1
|
Björk E, Israelsson P, Nagaev I, Nagaeva O, Lundin E, Ottander U, Mincheva-Nilsson L. Endometriotic Tissue-derived Exosomes Downregulate NKG2D-mediated Cytotoxicity and Promote Apoptosis: Mechanisms for Survival of Ectopic Endometrial Tissue in Endometriosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:567-576. [PMID: 38984872 PMCID: PMC11335327 DOI: 10.4049/jimmunol.2300781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
Endometriosis, affecting 10% of women, is defined as implantation, survival, and growth of endometrium-like/endometriotic tissue outside the uterine cavity, causing inflammation, infertility, pain, and susceptibility to ovarian cancer. Despite extensive studies, its etiology and pathogenesis are poorly understood and largely unknown. The prevailing view is that the immune system of endometriosis patients fails to clear ectopically disseminated endometrium from retrograde menstruation. Exosomes are small extracellular vesicles that exhibit immunomodulatory properties. We studied the role of endometriotic tissue-secreted exosomes in the pathophysiology of endometriosis. Two exosome-mediated mechanisms known to impair the immune response were investigated: 1) downregulation of NKG2D-mediated cytotoxicity and 2) FasL- and TRAIL-induced apoptosis of activated immune cells. We showed that secreted endometriotic exosomes isolated from supernatants of short-term explant cultures carry the NKG2D ligands MICA/B and ULBP1-3 and the proapoptotic molecules FasL and TRAIL on their surface, i.e., signature molecules of exosome-mediated immune suppression. Acting as decoys, these exosomes downregulate the NKG2D receptor, impair NKG2D-mediated cytotoxicity, and induce apoptosis of activated PBMCs and Jurkat cells through the FasL- and TRAIL pathway. The secreted endometriotic exosomes create an immunosuppressive gradient at the ectopic site, forming a "protective shield" around the endometriotic lesions. This gradient guards the endometriotic lesions against clearance by a cytotoxic attack and creates immunologic privilege by induction of apoptosis in activated immune cells. Taken together, our results provide a plausible, exosome-based mechanistic explanation for the immune dysfunction and the compromised immune surveillance in endometriosis and contribute novel insights into the pathogenesis of this enigmatic disease.
Collapse
Affiliation(s)
- Emma Björk
- Division of Obstetrics and Gynecology/Örnsköldsvik Hospital, Örnsköldsvik, Sweden
- Department of Clinical Microbiology/Infection and Immunology, Umeå University, Umeå, Sweden
- Department of Clinical Sciences/Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| | - Pernilla Israelsson
- Department of Diagnostics and Intervention/Oncology, Umeå University, Umeå, Sweden
| | - Ivan Nagaev
- Department of Clinical Microbiology/Infection and Immunology, Umeå University, Umeå, Sweden
| | - Olga Nagaeva
- Department of Clinical Microbiology/Infection and Immunology, Umeå University, Umeå, Sweden
| | - Eva Lundin
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Ulrika Ottander
- Department of Clinical Sciences/Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| | - Lucia Mincheva-Nilsson
- Department of Clinical Microbiology/Infection and Immunology, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Duval C, Wyse BA, Tsang BK, Librach CL. Extracellular vesicles and their content in the context of polycystic ovarian syndrome and endometriosis: a review. J Ovarian Res 2024; 17:160. [PMID: 39103867 DOI: 10.1186/s13048-024-01480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Extracellular vesicles (EVs), particles enriched in bioactive molecules like proteins, nucleic acids, and lipids, are crucial mediators of intercellular communication and play key roles in various physiological and pathological processes. EVs have been shown to be involved in ovarian follicular function and to be altered in two prevalent gynecological disorders; polycystic ovarian syndrome (PCOS) and endometriosis.Ovarian follicles are complex microenvironments where folliculogenesis takes place with well-orchestrated interactions between granulosa cells, oocytes, and their surrounding stromal cells. Recent research unveiled the presence of EVs, including exosomes and microvesicles, in the follicular fluid (FFEVs), which constitutes part of the developing oocyte's microenvironment. In the context of PCOS, a multifaceted endocrine, reproductive, and metabolic disorder, studies have explored the dysregulation of these FFEVs and their cargo. Nine PCOS studies were included in this review and two miRNAs were commonly reported in two different studies, miR-379 and miR-200, both known to play a role in female reproduction. Studies have also demonstrated the potential use of EVs as diagnostic tools and treatment options.Endometriosis, another prevalent gynecological disorder characterized by ectopic growth of endometrial-like tissue, has also been linked to aberrant EV signaling. EVs in the peritoneal fluid of women with endometriosis carry molecules that modulate the immune response and promote the establishment and maintenance of endometriosis lesions. EVs derived from endometriosis lesions, serum and peritoneal fluid obtained from patients with endometriosis showed no commonly reported biomolecules between the eleven reviewed studies. Importantly, circulating EVs have been shown to be potential biomarkers, also reflecting the severity of the pathology.Understanding the interplay of EVs within human ovarian follicles may provide valuable insights into the pathophysiology of both PCOS and endometriosis. Targeting EV-mediated communication may open avenues for novel diagnostic and therapeutic approaches for these common gynecological disorders. More research is essential to unravel the mechanisms underlying EV involvement in folliculogenesis and its dysregulation in PCOS and endometriosis, ultimately leading to more effective and personalized interventions.
Collapse
Affiliation(s)
- Cyntia Duval
- CReATe Fertility Center, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Benjamin K Tsang
- Inflammation and Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology & Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Clifford L Librach
- CReATe Fertility Center, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
3
|
Martínez-Zamora MA, Armengol-Badia O, Quintas-Marquès L, Carmona F, Closa D. Macrophage Phenotype Induced by Circulating Small Extracellular Vesicles from Women with Endometriosis. Biomolecules 2024; 14:737. [PMID: 39062452 PMCID: PMC11274790 DOI: 10.3390/biom14070737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Evidence suggests that immune system dysfunction and macrophages are involved in the disease establishment and progression of endometriosis. Among the factors involved in this alteration in macrophage activity, Small Extracellular Vesicles (sEVs) have been described to play a role favoring the switch to a specific phenotype with controversial results. This study aims to investigate the potential effect of circulating sEVs in the plasma of well-characterized patients with endometriosis on the polarization of macrophages. sEVs were isolated from the plasma of patients diagnosed with endometriosis confirmed by histopathological analysis. Two groups of patients were recruited: the endometriosis group consisted of patients diagnosed with endometriosis by imaging testing (gynecological ultrasonography and/or magnetic resonance imaging), confirmed by histopathologic study (n = 12), and the control group included patients who underwent laparoscopy for tubal sterilization without presurgical suspicion of endometriosis and without endometriosis or signs of any inflammatory pelvic condition during surgery (n = 12). Human THP1 monocytic cells were differentiated into macrophages, and the effect of sEVs on cell uptake and macrophage polarization was evaluated by fluorescent labeling and measurement of the IL1B, TNF, ARG1, and MRC1 expression, respectively. Although no changes in cell uptake were detected, sEVs from endometriosis induced a polarization of macrophages toward an M2 phenotype, characterized by lower IL1B and TNF expression and a tendency to increase MRC1 and ARG1 levels. When macrophages were stimulated with lipopolysaccharides, less activation was also detected after treatment with endometriosis sEVs. Finally, endometriosis sEVs also induced the expression of the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARG); however, treatment with rosiglitazone, a PPARG agonist, had no effect on the change in macrophage phenotype. We conclude that circulating sEVs in women with endometriosis have a certain capacity to shift the activation state of macrophages toward an M2 phenotype, but this does not modify the uptake level or the response to PPARG ligands.
