeting carriers and provides valuable insights into the operational mechanisms of different carriers within the body. By doing so, researchers can effectively select appropriate carriers and enhance the successful clinical translation of new formulations.
Collapse
Affiliation(s)
- Fan Zhao
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jitong Wang
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yu Zhang
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jinru Hu
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Chenyang Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Shuainan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ruixiang Li
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Ruofei Du
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
7
|
Huang G, Lin B. Preparation for shaddock skin polysaccharide derivatives by response surface method. Sci Rep 2024; 14:14054. [PMID: 38890435 PMCID: PMC11189395 DOI: 10.1038/s41598-024-63851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
The derivation of polysaccharide has an important impact on its properties. The preparation process of phosphorylated-shaddock skin polysaccharides (SSP) and acetylated-SSP was optimized by the response surface method. The constructed model was accurate and reliable in predicting the substitution of acetylated-SSP and the phosphate content of phosphorylated-SSP. This method was simple and easy to operate, which provided a basis for the preparation of a large number of derivatives.
Collapse
Affiliation(s)
- Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing, 401331, China.
| | - Bobo Lin
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
8
|
Chen N, Jiang T, Xu J, Xi W, Shang E, Xiao P, Duan JA. The relationship between polysaccharide structure and its antioxidant activity needs to be systematically elucidated. Int J Biol Macromol 2024; 270:132391. [PMID: 38761914 DOI: 10.1016/j.ijbiomac.2024.132391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Polysaccharides have a wide range of applications due to their excellent antioxidant activity. However, the low purity and unclear structure of polysaccharides have led some researchers to be skeptical about the antioxidant activity of polysaccharides. The current reports on the structure-activity relationship of polysaccharides are sporadic, so there is an urgent need to systematically summarize the antioxidant effects of polysaccharides with clear structures and the relationships between the structures to provide a scientific basis for the development and application of polysaccharides. This paper will systematically elucidate the structure-activity relationship of antioxidant polysaccharides, including the molecular weight, monosaccharide composition, glycosidic linkage, degree of branching, advanced conformation and chemical modification. For the first time, the antioxidant activity of polysaccharides is related to their chemical structure through histogram and radar map, and further studies using principal component analysis and cluster analysis. We critically discussed how the source, chemical structure and chemically modified groups of polysaccharides significantly contribute to their antioxidant activity and summarized the current research status and shortcomings of the structure-activity relationship of antioxidant polysaccharides. This review provides a theoretical basis and new perspective for further research on the structure-activity relationship of antioxidant polysaccharides and the development of natural antioxidants.
Collapse
Affiliation(s)
- Nuo Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingyue Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianxin Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjie Xi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
9
|
Wang M, Yu A, Hu W, Zhang Z, Wang Z, Meng Y, Yang B, Kuang H. Extraction, purification, structural characteristic, health benefit, and product application of the polysaccharides from bamboo shoot: A review. Int J Biol Macromol 2024; 271:132581. [PMID: 38797301 DOI: 10.1016/j.ijbiomac.2024.132581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Bamboo shoot is a kind of widely distributed natural green vegetable, which has a long history of consumption and cultivation, and has edible, nutritional and economic value. Bamboo shoot is nutrient-rich food with carbohydrates, fats, proteins, polysaccharides, flavonoids, alkaloids and other chemical components, can meet the body's needs. Notably, bamboo shoot polysaccharides are the most attractive saccharides, most of which are water-soluble polysaccharides, and their various biological activities have been paid more attention by researchers. With the deepening of research on bamboo shoot polysaccharides, they have been found to have anti-diabetic, anti-oxidant, anti-inflammatory, anti-complement activities, immunomodulatory, etc. Further research on bamboo shoot polysaccharides, their sources, molecular weights, chemical structures, monosaccharide compositions and structural characteristics are constantly explored. In order to better research and development of bamboo shoot polysaccharides, it is necessary to carry on a comprehensive arrangement. Here, the extraction and purification methods, structural characteristics, health benefits, structure-activity relationships and product applications of bamboo shoot polysaccharides were systematically reviewed. This article will deepen the understanding of bamboo shoot polysaccharides, provide knowledge base for further research on bamboo shoot polysaccharides, and expand the vision for developing related products.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Zhaojiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Zhibin Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Yonghai Meng
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| |
Collapse
|
10
|
Kesharwani P, Alexander A, Shukla R, Jain S, Bisht A, Kumari K, Verma K, Sharma S. Tissue regeneration properties of hydrogels derived from biological macromolecules: A review. Int J Biol Macromol 2024; 271:132280. [PMID: 38744364 DOI: 10.1016/j.ijbiomac.2024.132280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The successful tissue engineering depends on the development of biologically active scaffolds that possess optimal characteristics to effectively support cellular functions, maintain structural integrity and aid in tissue regeneration. Hydrogels have emerged as promising candidates in tissue regeneration due to their resemblance to the natural extracellular matrix and their ability to support cell survival and proliferation. The integration of hydrogel scaffold into the polymer has a variable impact on the pseudo extracellular environment, fostering cell growth/repair. The modification in size, shape, surface morphology and porosity of hydrogel scaffolds has consequently paved the way for addressing diverse challenges in the tissue engineering process such as tissue architecture, vascularization and simultaneous seeding of multiple cells. The present review provides a comprehensive update on hydrogel production using natural and synthetic biomaterials and their underlying mechanisms. Furthermore, it delves into the application of hydrogel scaffolds in tissue engineering for cardiac tissues, cartilage tissue, adipose tissue, nerve tissue and bone tissue. Besides, the present article also highlights various clinical studies, patents, and the limitations associated with hydrogel-based scaffolds in recent times.
Collapse
Affiliation(s)
- Payal Kesharwani
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India; Institute of Pharmacy, Ram-Eesh Institute of Vocational and Technical Education Greater Noida, India
| | - Amit Alexander
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kajal Kumari
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India.
| |
Collapse
|
11
|
Mao X, Chen J, Yao Y, Liu D, Wang H, Chen Y. Progress in phosphorylation of natural products. Mol Biol Rep 2024; 51:697. [PMID: 38802698 DOI: 10.1007/s11033-024-09596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Natural medicines are a valuable resource for the development of new drugs. However, factors such as low solubility and poor bioavailability of certain constituents have hindered their efficacy and potential as pharmaceuticals. Structural modification of natural products has emerged as an important research area for drug development. Phosphorylation groups, as crucial endogenous active groups, have been extensively utilized for structural modification and development of new drugs based on natural molecules. Incorporating phosphate groups into natural molecules not only enhances their stability, bioavailability, and pharmacological properties, but also improves their biological activity by altering their charge, hydrogen bonding, and spatial structure. This review summarizes the phosphorylation mechanism, modification approaches, and biological activity enhancement of natural medicines. Notably, compounds such as polysaccharides, flavonoids, terpenoids, anthraquinones, and coumarins exhibit increased antioxidation, anticancer, antiviral, immune regulatory, Antiaging, enzyme inhibition, bacteriostasis, liver protection, and lipid-lowering effects following phosphorylation modification.
Collapse
Affiliation(s)
- Xiaoran Mao
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiaqi Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yingrui Yao
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Defu Liu
- Department of Pharmacy, Characteristic Medical Center of PAP, Tianjin, 300162, China
| | - Haiying Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yuzhou Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
12
|
Hu Y, Zhang Y, Cui X, Wang D, Hu Y, Wang C. Structure-function relationship and biological activity of polysaccharides from mulberry leaves: A review. Int J Biol Macromol 2024; 268:131701. [PMID: 38643920 DOI: 10.1016/j.ijbiomac.2024.131701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/12/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Mulberry (Latin name "Morus alba L.") is a perennial deciduous tree in the family of Moraceae, widely distributed around the world. In China, mulberry is mainly distributed in the south and the Yangtze River basin. Its leaves can be harvested 3-6 times a year, which has a great resource advantage. Mulberry leaves are regarded as the homology of medicine and food traditional Chinese medicine (TCM). Polysaccharides, as its main active ingredients, have various effects, such as antioxidant, hypoglycemic, hepatoprotective, and immunomodulatory. This review summarizes the research progress in the extraction, purification, structural characterization, and structure-function relationship of polysaccharides from mulberry leaves in the last decade, hoping to provide a reference for the subsequent development and market application of polysaccharides from mulberry leaves.
Collapse
Affiliation(s)
- Yexian Hu
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Yan Zhang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Xiaoao Cui
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Dongsheng Wang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Yong Hu
- Agricultural Products Processing Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, PR China
| | - Chuyan Wang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China; Key Laboratory of Berry Processing and Resource Comprehensive Utilization, Hefei University, Hefei 230601, PR China.
| |
Collapse
|
13
|
Lu J, Yang Y, Hong EK, Yin X, Wang X, Wang Y, Zhang D. Analyzing the structure-activity relationship of raspberry polysaccharides using interpretable artificial neural network model. Int J Biol Macromol 2024; 264:130354. [PMID: 38403223 DOI: 10.1016/j.ijbiomac.2024.130354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The structure-activity relationship has been a hot topic in the field of polysaccharide research. Six polysaccharides and three polysaccharide fragments were obtained from raspberry pulp. Based on their structural information and immune-enhancing activity data, an artificial neural network (ANN) model was used for prediction, and Gradient-weighted class activation mapping (Grad-CAM) algorithm was exploited for explanation structure-activity relationship of these raspberry polysaccharides in the present study. The structural information and immune activity data of raspberry polysaccharides were respectively used as input and output in the ANN model. The training and testing losses of ANN model was no longer decreased after trained for 200 epochs. The mean-square error (MSE) of training set and test set stabilized around 0.003 and 0.013, and the mean absolute percentage error (MAPE) of training set and test set were 0.21 % and 0.98 %, indicating the trained ANN model converged well and exhibited strong robustness. The interpretability analysis showed that molecular weight, content of arabinose, galactose or galacturonic acid, and glycosyl linkage patterns of →3)-Arap-(1→, Araf-(1→, →4)-Galp-(1 → were the main structural factors greatly affecting the immune-enhancing activity of raspberry polysaccharides. This work may provide a new perspective for the study of structure-activity relationship of polysaccharides.
Collapse
Affiliation(s)
- Jie Lu
- School of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China
| | - Yongjing Yang
- School of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China.
| | - Eun-Kyung Hong
- Medvill Co., Ltd. Medvill Research Institute, Seoul 08512, Republic of Korea
| | - Xingxing Yin
- School of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China.
| | - Xuehong Wang
- School of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China
| | - Yuting Wang
- School of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China
| | - Dejun Zhang
- School of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China.