Collapse
Affiliation(s)
- María Angeles Martínez-Zamora
- Department of Gynecology, Institut Clínic of Gynecology, Obstetrics and Neonatology, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.Q.-M.); (F.C.)
| | - Olga Armengol-Badia
- Department of Experimental Pathology, Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (O.A.-B.); (D.C.)
| | - Lara Quintas-Marquès
- Department of Gynecology, Institut Clínic of Gynecology, Obstetrics and Neonatology, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.Q.-M.); (F.C.)
| | - Francisco Carmona
- Department of Gynecology, Institut Clínic of Gynecology, Obstetrics and Neonatology, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.Q.-M.); (F.C.)
| | - Daniel Closa
- Department of Experimental Pathology, Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (O.A.-B.); (D.C.)
| |
Collapse
|
4
|
Toledo B, Zhu Chen L, Paniagua-Sancho M, Marchal JA, Perán M, Giovannetti E. Deciphering the performance of macrophages in tumour microenvironment: a call for precision immunotherapy. J Hematol Oncol 2024; 17:44. [PMID: 38863020 PMCID: PMC11167803 DOI: 10.1186/s13045-024-01559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Macrophages infiltrating tumour tissues or residing in the microenvironment of solid tumours are known as tumour-associated macrophages (TAMs). These specialized immune cells play crucial roles in tumour growth, angiogenesis, immune regulation, metastasis, and chemoresistance. TAMs encompass various subpopulations, primarily classified into M1 and M2 subtypes based on their differentiation and activities. M1 macrophages, characterized by a pro-inflammatory phenotype, exert anti-tumoural effects, while M2 macrophages, with an anti-inflammatory phenotype, function as protumoural regulators. These highly versatile cells respond to stimuli from tumour cells and other constituents within the tumour microenvironment (TME), such as growth factors, cytokines, chemokines, and enzymes. These stimuli induce their polarization towards one phenotype or another, leading to complex interactions with TME components and influencing both pro-tumour and anti-tumour processes.This review comprehensively and deeply covers the literature on macrophages, their origin and function as well as the intricate interplay between macrophages and the TME, influencing the dual nature of TAMs in promoting both pro- and anti-tumour processes. Moreover, the review delves into the primary pathways implicated in macrophage polarization, examining the diverse stimuli that regulate this process. These stimuli play a crucial role in shaping the phenotype and functions of macrophages. In addition, the advantages and limitations of current macrophage based clinical interventions are reviewed, including enhancing TAM phagocytosis, inducing TAM exhaustion, inhibiting TAM recruitment, and polarizing TAMs towards an M1-like phenotype. In conclusion, while the treatment strategies targeting macrophages in precision medicine show promise, overcoming several obstacles is still necessary to achieve an accessible and efficient immunotherapy.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Linrui Zhu Chen
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - María Paniagua-Sancho
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain.
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain.
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, Pisa, 56017, Italy.
| |
Collapse
|
5
|
Paterson ESJ, Scheck S, McDowell S, Bedford N, Girling JE, Henry CE. Comparison of cervicovaginal fluid extracellular vesicles isolated from paired cervical brushes and vaginal swabs. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e153. [PMID: 38939571 PMCID: PMC11080783 DOI: 10.1002/jex2.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 03/14/2024] [Accepted: 04/20/2024] [Indexed: 06/29/2024]
Abstract
Endometriosis is a common gynaecological condition, with a long diagnostic delay. Surgery is required to confirm a diagnosis, highlighting the need for a non-invasive biomarker. Extracellular vesicles (EVs) may have a role in endometriosis pathogenesis, yet there is limited EV biomarker literature available. This study aimed to investigate the feasibility of isolating cervico-vaginal fluid EVs sampled using cervical brushes and vaginal swabs and to compare these methods. After providing informed consent, patients undergoing surgery for suspected endometriosis had cervical brush and vaginal swab samples collected under general anaesthetic. Isolated EVs were characterised through negative stain transmission electron microscopy (TEM), Western blotting (TSG101, CD63, Calnexin, ApoB, Albumin), tunable resistive pulse sensing (TRPS), microBCA assays and RT-qPCR of miRNAs. PCR was performed on samples prior to EV isolation to assess bacteria present in samples. Cervical brush and vaginal swab EVs were intact vesicles with limited co-isolated contaminants. Cervical brushes had higher concentrations of particles compared to match vaginal swabs, although both samples had low concentrations. Protein and miRNA yield were similar between matched samples. PCR demonstrated only a small amount DNA within samples was bacterial (>0.5%). Cervico-vaginal fluids EVs were successfully isolated from cervical brushes and vaginal swabs, demonstrating a new method of sampling reproductive EVs. EV yield from both sample types was low. Similar protein and miRNA levels suggest either sampling method may be suitable for biomarker studies.