| |
Collapse
|
14
|
Luo L, Feng F, Zhong A, Guo N, He J, Li C. The advancement of polysaccharides in disease modulation: Multifaceted regulation of programmed cell death. Int J Biol Macromol 2024; 261:129669. [PMID: 38272424 DOI: 10.1016/j.ijbiomac.2024.129669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024]
Abstract
Programmed cell death (PCD), also known as regulatory cell death (RCD), is a process that occurs in all organisms and is closely linked to both normal physiological processes and disease states. Various signaling pathways, such as TP53, KRAS, NOTCH, hypoxia, and metabolic reprogramming, have been found to regulate RCD. Polysaccharides, which are essential natural products, have been the subject of extensive research in the fields of food, nutrition, and medicine due to their wide range of pharmacological effects. Studies have shown that polysaccharides have biological activities and the potential to target signal transduction pathways for the treatment of diseases. This paper provides a review of the mechanisms through which polysaccharides exert their therapeutic effects at different levels and explores the relationship between different types of RCD and human diseases. The aim of this review is to provide a theoretical basis for the further clinical use and application of polysaccharide bioactivities.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Fuhai Feng
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Ai Zhong
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Nuoqing Guo
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Jiake He
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Chenying Li
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| |
Collapse
|
15
|
Zhu Z, Luo Y, Lin L, Gao T, Yang Q, Fan Y, Wang S, Fu C, Liao W. Modulating Effects of Turmeric Polysaccharides on Immune Response and Gut Microbiota in Cyclophosphamide-Treated Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3469-3482. [PMID: 38329061 DOI: 10.1021/acs.jafc.3c05590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Turmeric, a traditional medicinal herb, is commonly used as a dietary and functional ingredient. This study aimed to investigate the effect of turmeric polysaccharides (TPs) on intestinal immunity and gut microbiota in cyclophosphamide (Cy)-induced immunosuppressed BALB/c mice. We verified that the oral administration of TPs-0 and TPs-3 (200 and 400 mg/kg, bw) improved thymus and spleen indexes, increased the whole blood immune cells (WBC) and lymph count index, and stimulated the secretion of serum immunoglobulin IgG. More importantly, TPs-0 and TPs-3 could repair intestinal immune damage and reduce intestinal inflammation. The specific mechanism is ameliorating the intestinal pathological damage, promoting CD4+ T cell secretion, regulating the expression of related cytokines, and reducing the level of critical proteins in the NF-κB/iNOS pathway. Interestingly, the intake of TPs-0 and TPs-3 significantly increased the content of short-chain fatty acids (SCFAs). Moreover, TPs-0 and TPs-3 relieved the intestinal microbiota disorder via the proliferation of the abundance of Lactobacillus and Bacteroides and the inhibition of Staphylococcus. Cumulatively, our study suggests that TPs-0 and TPs-3 can relieve intestinal immune damage by repairing the immune barrier and regulating intestinal flora disorders. TPs have potential applications for enhancing immunity as a functional food.
Collapse
Affiliation(s)
- Zongping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan China
| | - Yirong Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan China
| | - Liting Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan China
| | - Tianhui Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan China
| | - Qingsong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan China
| | - Yunqiu Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan China
| | - Shuyi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan China
| | - Wan Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan China
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K
| |
Collapse
|
16
|
Esposito F, Traboni S, Iadonisi A, Bedini E. Towards the semi-synthesis of phosphorylated mimics of glycosaminoglycans: Screening of methods for the regioselective phosphorylation of chondroitin. Carbohydr Polym 2024; 324:121517. [PMID: 37985053 DOI: 10.1016/j.carbpol.2023.121517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023]
Abstract
Glycosaminoglycan (GAG) mimics carrying phosphate rather than sulfate anionic groups have been poorly investigated, in spite of their interesting perspectives. While some GAG-mimicking phosphorylated polymers have been reported, to the best of our knowledge no phosphorylated polysaccharides having the same backbone of natural sulfated GAGs have been accessed yet. To fill this gap, in this work two standard phosphorylation protocols and two recently reported procedures have been screened on a set of polysaccharide species composed by microbial sourced chondroitin and three partially protected, semi-synthetic derivatives thereof. A detailed structural characterization by 1H, 13C and 31P NMR spectroscopy revealed the higher versatility of the innovative, biomimetic reaction employing monopotassium salt of phosphoenolpyruvate (PEPK) with respect to standard phosphorylating agents (phosphoric acid or phosphorus oxychloride). Indeed, PEP-K and H3PO4 gave similar results in the regioselective phosphorylation of the primary hydroxyls of unprotected chondroitin, while only the former reacted on partially protected chondroitin derivatives in a controlled, regioselective fashion, affording chondroitin phosphate (CP) polysaccharides with different derivatization patterns. The reported results represent the first, key steps towards the systematic semi-synthesis of phosphorylated GAGs as a new class of GAG mimics and to the evaluation of their biological activities in comparison with native sulfated GAGs.
Collapse
Affiliation(s)
- Fabiana Esposito
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Serena Traboni
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S.Angelo, via Cintia 4, I-80126 Napoli, Italy.
| |
Collapse
|
17
|
Wang Z, Xu Z, Yang X, Li M, Yip RCS, Li Y, Chen H. Current application and modification strategy of marine polysaccharides in tissue regeneration: A review. BIOMATERIALS ADVANCES 2023; 154:213580. [PMID: 37634336 DOI: 10.1016/j.bioadv.2023.213580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
Marine polysaccharides (MPs) are exceptional bioactive materials that possess unique biochemical mechanisms and pharmacological stability, making them ideal for various tissue engineering applications. Certain MPs, including agarose, alginate, carrageenan, chitosan, and glucan have been successfully employed as biological scaffolds in animal studies. As carriers of signaling molecules, scaffolds can enhance the adhesion, growth, and differentiation of somatic cells, thereby significantly improving the tissue regeneration process. However, the biological benefits of pure MPs composite scaffold are limited. Therefore, physical, chemical, enzyme modification and other methods are employed to expand its efficacy. Chemically, the structural properties of MPs scaffolds can be altered through modifications to functional groups or molecular weight reduction, thereby enhancing their biological activities. Physically, MPs hydrogels and sponges emulate the natural extracellular matrix, creating a more conducive environment for tissue repair. The porosity and high permeability of MPs membranes and nanomaterials expedite wound healing. This review explores the distinctive properties and applications of select MPs in tissue regeneration, highlighting their structural versatility and biological applicability. Additionally, we provide a brief overview of common modification strategies employed for MP scaffolds. In conclusion, MPs have significant potential and are expected to be a novel regenerative material for tissue engineering.
Collapse
Affiliation(s)
- Zhaokun Wang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Zhiwen Xu
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Xuan Yang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Man Li
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA.
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
18
|
Lin B, Fan Y, Huang G. Preparation, analysis and properties of shaddock ped polysaccharide and its derivatives. Carbohydr Res 2023; 533:108932. [PMID: 37634305 DOI: 10.1016/j.carres.2023.108932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
The shaddock ped polysaccharide (SPP) was extracted by ultrasound-assisted enzyme method. Phosphorylated shaddock ped polysaccharides (P-SPP) and acetylated shaddock ped polysaccharides (Ac-SPP) were obtained by chemical modification of SPP. The characterization methods such as infrared spectroscopy and nuclear magnetism were employed to characterize the structures of the two derivatives. The antioxidant activity of SPP and its derivatives was investigated by measuring their DPPH radical scavenging capacity, hydroxyl radical ion scavenging capacity and superoxide anion scavenging capacity. In comparison, P-SPP showed better antioxidant activity. The results indicated that the antioxidant activity of the polysaccharides varied with different chemical modifications.
Collapse
Affiliation(s)
- Bobo Lin
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing, 401331, China
| | - Yumin Fan
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing, 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
19
|
Bai C, Su F, Zhang W, Kuang H. A Systematic Review on the Research Progress on Polysaccharides from Fungal Traditional Chinese Medicine. Molecules 2023; 28:6816. [PMID: 37836659 PMCID: PMC10574063 DOI: 10.3390/molecules28196816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Traditional Chinese medicine (TCM) is a class of natural drugs with multiple components and significant therapeutic effects through multiple targets. It also originates from a wide range of sources containing plants, animals and minerals, and among them, plant-based Chinese medicine also includes fungi. Fungal traditional Chinese medicine is a medicinal resource with a long history and widespread application in China. Accumulating evidence confirms that polysaccharide is the main pharmacodynamic material on which fungal TCM is based. The purpose of the current systematic review is to summarize the extraction, isolation, structural identification, biological functions, quality control and medicinal and edible applications of polysaccharides from fungal TCM in the past three years. This paper will supplement and deepen the understanding and application of polysaccharides from fungal TCM, and propose some valuable insights for further research and development of drugs and functional foods.
Collapse
Affiliation(s)
| | | | | | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.B.); (F.S.); (W.Z.)
| |
Collapse
|
20
|
Wang G, Xie L, Huang Z, Xie J. Recent advances in polysaccharide biomodification by microbial fermentation: production, properties, bioactivities, and mechanisms. Crit Rev Food Sci Nutr 2023; 64:12999-13023. [PMID: 37740706 DOI: 10.1080/10408398.2023.2259461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Polysaccharides are natural chemical compounds that are extensively employed in the food and pharmaceutical industries. They exhibit a wide range of physical and biological properties. These properties are commonly improved by using chemical and physical methods. However, with the advancement of biotechnology and increased demand for green, clean, and safe products, polysaccharide modification via microbial fermentation has gained importance in improving their physicochemical and biological activities. The physicochemical and structural characteristics, biological activity, and modification mechanisms of microbially fermented polysaccharides were reviewed and summarized in this study. Polysaccharide modifications were categorized and discussed in terms of strains and fermentation techniques. The effects of microbial fermentation on the physicochemical characteristics of polysaccharides were highlighted. The impact of modification of polysaccharides on their antioxidant, immune, hypoglycemic, and other activities, as well as probiotic digestive enhancement, were also discussed. Finally, we investigated a potential enzyme-based process for polysaccharide modification via microbial fermentation. Modification of polysaccharides via microbial fermentation has significant value and application potential.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Liuming Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
21
|
Zhang W, Duan W, Huang G, Huang H. Ultrasonic-assisted extraction, analysis and properties of mung bean peel polysaccharide. ULTRASONICS SONOCHEMISTRY 2023; 98:106487. [PMID: 37327689 PMCID: PMC10422121 DOI: 10.1016/j.ultsonch.2023.106487] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/31/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
In order to improve the yield of mung bean peel polysaccharide, on the basis of single-factor experiments, the ultrasonic assisted extraction conditions were optimized by response surface methodology (RSM). The results showed that under the conditions of material-liquid ratio of 1: 40, temperature 77 °C, ultrasonic power 216 W and extraction time 47 min, the extraction rate of mung bean peel polysaccharide was the best, which was 2.55 %. The extracted polysaccharide was phosphorylated and its antioxidant activity in vitro was studied. The results suggested that the modified polysaccharide had a significant scavenging effect on hydroxyl radicals and enhanced the ability of anti-lipid peroxidation, which offered ideas and methods for the development and application of mung bean peel polysaccharide.
Collapse
Affiliation(s)
- Wenting Zhang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Wei Duan
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| | - Hualiang Huang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan 430074, China.
| |
Collapse
|
22
|
Wen L, Wu ZW, Lin LW, Al-Romaima A, Peng XR, Qiu MH. Structural characterizations and α-glucosidase inhibitory activities of four Lepidium meyenii polysaccharides with different molecular weights. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:18. [PMID: 37278859 DOI: 10.1007/s13659-023-00384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Four polysaccharides (MCPa, MCPb, MCPc, MCPd) were obtained from Lepidium meyenii Walp. Their structures were characterized by chemical and instrumental methods including total sugar, uronic acid and protein content determination, UV, IR and NMR spectroscopy, as well as monosaccharide composition determination and methylation analyses. Four polysaccharides were a group of glucans with different molecular weights ranging from 3.12 to 14.4 kDa, and shared a similar backbone chain consisting of (1→4)-glucose linkages with branches attached to C-3 and C-6. Furthermore, bioactivity assay showed that MCPs had concentration-dependent inhibitory activity on α-glucosidase. MCPb (Mw = 10.1 kDa) and MCPc (Mw = 5.62 kDa) with moderate molecular weights exhibited higher inhibitory activity compared with MCPa and MCPd.