Collapse
Affiliation(s)
| | - Simon Scheck
- Department of Obstetrics, Gynaecology and Women's HealthUniversity of OtagoWellington, AotearoaNew Zealand
- Department of Obstetrics and GynaecologyWellington Hospital, Te Whatu Ora ‐ Capital, Coast and Hutt ValleyWellington, AotearoaNew Zealand
| | - Simon McDowell
- Department of Obstetrics and GynaecologyWellington Hospital, Te Whatu Ora ‐ Capital, Coast and Hutt ValleyWellington, AotearoaNew Zealand
| | - Nick Bedford
- Department of Obstetrics and GynaecologyWellington Hospital, Te Whatu Ora ‐ Capital, Coast and Hutt ValleyWellington, AotearoaNew Zealand
| | | | | |
Collapse
|
6
|
Chu X, Hou M, Li Y, Zhang Q, Wang S, Ma J. Extracellular vesicles in endometriosis: role and potential. Front Endocrinol (Lausanne) 2024; 15:1365327. [PMID: 38737555 PMCID: PMC11082332 DOI: 10.3389/fendo.2024.1365327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Endometriosis is a chronic inflammatory gynecological disease, which profoundly jeopardizes women's quality of life and places a significant medical burden on society. The pathogenesis of endometriosis remains unclear, posing major clinical challenges in diagnosis and treatment. There is an urgent demand for the development of innovative non-invasive diagnostic techniques and the identification of therapeutic targets. Extracellular vesicles, recognized for transporting a diverse array of signaling molecules, have garnered extensive attention as a novel mode of intercellular communication. A burgeoning body of research indicates that extracellular vesicles play a pivotal role in the pathogenesis of endometriosis, which may provide possibility and prospect for both diagnosis and treatment. In light of this context, this article focuses on the involvement of extracellular vesicles in the pathogenesis of endometriosis, which deliver information among endometrial stromal cells, macrophages, mesenchymal stem cells, and other cells, and explores their potential applications in the diagnosis and treatment, conducing to the emergence of new strategies for clinical diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
7
|
Livshits G, Kalinkovich A. Restoration of epigenetic impairment in the skeletal muscle and chronic inflammation resolution as a therapeutic approach in sarcopenia. Ageing Res Rev 2024; 96:102267. [PMID: 38462046 DOI: 10.1016/j.arr.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Sarcopenia is an age-associated loss of skeletal muscle mass, strength, and function, accompanied by severe adverse health outcomes, such as falls and fractures, functional decline, high health costs, and mortality. Hence, its prevention and treatment have become increasingly urgent. However, despite the wide prevalence and extensive research on sarcopenia, no FDA-approved disease-modifying drugs exist. This is probably due to a poor understanding of the mechanisms underlying its pathophysiology. Recent evidence demonstrate that sarcopenia development is characterized by two key elements: (i) epigenetic dysregulation of multiple molecular pathways associated with sarcopenia pathogenesis, such as protein remodeling, insulin resistance, mitochondria impairments, and (ii) the creation of a systemic, chronic, low-grade inflammation (SCLGI). In this review, we focus on the epigenetic regulators that have been implicated in skeletal muscle deterioration, their individual roles, and possible crosstalk. We also discuss epidrugs, which are the pharmaceuticals with the potential to restore the epigenetic mechanisms deregulated in sarcopenia. In addition, we discuss the mechanisms underlying failed SCLGI resolution in sarcopenia and the potential application of pro-resolving molecules, comprising specialized pro-resolving mediators (SPMs) and their stable mimetics and receptor agonists. These compounds, as well as epidrugs, reveal beneficial effects in preclinical studies related to sarcopenia. Based on these encouraging observations, we propose the combination of epidrugs with SCLI-resolving agents as a new therapeutic approach for sarcopenia that can effectively attenuate of its manifestations.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
8
|
Hu Y, Yuan M, Cheng L, Xu L, Wang G. Extracellular vesicle-encapsulated miR-25-3p promotes epithelial-mesenchymal transition and migration of endometrial epithelial cells by inducing macrophage polarization. Mol Hum Reprod 2024; 30:gaae010. [PMID: 38407339 DOI: 10.1093/molehr/gaae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/28/2024] [Indexed: 02/27/2024] Open
Abstract
The pathogenesis of adenomyosis is closely related to the epithelial-mesenchymal transition and macrophages. MicroRNAs have been extensively investigated in relation to the epithelial-mesenchymal transition in a range of malignancies. However, there is a paucity of research on extracellular vesicles derived from the eutopic endometrium of adenomyosis and their encapsulated microRNAs. In this study, we investigated the role of microRNA-25-3p derived from extracellular vesicles in inducing macrophage polarization and promoting the epithelial-mesenchymal transition in endometrial epithelial cells of patients with adenomyosis and controls. We obtained eutopic endometrial samples and isolated extracellular vesicles from the culture supernatant of primary endometrial cells. Real-time quantitative PCR analysis demonstrated that microRNA-25-3p was highly expressed in extracellular vesicles, as well as in macrophages stimulated by extracellular vesicles from eutopic endometrium of adenomyosis; and macrophages transfected with microRNA-25-3p exhibited elevated levels of M2 markers, while displaying reduced levels of M1 markers. After co-culture with the above polarized macrophages, endometrial epithelial cells expressed higher levels of N-cadherin and Vimentin, and lower protein levels of E-cadherin and Cytokeratin 7. It was revealed that microRNA-25-3p encapsulated in extracellular vesicles from eutopic endometrial cells could induce macrophage polarization toward M2, and the polarized macrophages promote epithelial-mesenchymal transition in epithelial cells. However, in vitro experiments revealed no significant disparity in the migratory capacity of endometrial epithelial cells between the adenomyosis group and the control group. Furthermore, it was observed that microRNA-25-3p-stimulated polarized macrophages also facilitated the epithelial-mesenchymal transition and migration of endometrial epithelial cells within the control group. Thus, the significance of microRNA-25-3p-induced polarized macrophages in promoting the development of adenomyosis is unclear, and macrophage infiltration alone may be adequate for this process. We emphasize the specificity of the local eutopic endometrial microenvironment and postulate its potential significance in the pathogenesis of adenomyosis.
Collapse
Affiliation(s)
- Yue Hu
- Department of Gynecology and Obstetrics, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Ming Yuan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Lei Cheng
- Department of Gynecology and Obstetrics, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Le Xu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Guoyun Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, Shandong, China
| |
Collapse
|
9
|
Zhao J, Luo J, Deng C, Fan Y, Liu N, Cao J, Chen D, Diao Y. Volatile oil of Angelica sinensis Radix improves cognitive function by inhibiting miR-301a-3p targeting Ppp2ca in cerebral ischemia mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117621. [PMID: 38154524 DOI: 10.1016/j.jep.2023.117621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica Sinensis Radix (ASR) is a commonly used Chinese medicine known for its effects on tonifying blood, promoting blood circulation, and alleviating pain associated with menstrual regulation. Additionally, it has been used in the treatment of vascular cognitive impairment (VCI). The primary pharmacodynamic agent within ASR is volatile oil of Angelica Sinensis Radix (VOASR), which has demonstrated efficacy in combating cognitive impairment, although its mechanism remains unclear. OBJECTIVE This study aimed to elucidate the potential molecular mechanisms underlying VOASR's improvement of cognitive function in cerebral ischemic mice. METHODS A model of cerebral ischemic mice was established through unilateral common carotid artery occlusion (UCCAO) surgery, followed by intervention with VOASR. Cognitive function was assessed using the Morris water maze (MWM) test, while RT-qPCR was utilized to measure the differential expression of miR-301a-3p in the hippocampus. To evaluate cognitive function and hippocampal protein differences, wild-type mice and miR-301a-3p knockout mice were subjected to the MWM test and iTRAQ protein profiling. The relationship between miR-301a-3p and potential target genes was validated through a Dual-Luciferase Reporter experiment. RT-qPCR and Western blot were employed to determine the differential expression of Ppp2ca and synaptic plasticity-related proteins in the mouse hippocampus. RESULTS Intervention with VOASR significantly improved cognitive impairment in cerebral ischemic mice and reduced the expression of miR-301a-3p in the hippocampus. Our findings suggest that miR-301a-3p may regulate cognitive function by targeting Ppp2ca. Furthermore, VOASR intervention led to an increase in the expression of Ppp2ca and synaptic plasticity-related proteins. CONCLUSION Our study indicates that VOASR may be involved in regulating cognitive function by inhibiting miR-301a-3p, consequently increasing the expression of Ppp2ca and synaptic plasticity proteins. These results provide a new target and direction for the treatment of cognitive dysfunction.