Collapse
Affiliation(s)
- Luan Wen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhou-Wei Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Li-Wu Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Abdulbaset Al-Romaima
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
23
|
Xiong X, Yang W, Huang G, Huang H. Ultrasonic-assisted extraction, characteristics and activity of Ipomoea batatas polysaccharide. ULTRASONICS SONOCHEMISTRY 2023; 96:106420. [PMID: 37137244 PMCID: PMC10165438 DOI: 10.1016/j.ultsonch.2023.106420] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Ipomoea batatas polysaccharides (IBPs) have many important physiological functions. The optimal extraction conditions were extraction time of 40 min, solid-liquid ratio of 1:8 and ultrasonic power of 240 W. 1D/2D nuclear magnetic resonance (1D/2D NMR) analysis showed that the main chain of IBP-1A was mainly composed of →4)-α-D-Glcp-(1→ and →3, 6)-β-D-Glcp-(1→ residues. In vivo experiments showed that polysaccharide significantly increased the levels of antioxidation-related enzymes and metabolites in older mice. It could significantly relieve oxidative stress injury and delay aging. Therefore, this study provided a new theoretical basis for the development of IBPs as antioxidant food.
Collapse
Affiliation(s)
- Xiong Xiong
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Wenjian Yang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| | - Hualiang Huang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan 430074, China.
| |
Collapse
|
24
|
Wang Y, Xiong X, Huang G. Ultrasound-assisted extraction and analysis of maidenhairtree polysaccharides. ULTRASONICS SONOCHEMISTRY 2023; 95:106395. [PMID: 37015179 PMCID: PMC10439246 DOI: 10.1016/j.ultsonch.2023.106395] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 05/10/2023]
Abstract
The maidenhairtree polysaccharides (MTPs) have important application prospects. So, the extraction, purification, structure, derivatization and biological activities of polysaccharides from leaves, fruits, and testae of maidenhairtree were disscussed. Polysaccharides were extracted by collaborative extraction methods such as ultrasound-assisted extraction and microwave-assisted extraction. The ultrasound-assisted extraction had higher content and higher efficiency. The structural characteristics and structure-activity relationship of maidenhairtree polysaccharides were studied in order to provide theoretical basis and technical support for the further development and utilization of maidenhairtree polysaccharides.
Collapse
Affiliation(s)
- Yijie Wang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Xiong Xiong
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
25
|
Song Z, Xiong X, Huang G. Ultrasound-assisted extraction and characteristics of maize polysaccharides from different sites. ULTRASONICS SONOCHEMISTRY 2023; 95:106416. [PMID: 37094477 PMCID: PMC10160789 DOI: 10.1016/j.ultsonch.2023.106416] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Antitumor, antioxidant, hypoglycemic, and immunomodulatory properties are all exhibited by maize polysaccharides. With the increasing sophistication of maize polysaccharide extraction methods, enzymatic method is no longer limited to a single enzyme to extract polysaccharides, and is more often used in combination with ultrasound or microwave, or combination with different enzymes. Ultrasound has a good cell wall-breaking effect, making it easier to dislodge lignin and hemicellulose from the cellulose surface of the maize husk. The "water extraction and alcohol precipitation" method is the simplest but most resource- and time-consuming process. However, the "ultrasound-assisted extraction" and "microwave-assisted extraction" methods not only compensate for the shortcoming, but also increase the extraction rate. Herein, the preparation, structural analysis, and activities of maize polysaccharides were analyzed and discussed.
Collapse
Affiliation(s)
- Zongyan Song
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Xiong Xiong
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
26
|
Fan Y, Huang G. Preparation and Analysis of Pueraria lobata Polysaccharides. ACS Biomater Sci Eng 2023; 9:2329-2334. [PMID: 37104693 DOI: 10.1021/acsbiomaterials.2c01479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Pueraria lobata polysaccharides (PLPs) were obtained by a hot water extraction method. Starting from the single factor experiment, the extraction was optimized by response surface methodology, and the following optimal extraction parameters were obtained: the extraction temperature was 84 °C, the liquid-solid ratio was 11 mL/g, the extraction time was 73 min, and the extraction rate of polysaccharides was 8.59%. The Sevag method was used to remove the protein soluble in water and H2O2 was used to remove the pigment; then PLPs were precipitated with three times of anhydrous ethanol, soluble salts and other small molecules were removed by dialysis, and finally refined PLPs were obtained by freeze-drying.
Collapse
Affiliation(s)
- Yumin Fan
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
27
|
Cheng Y, Wan S, Yao L, Lin D, Wu T, Chen Y, Zhang A, Lu C. Bamboo leaf: A review of traditional medicinal property, phytochemistry, pharmacology, and purification technology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116166. [PMID: 36649850 DOI: 10.1016/j.jep.2023.116166] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bamboos are perennial evergreen plants that belong to the subfamily Bambusoideae of the true grass family Poaceae, with more than thousands of species distributed around the world. They are used as a traditional medicine with demonstrated effects of anti-oxidation, free radical scavenging, anti-inflammatory, liver protection and ameliorating cognitive deficits. Bamboo leaf is mainly used for the treatment of atherosclerotic, diabetic and nervous system diseases. AIM OF THE STUDY This review aims to provide up-to-date information on the traditional medicinal properties, phytochemistry, pharmacology, and purification technologies of bamboo leaf. MATERIALS AND METHODS Relevant information on bamboo leaf was obtained by an online search of worldwide accepted scientific databases (Web of Science, ScienceDirect, Elsevier, SpringerLink, ACS Publications, Wiley Online Library and CNKI). RESULTS More than 100 chemical compounds, including flavonoids and flavonoid glycosides, volatile components, phenolic acids, polysaccharide, coenzyme Q10, phenylpropanoid and amino acids have been reported to be present. These compounds were usually extracted by column chromatography and membrane separation technologies. Preparative high performance liquid chromatography (PHPLC), high-speed counter-current chromatography (HSCCC), simulated moving bed chromatography (SMB) and dynamic axial compression chromatography (DAC) were the advanced separation technologies have been used to isolate C-glycosides from bamboo leaf flavonoid, the main bioactive ingredient of bamboo leaf. Currently, bamboo leaf is mainly used for the treatment of atherosclerotic, diabetic, hepatic diseases and nervous system related symptoms, which are attributed to the presence of bioactive components of bamboo leaf. CONCLUSIONS Phytochemical and pharmacological analyses of bamboo leaf have been revealed in recent studies. However, most of the pharmacological studies on bamboo leaf have focused on bamboo leaf flavonoids. Further studies need to pay more attention to other phytochemical components of bamboo leaf. In addition, there is lack of sufficient clinical data and toxicity studies on bamboo leaf. Therefore, more clinical and toxicity researches on this plant and constituents are recommended.