Collapse
Affiliation(s)
- Jie Zhao
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jing Luo
- Shenzhen Hospital of Integrated Traditional and Western Medicine, ShenZhen, 518000, China.
| | - Cuili Deng
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yueying Fan
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Na Liu
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jiahui Cao
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Dongfeng Chen
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yuanming Diao
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Ji J, Wang H, Yuan M, Li J, Song X, Lin K. Exosomes from ectopic endometrial stromal cells promote M2 macrophage polarization by delivering miR-146a-5p. Int Immunopharmacol 2024; 128:111573. [PMID: 38278065 DOI: 10.1016/j.intimp.2024.111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Ectopic endometrial stromal cells (ESCs) and M2 macrophages co-exist in the lesions of endometriosis and participate in the occurrence and progression of endometriosis. However, the interaction between ectopic ESCs and M2-type macrophage polarization is poorly understood. This study aims to investigate the effect of exosomes released from ectopic ESCs on M2 macrophage polarization and the potential mechanism. METHODS Human THP-1 monocytic cells induced macrophage differentiation (M0) and M2 polarization. Ectopic ESCs and their exosomes were used to stimulate M2 macrophages. M2 macrophage polarization was examined by detecting CD163 and ARG1 expression. Exosomal microRNAs were analyzed by small-RNA sequencing. RESULTS Our in vitro results suggest that exosomes of ectopic ESCs promoted M2 macrophage polarization. Meanwhile, The miR-146a-5p level was highly increased in ectopic ESCs and their exosomes and promoted the role of exosomes in M2 macrophage polarization. As a target, TRAF6 overexpression inhibits the function of miR-146a-5p mimic on M2 macrophage polarization. In the rat model, exosomes from ectopic ESCs contribute to the development of endometriosis. CONCLUSIONS It was suggested that exosomes derived from ectopic ESCs promote the M2 macrophage polarization by delivering miR-146a-5p targeting TRAF6 in the pathological process of endometriosis.
Collapse
Affiliation(s)
- Jiaqi Ji
- Hangzhou Normal University Division of Health Sciences, Yuhangtang Road 2318, Hangzhou, Zhejiang 311121, PR China
| | - Huihua Wang
- Department of Gynecology, the First People's Hospital of Tongxiang, Jiaochang Road 1918, Tongxiang, Zhejiang 314500, PR China
| | - Ming Yuan
- Hangzhou Normal University Division of Health Sciences, Yuhangtang Road 2318, Hangzhou, Zhejiang 311121, PR China
| | - Jin Li
- Department of Gynecology, Women's Hospital of Hangzhou Normal University, Kunpeng Road 369, Hangzhou, Zhejiang 310000, PR China
| | - Xiaohong Song
- Department of Gynecology, Women's Hospital of Hangzhou Normal University, Kunpeng Road 369, Hangzhou, Zhejiang 310000, PR China
| | - Kaiqing Lin
- Department of Gynecology and Obstetrics, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China.
| |
Collapse
|
11
|
Donnez J, Stratopoulou CA, Dolmans MM. Endometriosis and adenomyosis: Similarities and differences. Best Pract Res Clin Obstet Gynaecol 2024; 92:102432. [PMID: 38103509 DOI: 10.1016/j.bpobgyn.2023.102432] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 12/19/2023]
Abstract
Deep endometriosis and uterine adenomyosis are two frequently encountered conditions affecting approximately 200 million women worldwide. They are closely related, showing similar histological patterns and multiple common pathogenic features, and share the same symptoms. It is therefore not surprising that they are often thought to have a common developmental origin. Indeed, both deep endometriosis and adenomyosis appear to derive from estrogen-dependent overproliferation of endometrial tissue and its subsequent implantation in ectopic sites. Although the scientific community has shown increasing interest in these diseases over recent years, neither pathogenesis has yet been elucidated, so there are currently no efficient treatment options. Understanding the mechanisms underlying disease development, as well as discerning their relationship, are key to improving clinical management for millions of patients. The aims of this review are to summarize current knowledge on deep endometriosis and adenomyosis pathogeneses and discuss the possibility that these two entities are actually differential phenotypes of the same disease.
Collapse
Affiliation(s)
- Jacques Donnez
- Prof Emeritus, Université Catholique de Louvain, Belgium; Society for Research into Infertility (SRI), 143 Avenue Grandchamp, 1150, Brussels, Belgium.
| | - Christina Anna Stratopoulou
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain (UCL), Brussels, Belgium; Gynecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
12
|
Cui Z, Amevor FK, Zhao X, Mou C, Pang J, Peng X, Liu A, Lan X, Liu L. Potential therapeutic effects of milk-derived exosomes on intestinal diseases. J Nanobiotechnology 2023; 21:496. [PMID: 38115131 PMCID: PMC10731872 DOI: 10.1186/s12951-023-02176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/25/2023] [Indexed: 12/21/2023] Open
Abstract
Exosomes are extracellular vesicles with the diameter of 30 ~ 150 nm, and are widely involved in intercellular communication, disease diagnosis and drug delivery carriers for targeted disease therapy. Therapeutic application of exosomes as drug carriers is limited due to the lack of sources and methods for obtaining adequate exosomes. Milk contains abundant exosomes, several studies have shown that milk-derived exosomes play crucial roles in preventing and treating intestinal diseases. In this review, we summarized the biogenesis, secretion and structure, current novel methods used for the extraction and identification of exosomes, as well as discussed the role of milk-derived exosomes in treating intestinal diseases, such as inflammatory bowel disease, necrotizing enterocolitis, colorectal cancer, and intestinal ischemia and reperfusion injury by regulating intestinal immune homeostasis, restoring gut microbiota composition and improving intestinal structure and integrity, alleviating conditions such as oxidative stress, cell apoptosis and inflammation, and reducing mitochondrial reactive oxygen species (ROS) and lysosome accumulation in both humans and animals. In addition, we discussed future prospects for the standardization of milk exosome production platform to obtain higher concentration and purity, and complete exosomes derived from milk. Several in vivo clinical studies are needed to establish milk-derived exosomes as an effective and efficient drug delivery system, and promote its application in the treatment of various diseases in both humans and animals.
Collapse
Affiliation(s)
- Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, P. R. China
| | - Xingtao Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, P. R. China
| | - Chunyan Mou
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Jiaman Pang
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Xie Peng
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China.
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China.
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Southwest University, Beibei, Chongqing, 400715, P. R. China.
| |
Collapse
|
13
|
Nazri HM, Greaves E, Quenby S, Dragovic R, Tapmeier TT, Becker CM. The role of small extracellular vesicle-miRNAs in endometriosis. Hum Reprod 2023; 38:2296-2311. [PMID: 37877421 PMCID: PMC10694411 DOI: 10.1093/humrep/dead216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
Endometriosis is defined by the presence of extrauterine endometrial-like tissue, which can cause pain and infertility in 10% of reproductive-age women. To date, the pathogenesis is poorly understood resulting in significant diagnostic delays and poor therapeutic outcomes in many women. Small extracellular vesicles (sEVs) (<200 nm) are cell-derived vesicles containing molecules that can influence gene expression and behaviour in target cells. One such cargo are microRNAs (miRNAs), which are short, non-coding RNAs mostly 19-25 nucleotides in length that regulate post-transcriptional gene expression. This mini-review focuses on the role of sEV-miRNAs, which are conceivably better biomarkers for endometriosis than free miRNAs, which reflect the true pathophysiological state in the body, as sEV-encapsulated miRNAs are protected from degradation compared to free miRNA and provide direct cell-to-cell communication via sEV surface proteins. sEV-miRNAs have been implicated in the immunomodulation of macrophages, the proliferation, migration and invasion of endometrial cells, and angiogenesis, all hallmarks of endometriosis. The diagnostic potential of sEV-miRNA was investigated in one study that reported the sensitivity and specificity of two sEV-miRNAs (hsa-miR-22-3p and hsa-miR-320a-3p) in distinguishing endometriosis from non-endometriosis cases. Only three studies have explored the therapeutic potential of sEV-miRNAs in vivo in mice-two looked into the role of sEV-hsa-miR-214-3p in decreasing fibrosis, and one investigated sEV-hsa-miR-30c-5p in suppressing the invasive and migratory potential of endometriotic lesions. While early results are encouraging, studies need to further address the potential influence of factors such as the menstrual cycle as well as the location and extent of endometriotic lesions on miRNA expression in sEVs. Given these findings, and extrapolating from other conditions such as cancer, diabetes, and pre-eclampsia, sEV-miRNAs could present an attractive and urgently needed future diagnostic and therapeutic target for millions of women suffering from endometriosis. However, research in this area is hampered by lack of adherence to the International Society for Extracellular Vesicles 2018 guideline in separating and characterising sEVs, as well as the World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonisation Project protocols.
Collapse
Affiliation(s)
- Hannah M Nazri
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Erin Greaves
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Siobhan Quenby
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Rebecca Dragovic
- Nuffield Department of Women’s & Reproductive Health, Endometriosis CaRe Centre, University of Oxford, Oxford, UK
| | - Thomas T Tapmeier
- Nuffield Department of Women’s & Reproductive Health, Endometriosis CaRe Centre, University of Oxford, Oxford, UK
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Christian M Becker
- Nuffield Department of Women’s & Reproductive Health, Endometriosis CaRe Centre, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Khayati S, Dehnavi S, Sadeghi M, Tavakol Afshari J, Esmaeili SA, Mohammadi M. The potential role of miRNA in regulating macrophage polarization. Heliyon 2023; 9:e21615. [PMID: 38027572 PMCID: PMC10665754 DOI: 10.1016/j.heliyon.2023.e21615] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Macrophage polarization is a dynamic process determining the outcome of various physiological and pathological situations through inducing pro-inflammatory responses or resolving inflammation via exerting anti-inflammatory effects. The miRNAs are epigenetic regulators of different biologic pathways that target transcription factors and signaling molecules to promote macrophage phenotype transition and regulate immune responses. Modulating the macrophage activation, differentiation, and polarization by miRNAs is crucial for immune responses in response to microenvironmental signals and under various physiological and pathological conditions. In term of clinical significance, regulating macrophage polarization via miRNAs could be utilized for inflammation control. Also, understanding the role of miRNAs in macrophage polarization can provide insights into diagnostic strategies associated with dysregulated miRNAs and for developing macrophage-centered therapeutic methods. In this case, targeting miRNAs to further regulate of macrophage polarization may become an efficient strategy for treating immune-associated disorders. The current review investigated and categorized various miRNAs directly or indirectly involved in macrophage polarization by targeting different transcription factors and signaling pathways. In addition, prospects for regulating macrophage polarization via miRNA as a therapeutic choice that could be implicated in various pathological conditions, including cancer or inflammation-mediated injuries, were discussed.
Collapse
Affiliation(s)
- Shaho Khayati
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Soltani-Fard E, Asadi M, Taghvimi S, Vafadar A, Vosough P, Tajbakhsh A, Savardashtaki A. Exosomal microRNAs and long noncoding RNAs: as novel biomarkers for endometriosis. Cell Tissue Res 2023; 394:55-74. [PMID: 37480408 DOI: 10.1007/s00441-023-03802-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/23/2023] [Indexed: 07/24/2023]
Abstract
Endometriosis is a gynecological inflammatory disorder characterized by the development of endometrial-like cells outside the uterine cavity. This disease is associated with a wide range of clinical presentations, such as debilitating pelvic pain and infertility issues. Endometriosis diagnosis is not easily discovered by ultrasound or clinical examination. Indeed, difficulties in noninvasive endometriosis diagnosis delay the confirmation and management of the disorder, increase symptoms, and place a significant medical and financial burden on patients. So, identifying specific and sensitive biomarkers for this disease should therefore be a top goal. Exosomes are extracellular vesicles secreted by most cell types. They transport between cells' bioactive molecules such as noncoding RNAs and proteins. MicroRNAs and long noncoding RNAs which are key molecules transferred by exosomes have recently been identified to have a significant role in endometriosis by modulating different proteins and their related genes. As a result, the current review focuses on exosomal micro-and-long noncoding RNAs that are involved in endometriosis disease. Furthermore, major molecular mechanisms linking corresponding RNA molecules to endometriosis development will be briefly discussed to better clarify the potential functions of exosomal noncoding RNAs in the therapy and diagnosis of endometriosis.