Collapse
Affiliation(s)
- Yaqian Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Siqi Wan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Linna Yao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Ding Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Tong Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Yongjian Chen
- Zhejiang Limited Company of Science and Technology of SHENGSHI BIOLOGY, Huzhou, 313000, China
| | - Ailian Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China.
| | - Chenfei Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China.
| |
Collapse
|
28
|
Laffargue T, Moulis C, Remaud-Simeon M. Phosphorylated polysaccharides: Applications, natural abundance, and new-to-nature structures generated by chemical and enzymatic functionalization. Biotechnol Adv 2023; 65:108140. [PMID: 36958536 DOI: 10.1016/j.biotechadv.2023.108140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023]
Abstract
Polysaccharides are foreseen as serious candidates for the future generation of polymers, as they are biosourced and biodegradable materials. Their functionalisation is an attractive way to modify their properties, thereby increasing their range of applications. Introduction of phosphate groups in polysaccharide chains for the stimulation of the immune system was first described in the nineteen seventies. Since then, the use of phosphorylated polysaccharides has been proposed in various domains, such as healthcare, water treatment, cosmetic, biomaterials, etc. These alternative usages capitalize on newly acquired physico-chemical or biological properties, leading to materials as diverse as flame-resistant agents or drug delivery systems. Phosphorylated polysaccharides are found in Nature and need to be extracted to assess their biological potential. However, they are not abundant, often present complex backbones hard to characterize, and most of them have a low phosphate content. These drawbacks have pushed forward the development of chemical phosphorylation employing a wide variety of phosphorylating agents to obtain polysaccharides with a large range of phosphate content. Chemical phosphorylation requires the use of harsh conditions and toxic, petroleum-based solvents, which hinders their exploitation in the food and health industry. Over the last 20 years, although enzymes are regiospecific catalysts that work in aqueous and mild conditions, enzymatic phosphorylation has been little investigated. To date, only three families of enzymes have been used for the in vitro phosphorylation of polysaccharides. Considering the number of unresolved metabolic pathways leading to phosphorylated polysaccharides, the huge diversity of kinase sequences, and the recent progress in protein engineering one can envision native and engineered kinases as promising tools for polysaccharide phosphorylation.
Collapse
Affiliation(s)
- Thibaud Laffargue
- Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, CEDEX 04, F-31077 Toulouse, France
| | - Claire Moulis
- Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, CEDEX 04, F-31077 Toulouse, France
| | - Magali Remaud-Simeon
- Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, CEDEX 04, F-31077 Toulouse, France.
| |
Collapse
|
29
|
Yang W, Huang G. Chemical modification and structural analysis of polysaccharide from Solanum tuberdsm. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
30
|
Li J, Chen Z, Shi H, Yu J, Huang G, Huang H. Ultrasound-assisted extraction and properties of polysaccharide from Ginkgo biloba leaves. ULTRASONICS SONOCHEMISTRY 2023; 93:106295. [PMID: 36638652 PMCID: PMC9852606 DOI: 10.1016/j.ultsonch.2023.106295] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 05/10/2023]
Abstract
Response surface methodology (RSM) was used to optimize the ultrasound-assisted extraction conditions of Ginkgo biloba leaves polysaccharide (GBLP). The optimum extraction conditions for the ultrasound-assisted extraction of GBLP were obtained as liquid to material ratio of 30 mL/g, ultrasonic power of 340 W, and extraction time of 50 min. Under these conditions, the yield of GBLP was 5.37 %. Two chemically modified polysaccharides, CM-GBLP and Ac-GBLP, were obtained by carboxymethylation and acetylation of GBLP. The physicochemical properties of these three polysaccharides were comparatively studied and their in vitro antioxidant activities were evaluated comprehensively. The results showed that the solubility of the chemically modified polysaccharides was significantly enhanced and the in vitro antioxidant activity was somewhat improved. This suggests that carboxymethylation and acetylation are effective methods to enhance polysaccharide properties, but the results exhibited some uncontrollability. At the same time, GBLP has also shown high potential for research and application.
Collapse
Affiliation(s)
- Junchi Li
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Zhongxuan Chen
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Huimin Shi
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Jie Yu
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| | - Hualiang Huang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan 430074, China.
| |
Collapse
|
31
|
Zhou S, Huang G. Extraction, structural analysis and antioxidant activity of aloe polysaccharide. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Yang W, Huang G. Preparation and properties of purple sweet potato polysaccharide. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
33
|
Zhang W, Huang G. Preparation, structural characteristics, and application of taro polysaccharides in food. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6193-6201. [PMID: 35679352 DOI: 10.1002/jsfa.12058] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Taro, a staple food for residents in Africa and parts of Asia, is an important source of carbohydrate. China has abundant taro resources. Taro contains polysaccharide, vitamins, minerals and other substances. Taro polysaccharides, as a significant active ingredient in taro, are mainly composed of monosaccharide units such as glucose, galactose, arabinose, mannose, and so on. Taro polysaccharides have antioxidant, lipid-lowering, and immunomodulatory effects. In today's world, people are interested in food containing natural ingredients, which stimulates the potential of taro polysaccharides in the food, pharmaceutical, medical, and other fields. Herein, the extraction and purification, structural characterization, functional activity, and application of taro polysaccharides are reviewed to strengthen the cognition of taro polysaccharides. It provides references for further research and development of taro polysaccharides. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenting Zhang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Green Synthesis and Application, Chongqing Normal University, Chongqing, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Green Synthesis and Application, Chongqing Normal University, Chongqing, China
| |
Collapse
|
34
|
Lin B, Huang G. An important polysaccharide from fermentum. Food Chem X 2022; 15:100388. [PMID: 36211774 PMCID: PMC9532711 DOI: 10.1016/j.fochx.2022.100388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
Extraction, structure and modification of polysaccharides from fermentum were summarized. Structure-activity relationship and application of polysaccharides from fermentum were reviewed. It provided a strong basis for the development and application of polysaccharides from fermentum.