Collapse
Affiliation(s)
- Elahe Soltani-Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Marzieh Asadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and, Technologies, Shiraz University of, Medical Sciences, Shiraz, 71362 81407, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Taghvimi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and, Technologies, Shiraz University of, Medical Sciences, Shiraz, 71362 81407, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Department of Medical Biotechnology, School of Advanced Medical Sciences and, Technologies, Shiraz University of, Medical Sciences, Shiraz, 71362 81407, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and, Technologies, Shiraz University of, Medical Sciences, Shiraz, 71362 81407, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Zhang M, Xing J, Zhao S, Chen H, Yin X, Zhu X. Engineered extracellular vesicles in female reproductive disorders. Biomed Pharmacother 2023; 166:115284. [PMID: 37572637 DOI: 10.1016/j.biopha.2023.115284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
Biologically active and nanoscale extracellular vesicles (EVs) participate in a variety of cellular physiological and pathological processes in a cell-free manner. Unlike cells, EVs not only do not cause acute immune rejection, but are much smaller and have a low risk of tumorigenicity or embolization. Because of their unique advantages, EVs show promise in applications in the diagnosis and treatment of reproductive disorders. As research broadens, engineering strategies for EVs have been developed, and engineering strategies for EVs have substantially improved their application potential while circumventing the defects of natural EVs, driving EVs toward clinical applications. In this paper, we will review the engineering strategies of EVs, as well as their regulatory effects and mechanisms on reproductive disorders (including premature ovarian insufficiency (POI), polycystic ovarian syndrome (PCOS), recurrent spontaneous abortion (RSA), intrauterine adhesion (IUA), and endometriosis (EMS)) and their application prospects. This work provides new ideas for the treatment of female reproductive disorders by engineering EVs.
Collapse
Affiliation(s)
- Mengxue Zhang
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Jie Xing
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Shijie Zhao
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Hui Chen
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Xinming Yin
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Xiaolan Zhu
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China.
| |
Collapse
|
17
|
Gao X, Gao H, Shao W, Wang J, Li M, Liu S. The Extracellular Vesicle-Macrophage Regulatory Axis: A Novel Pathogenesis for Endometriosis. Biomolecules 2023; 13:1376. [PMID: 37759776 PMCID: PMC10527545 DOI: 10.3390/biom13091376] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Endometriosis (EMs) is a common disease among women whose pathogenesis is still unclear, although there are various hypotheses. Recent studies have considered macrophages the key part of the immune system in developing EMs, inducing inflammation, the growth and invasion of the ectopic endometrium, and angiogenesis. Extracellular vesicles (EVs) as novel intercellular vesicle traffic, can be secreted by many kinds of cells, including macrophages. By carrying long non-coding RNA (lncRNA), microRNA (miRNA), or other molecules, EVs can regulate the biological functions of macrophages in an autocrine and paracrine manner, including ectopic lesion growth, immune dysfunction, angiogenesis, and can further accelerate the progression of EMs. In this review, the interactions between macrophages and EVs for the pathogenesis of EMs are summarized. Notably, the regulatory pathways and molecular mechanisms of EVs secreted by macrophages during EMs are reviewed.
Collapse
Affiliation(s)
- Xiaoxiao Gao
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai 201508, China; (X.G.); (H.G.); (W.S.); (J.W.)
| | - Han Gao
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai 201508, China; (X.G.); (H.G.); (W.S.); (J.W.)
| | - Wei Shao
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai 201508, China; (X.G.); (H.G.); (W.S.); (J.W.)
| | - Jiaqi Wang
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai 201508, China; (X.G.); (H.G.); (W.S.); (J.W.)
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Institute Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
| | - Songping Liu
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai 201508, China; (X.G.); (H.G.); (W.S.); (J.W.)
| |
Collapse
|
18
|
Abbaszadeh M, Karimi M, Rajaei S. The landscape of non-coding RNAs in the immunopathogenesis of Endometriosis. Front Immunol 2023; 14:1223828. [PMID: 37675122 PMCID: PMC10477370 DOI: 10.3389/fimmu.2023.1223828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
Endometriosis is a complex disorder that is characterized by the abnormal growth of endometrial-like tissue outside the uterus. It is associated with chronic inflammation, severe pelvic pain, infertility, and significantly reduced quality of life. Although the exact mechanism of endometriosis remains unknown, inflammation and altered immunity are considered key factors in the immunopathogenesis of the disorder. Disturbances of immune responses result in reduced clearance of regurgitated endometrial cells, which elicits oxidative stress and progression of inflammation. Proinflammatory mediators could affect immune cells' recruitment, fate, and function. Reciprocally, the activation of immune cells can promote inflammation. Aberrant expression of non-coding RNA (ncRNA) in patient and animal lesions could be suggestive of their role in endometriosis establishment. The engagement of these RNAs in regulating diverse biological processes, including inflammatory responses and activation of inflammasomes, altered immunity, cell proliferation, migration, invasion, and angiogenesis are widespread and far-reaching. Therefore, ncRNAs can be identified as a determining candidate regulating the inflammatory responses and immune system. This review aims in addition to predict the role of ncRNAs in the immunopathogenesis of endometriosis through regulating inflammation and altered immunity based on previous studies, it presents a comprehensive view of inflammation role in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
| | | | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Fan D, Wang X, Shi Z, Jiang Y, Zheng B, Xu L, Zhou S. Understanding endometriosis from an immunomicroenvironmental perspective. Chin Med J (Engl) 2023; 136:1897-1909. [PMID: 37439327 PMCID: PMC10431529 DOI: 10.1097/cm9.0000000000002649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Indexed: 07/14/2023] Open
Abstract
ABSTRACT Endometriosis, a heterogeneous, inflammatory, and estrogen-dependent gynecological disease defined by the presence and growth of endometrial tissues outside the lining of the uterus, affects approximately 5-10% of reproductive-age women, causing chronic pelvic pain and reduced fertility. Although the etiology of endometriosis is still elusive, emerging evidence supports the idea that immune dysregulation can promote the survival and growth of retrograde endometrial debris. Peritoneal macrophages and natural killer (NK) cells exhibit deficient cytotoxicity in the endometriotic microenvironment, leading to inefficient eradication of refluxed endometrial fragments. In addition, the imbalance of T-cell subtypes results in aberrant cytokine production and chronic inflammation, which contribute to endometriosis development. Although it remains uncertain whether immune dysregulation represents an initial cause or merely a secondary enhancer of endometriosis, therapies targeting altered immune pathways exhibit satisfactory effects in preventing disease onset and progression. Here, we summarize the phenotypic and functional alterations of immune cells in the endometriotic microenvironment, focusing on their interactions with microbiota and endocrine and nervous systems, and how these interactions contribute to the etiology and symptomology of endometriosis.