Fermentum is a common unicellular fungus with many biological activities attributed to β-polysaccharides. Different in vivo and in vivo experimental studies have long proven that fermentum β-polysaccharides have antioxidant, anti-tumor, and fungal toxin adsorption properties. However, there are many uncertainties regarding the relationship between the structure and biological activity of fermentum β-polysaccharides, and a systematic summary of fermentum β-polysaccharides is still lacking. Herein, we reviewed the research progress about the extraction, structure and modification, structure–activity relationship, activity and application of fermentum β-polysaccharides, compared the extraction methods of fermentum β-polysaccharide, and paid special attention to the structure–activity relationship and application of fermentum β-polysaccharide, which provided a strong basis for the development and application of fermentum β-polysaccharide.
Collapse
|
35
|
Extraction, derivatization and antioxidant activities of onion polysaccharide. Food Chem 2022; 388:133000. [DOI: 10.1016/j.foodchem.2022.133000] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/06/2022] [Accepted: 04/16/2022] [Indexed: 12/13/2022]
|
36
|
Kou T, Faisal M, Song J, Blennow A. Polysaccharide-based nanosystems: a review. Crit Rev Food Sci Nutr 2022; 64:1-15. [PMID: 35916785 DOI: 10.1080/10408398.2022.2104209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polysaccharide-based nanosystem is an umbrella term for many areas within research and technology dealing with polysaccharides that have at least one of their dimensions in the realm of a few hundreds of nanometers. Nanoparticles, nanocrystals, nanofibers, nanofilms, and nanonetworks can be fabricated from many different polysaccharide resources. Abundance in nature, cellulose, starch, chitosan, and pectin of different molecular structures are widely used to fabricate nanosystems for versatile industrial applications. This review presents the dissolution and modification of polysaccharides, which are influenced by their different molecular structures and applications. The dissolution ways include conventional organic solvents, ionic liquids, inorganic strong alkali and acids, enzymes, and hydrothermal treatment. Rheological properties of polysaccharide-based nano slurries are tailored for the purpose functions of the final products, e.g., imparting electrostatic functions of nanofibers to reduce viscosity by using lithium chloride and octenyl succinic acid to increase the hydrophobicity. Nowadays, synergistic effects of polysaccharide blends are increasingly highlighted. In particular, the reinforcing effect of nanoparticles, nanocrystals, nanowhiskers, and nanofibers to hydrogels, aerogels, and scaffolds, and the double network hydrogels of a rigid skeleton and a ductile substance have been developed for many emerging issues.
Collapse
Affiliation(s)
- Tingting Kou
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, PR China
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Marwa Faisal
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jun Song
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, PR China
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
37
|
Kumari N, Kumar M, Radha, Lorenzo JM, Sharma D, Puri S, Pundir A, Dhumal S, Bhuyan DJ, Jayanthy G, Selim S, Abdel-Wahab BA, Chandran D, Anitha T, Deshmukh VP, Pandiselvam R, Dey A, Senapathy M, Rajalingam S, Mohankumar P, Kennedy JF. Onion and garlic polysaccharides: A review on extraction, characterization, bioactivity, and modifications. Int J Biol Macromol 2022; 219:1047-1061. [PMID: 35914557 DOI: 10.1016/j.ijbiomac.2022.07.163] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/18/2022]
Abstract
Allium cepa (onion) and Allium sativum (garlic) are important members of the Amaryllidaceae (Alliaceae) family and are being used both as food and medicine for centuries in different parts of the world. Polysaccharides have been extracted from different parts of onion and garlic such as bulb, straw and cell wall. The current literature portrays several studies on the extraction of polysaccharides from onion and garlic, their modification and determination of their structural (molecular weight, monosaccharide unit and their arrangement, type and position of glycosidic bond or linkage, degree of polymerization, chain conformation) and functional properties (emulsifying property, moisture retention, hygroscopicity, thermal stability, foaming ability, fat-binding capacity). In this line, this review, summarizes the various extraction techniques used for polysaccharides from onion and garlic, involving methods like solvent extraction method. Furthermore, the antioxidant, antitumor, anticancer, immunomodulatory, antimicrobial, anti-inflammatory, and antidiabetic properties of onion and garlic polysaccharides as reported in in vivo and in vitro studies is also critically assessed in this review. Different studies have proved onion and garlic polysaccharides as potential antioxidant and immunomodulatory agent. Studies have implemented to improve the functionality of onion and garlic polysaccharides through various modification approaches. Further studies are warranted for utilizing onion and garlic polysaccharides in the food, nutraceutical, pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Neeraj Kumari
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India.
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India.