Collapse
Affiliation(s)
- Dian Fan
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Xu Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Zhixian Shi
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | | | - Bohao Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lian Xu
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| |
Collapse
|
20
|
Nasimi Shad A, Fanoodi A, Maharati A, Akhlaghipour I, Moghbeli M. Molecular mechanisms of microRNA-301a during tumor progression and metastasis. Pathol Res Pract 2023; 247:154538. [PMID: 37209575 DOI: 10.1016/j.prp.2023.154538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Cancer is known as one of the leading causes of human deaths globally. Late diagnosis is considered as one of the main reasons for the high mortality rate among cancer patients. Therefore, the introduction of early diagnostic tumor markers can improve the efficiency of therapeutic modalities. MicroRNAs (miRNAs) have a key role in regulation of cell proliferation and apoptosis. MiRNAs deregulation has been frequently reported during tumor progressions. Since, miRNAs have a high stability in body fluids; they can be used as the reliable non-invasive tumor markers. Here, we discussed the role of miR-301a during tumor progressions. MiR-301a mainly functions as an oncogene via the modulation of transcription factors, autophagy, epithelial-mesenchymal transition (EMT), and signaling pathways. This review paves the way to suggest miR-301a as a non-invasive marker for the early tumor diagnosis. MiR-301a can also be suggested as an effective target in cancer therapy.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Fanoodi
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Ronsini C, Fumiento P, Iavarone I, Greco PF, Cobellis L, De Franciscis P. Liquid Biopsy in Endometriosis: A Systematic Review. Int J Mol Sci 2023; 24:ijms24076116. [PMID: 37047088 PMCID: PMC10094565 DOI: 10.3390/ijms24076116] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Despite laparoscopy being a standardized option to diagnose pelvic endometriotic implants, non-invasive biomarkers are necessary to avoid the discomfort of invasive procedures. Recent evidence suggests a potential role of microRNAs (miRNAs) as feasible biomarkers for the early diagnosis of endometriosis. Following the recommendations in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, we systematically searched PubMed, EMBASE, Scopus, Cochrane Library, and Science Direct in January 2023. We provided no restriction on the country and year of publication, and considered English published articles. We selected studies including patients with endometriosis and describing miRNA regulation in the context of endometriosis. Overall, 45 studies fulfilled the inclusion criteria, and 2045 patients with endometriosis and 1587 controls were screened. Patients were analyzed concerning miRNAs expression and sources, stage of disease, and symptoms, and compared to controls. Among DEMs, the ones with the widest delta between endometriosis patients and controls-Relative Expression ≥ 4 Log2(ratio)-were miR-145, miR-191, miR-195, miR-21-5p, miR-106b-5p, miR-195-5p, miR-451a, miR-200c, miR-20a-5p, and miR-15a-5p. Although the epigenetic regulation is partially unclear, miRNAs are valid biomarkers to diagnose endometriotic lesions in symptomatic and non-symptomatic women. MiRNAs modulation should be clarified, especially during therapies or relapse, to plan targeted management protocols.
Collapse
Affiliation(s)
- Carlo Ronsini
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Pietro Fumiento
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Irene Iavarone
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Pier Francesco Greco
- Unit of Gynecologic Oncology, Department of Woman, Child and Public Health, A. Gemelli, IRCCS, University Hospital Foundation, 00168 Rome, Italy
| | - Luigi Cobellis
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Pasquale De Franciscis
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
22
|
Dysregulation of Serum MicroRNA after Intracerebral Hemorrhage in Aged Mice. Biomedicines 2023; 11:biomedicines11030822. [PMID: 36979801 PMCID: PMC10044892 DOI: 10.3390/biomedicines11030822] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 03/12/2023] Open
Abstract
Stroke is one of the most common diseases that leads to brain injury and mortality in patients, and intracerebral hemorrhage (ICH) is the most devastating subtype of stroke. Though the prevalence of ICH increases with aging, the effect of aging on the pathophysiology of ICH remains largely understudied. Moreover, there is no effective treatment for ICH. Recent studies have demonstrated the potential of circulating microRNAs as non-invasive diagnostic and prognostic biomarkers in various pathological conditions. While many studies have identified microRNAs that play roles in the pathophysiology of brain injury, few demonstrated their functions and roles after ICH. Given this significant knowledge gap, the present study aims to identify microRNAs that could serve as potential biomarkers of ICH in the elderly. To this end, sham or ICH was induced in aged C57BL/6 mice (18–24 months), and 24 h post-ICH, serum microRNAs were isolated, and expressions were analyzed. We identified 28 significantly dysregulated microRNAs between ICH and sham groups, suggesting their potential to serve as blood biomarkers of acute ICH. Among those microRNAs, based on the current literature, miR-124-3p, miR-137-5p, miR-138-5p, miR-219a-2-3p, miR-135a-5p, miR-541-5p, and miR-770-3p may serve as the most promising blood biomarker candidates of ICH, warranting further investigation.
Collapse
|
23
|
The Long Noncoding RNA Gm9866/Nuclear Factor- κB Axis Promotes Macrophage Polarization. Mediators Inflamm 2023; 2023:9991916. [PMID: 36756088 PMCID: PMC9899594 DOI: 10.1155/2023/9991916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Macrophages are a type of immune cells with high levels of plasticity and heterogeneity. They can polarize into M1 or M2 functional phenotypes. These two phenotypes exhibit a dynamic balance during polarization-related diseases and play opposing roles. Long noncoding RNAs (lncRNAs) play an important role in biological processes such as cell proliferation, death, and differentiation; however, how long noncoding RNAs affect the cellular functionality of macrophages remains to be studied. Long noncoding RNA Gm9866 was found to be closely related to macrophage polarization through bioinformatics analysis. In this study, by conducting real-time polymerase chain reaction analysis, it was observed that long noncoding RNA Gm9866 expression significantly increased after treatment with interleukin-4 but significantly decreased after treatment with lipopolysaccharide. Fluorescence in situ hybridization revealed that long noncoding RNA Gm9866 was expressed mainly in the nucleus. Real-time polymerase chain reaction analysis showed that overexpression of long noncoding RNA Gm9866 in RAW264.7 cells further promoted the expression of M2 markers MRC1 (macrophage mannose receptor 1) and MRC2 (macrophage mannose receptor 2). Western blotting analysis demonstrated inhibition of nuclear factor-κB (NF-κB) expression. EdU (5-ethynyl-2'-deoxyuridine) and TUNEL (TdT-mediated dUTP nick-end labeling) staining assays revealed that overexpression of long noncoding RNA Gm9866 promoted cell proliferation and inhibited apoptosis. These findings thus indicated that long noncoding RNA Gm9866 promoted macrophage polarization and inhibited the nuclear factor-κB signaling pathway. Thus, long noncoding RNA Gm9866 may serve as a potential diagnostic and therapeutic target for polarization-related diseases such as infectious diseases, inflammatory diseases, liver fibrosis, and tumors.