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Diksha Sharma
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Sunil Puri
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Ashok Pundir
- School of Mechanical and Civil Engineering, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, India
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2747, Australia
| | - G Jayanthy
- Faculty of Agricultural Sciences, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia
| | - Basel A Abdel-Wahab
- Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut 7111, Egypt; Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, Tamil Nadu, India
| | - T Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Periyakulam 625604, India
| | - Vishal P Deshmukh
- Bharati Vidyapeeth Deemed to be University, Yashwantrao Mohite Institute of Management, Karad, India
| | - Ravi Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, Kerala 671124, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo, SNNPR, Ethiopia
| | - Sureshkumar Rajalingam
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, Tamil Nadu, India
| | - Pran Mohankumar
- School of Agriculture and Biosciences, Coimbatore 641114, Tamil Nadu, India
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, Kyrewood House, Tenbury Wells, Worcs WR15 8FF, UK
| |
Collapse
|
38
|
Cui M, Tian J, Sun J, Li X, Xu Q, Ma J, Liu K, Liu K. Isolation, Structural Analysis and Anti-Inflammatory Activity of a Polysaccharide from Ilex cornuta Fruits. Chem Biodivers 2022; 19:e202200084. [PMID: 35484695 DOI: 10.1002/cbdv.202200084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/07/2022] [Indexed: 11/12/2022]
Abstract
In the present study, a polysaccharide from Ilex cornuta fruits (LCFP-3) was obtained by hot water extraction, Diethyaminoethyl cellulose-52 (DEAE-52) chromatography column and Sephadex G-100 gel column purification. Its structural characteristics were further explored using high performance anion exchange chromatography (HPAEC), gas chromatography and mass spectrometry (GC/MS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. Monosaccharide composition analysis revealed LCFP-3 contained mainly Galactose (31.92 %), Arabinose (25.87 %) and Galacturonic acid (23.35 %) while small percentage of Rhamnose, Glucose, Mannose and Xylose. Chemical composition analysis showed that the total sugar content of LCFP-3 was 90.31 % and the protein content was 0.246 %. Gel permeation chromatography (GPC) analysis showed that its average molecular weight was 41.199 kDa. Structural analysis showed that LCFP-3 may be composed of residues, T-α-Arap, T-α-Rhap, 1,3-α-Arap, 1,4-α-Arap, T-β-Galp, 1,4-α-GalpA(OMe), 1,4-β-Glcp, 1,3-β-Galp, 1,3,6-β-Manp, 1,6-β-Galp, 1,3,4-β-GalpA, 1,4,6-β-Manp, 1,3,6-β-Glcp, 1,2,3,4-α-Xylp. The anti-inflammatory activity of LCFP-3 was evaluated using lipopolysaccharide (LPS)-induced RAW246.7 macrophages. The results showed that 1-200 μg/mL LCFP-3 could dose-dependently protect against LPS-induced toxicity and 1 μg/mL LCFP-3 could significantly inhibit LPS-induced NO production. Therefore, LCFP-3 exerted an anti-inflammatory activity and has great potential as a functional ingredient.
Collapse
Affiliation(s)
- Mingxiao Cui
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Junya Tian
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Sun
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xinyuan Li
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Qiaohong Xu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jian Ma
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Kehai Liu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China
| | - Kewu Liu
- Mudanjiang Branch of Heilongjiang Academy of Forestry, Heilongjiang, 157010, China
| |
Collapse
|
39
|
Tang Z, Huang G. Extraction, structure, and activity of polysaccharide from Radix astragali. Biomed Pharmacother 2022; 150:113015. [PMID: 35468585 DOI: 10.1016/j.biopha.2022.113015] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Radix astragali polysaccharide (RAP) is a water-soluble heteropolysaccharide. It is an immune promoter and regulator, and has antivirus, antitumor, anti-aging, anti-radiation, anti-stress, anti-oxidation and other activitys. The extraction, separation, purification, structure, activity and modification of RAP were summarized. Some extraction methods of RAP had been introduced, and the separation and purification methods of RAP were reviewed, and the structure and activity of RAP were highly discussed. Current derivatization of RAP was outlined. Through the above discussion that the yield of crude polysaccharides from Radix astragali by enzyme-assisted extraction was significantly higher than that by other extraction methods, but each extraction method had different extraction effects under certain conditions, and the activity efficiency of RAP was also different. Therefore, it is particularly important to optimize the extraction method with known better yield for the study of RAP. In addition, the purification and separation of RAP are the key factors affecting the yield and activity of RAP. At the same time, there are still few studies on the derivatiration of Radix astragali polysaccharide, but the researches in this area are very important. RAP also has many important pharmacological effects on human body, but its practical application needs further study. Finally, studies on the structure-activity relationship of RAP still need to be carried out by many scholars. This review would provide some help for further researches on various important applications of RAP.
Collapse
Affiliation(s)
- Zhenjie Tang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
40
|
Lin B, Huang G. Extraction, isolation, purification, derivatization, bioactivity, structure-activity relationship and application of polysaccharides from white jellyfungus. Biotechnol Bioeng 2022; 119:1359-1379. [PMID: 35170761 DOI: 10.1002/bit.28064] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 11/07/2022]
Abstract
White jellyfungus is one of the most popular nutritional supplements. The polysaccharide (WJP) is an important active component of white jellyfungus, it not only has a variety of biological activities but also is non-toxic to humans. So, many scholars have carried out different researches on WJP. However, the lack of a detailed summary of WJP limits the scale of industrial development of WJP. Herein, the research progress of WJP in extraction, isolation, structure, derivatization and structure-activity relationship was reviewed. Different extraction methods were compared, the activity and application of WJP were summarized, and the structure-activity relationship of WJP was emphasized in order to provide effective theoretical support for improving the utilization of WJP and promoting the application of related industries. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bobo Lin
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, 401331, China
| | - Gangliang Huang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
41
|
Hintze V, Schnabelrauch M, Rother S. Chemical Modification of Hyaluronan and Their Biomedical Applications. Front Chem 2022; 10:830671. [PMID: 35223772 PMCID: PMC8873528 DOI: 10.3389/fchem.2022.830671] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
Hyaluronan, the extracellular matrix glycosaminoglycan, is an important structural component of many tissues playing a critical role in a variety of biological contexts. This makes hyaluronan, which can be biotechnologically produced in large scale, an attractive starting polymer for chemical modifications. This review provides a broad overview of different synthesis strategies used for modulating the biological as well as material properties of this polysaccharide. We discuss current advances and challenges of derivatization reactions targeting the primary and secondary hydroxyl groups or carboxylic acid groups and the N-acetyl groups after deamidation. In addition, we give examples for approaches using hyaluronan as biomedical polymer matrix and consequences of chemical modifications on the interaction of hyaluronan with cells via receptor-mediated signaling. Collectively, hyaluronan derivatives play a significant role in biomedical research and applications indicating the great promise for future innovative therapies.
Collapse
Affiliation(s)
- Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | | | - Sandra Rother
- School of Medicine, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| |
Collapse
|