Collapse
|
24
|
Yu W, Wang S, Wang Y, Chen H, Nie H, Liu L, Zou X, Gong Q, Zheng B. MicroRNA: role in macrophage polarization and the pathogenesis of the liver fibrosis. Front Immunol 2023; 14:1147710. [PMID: 37138859 PMCID: PMC10149999 DOI: 10.3389/fimmu.2023.1147710] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Macrophages, as central components of innate immunity, feature significant heterogeneity. Numerus studies have revealed the pivotal roles of macrophages in the pathogenesis of liver fibrosis induced by various factors. Hepatic macrophages function to trigger inflammation in response to injury. They induce liver fibrosis by activating hepatic stellate cells (HSCs), and then inflammation and fibrosis are alleviated by the degradation of the extracellular matrix and release of anti-inflammatory cytokines. MicroRNAs (miRNAs), a class of small non-coding endogenous RNA molecules that regulate gene expression through translation repression or mRNA degradation, have distinct roles in modulating macrophage activation, polarization, tissue infiltration, and inflammation regression. Considering the complex etiology and pathogenesis of liver diseases, the role and mechanism of miRNAs and macrophages in liver fibrosis need to be further clarified. We first summarized the origin, phenotypes and functions of hepatic macrophages, then clarified the role of miRNAs in the polarization of macrophages. Finally, we comprehensively discussed the role of miRNAs and macrophages in the pathogenesis of liver fibrotic disease. Understanding the mechanism of hepatic macrophage heterogeneity in various types of liver fibrosis and the role of miRNAs on macrophage polarization provides a useful reference for further research on miRNA-mediated macrophage polarization in liver fibrosis, and also contributes to the development of new therapies targeting miRNA and macrophage subsets for liver fibrosis.
Collapse
Affiliation(s)
- Wen Yu
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Shu Wang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Yangyang Wang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Hui Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Hao Nie
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Lian Liu
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Xiaoting Zou
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
- *Correspondence: Xiaoting Zou, ; Quan Gong, ; Bing Zheng,
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
- *Correspondence: Xiaoting Zou, ; Quan Gong, ; Bing Zheng,
| | - Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
- *Correspondence: Xiaoting Zou, ; Quan Gong, ; Bing Zheng,
| |
Collapse
|
25
|
Scheck S, Paterson ESJ, Henry CE. A promising future for endometriosis diagnosis and therapy: extracellular vesicles - a systematic review. Reprod Biol Endocrinol 2022; 20:174. [PMID: 36544197 PMCID: PMC9768904 DOI: 10.1186/s12958-022-01040-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/19/2022] [Indexed: 12/24/2022] Open
Abstract
Endometriosis is a chronic, inflammatory gynaecological disease that can have severe negative impacts on quality of life and fertility, placing burden on patients and the healthcare system. Due to the heterogeneous nature of endometriosis, and the lack of correlation between symptom and surgical disease severity, diagnosis and treatment remain a significant clinical challenge. Extracellular vesicles (EVs) are biologically active particles containing molecular cargo involved in intercellular communication, that can be exploited for diagnostic and therapeutic purposes.We systematically reviewed studies exploring EVs and their role in endometriosis, specifically addressing diagnostic and therapeutic potential and current understanding of pathophysiology. Five databases (Pubmed, Embase, Medline, Web of Science, Google Scholar) were searched for keywords 'endometriosis' and either 'extracellular vesicles' or 'exosomes'.There were 28 studies included in the review. Endometrium derived EVs contribute to the development of endometriosis. EVs derived from endometriosis lesions contribute to angiogenesis, immunomodulation and fibrosis. Such EVs can be detected in blood, with early data demonstrating utility in diagnosis and recurrence detection. EV isolation techniques varied between studies and only eight of twenty-eight studies fully characterised EVs according to current recommended standards. Reporting/type of endometriosis was limited across studies. Varied patient population, type of sample and isolation techniques created bias and difficulty in comparing studies.EVs hold promise for improving care for symptomatic patients who have never had surgery, as well as those with recurrent symptoms after previous surgery. We encourage further EV research in endometriosis with the inclusion of rigorous reporting of both the patient population and technical methodology used, with the ultimate goal of achieving clinical utility for diagnosis, prognosis and eventually treatment.
Collapse
Affiliation(s)
- Simon Scheck
- Department of Obstetrics, Gynaecology and Women's Health, University of Otago, Wellington, New Zealand
- Department of Obstetrics and Gynaecology, Wellington Hospital, Capital and Coast District Health Board, Wellington, New Zealand
| | - Emily S J Paterson
- Department of Obstetrics, Gynaecology and Women's Health, University of Otago, Wellington, New Zealand
| | - Claire E Henry
- Department of Obstetrics, Gynaecology and Women's Health, University of Otago, Wellington, New Zealand.
| |
Collapse
|
26
|
Chen Z, Wang X. The Role and Application of Exosomes and Their Cargos in Reproductive Diseases: A Systematic Review. Vet Sci 2022; 9:vetsci9120706. [PMID: 36548867 PMCID: PMC9785507 DOI: 10.3390/vetsci9120706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the incidence of the reproductive diseases is increasing year-by-year, leading to abortion or fetal arrest, which seriously affects the reproductive health of human beings and the reproductive efficiency of animals. Exosomes are phospholipid bilayer vesicles that are widely distributed in living organisms and released by the cells of various organs and tissues. Exosomes contain proteins, RNA, lipids, and other components and are important carriers of information transfer between cells, which play a variety of physiological and pathological regulatory functions. More and more studies have found that exosomes and their connotations play an important role in the diagnosis, prognosis and treatment of diseases. A systematic review was conducted in this manuscript and then highlights our knowledge about the diagnostic and therapeutic applications of exosomes to reproductive diseases, such as polycystic ovary syndrome (PCOS), endometriosis, premature ovarian failure (POF), preeclampsia, polycystic, endometrial cancer, cervical cancer, ovarian cancer, and prostate gland cancer.
Collapse
Affiliation(s)
- Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
- Correspondence:
| |
Collapse
|
27
|
Zhang D, Yu Y, Duan T, Zhou Q. The role of macrophages in reproductive-related diseases. Heliyon 2022; 8:e11686. [DOI: 10.1016/j.heliyon.2022.e11686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/03/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
|
28
|
Soroczynska K, Zareba L, Dlugolecka M, Czystowska-Kuzmicz M. Immunosuppressive Extracellular Vesicles as a Linking Factor in the Development of Tumor and Endometriotic Lesions in the Gynecologic Tract. Cells 2022; 11:cells11091483. [PMID: 35563789 PMCID: PMC9105295 DOI: 10.3390/cells11091483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Both gynecological tumors and endometriosis require for their development a favorable environment, termed in the case of tumors a "pre-metastatic niche" and in case of endometriosis a "pro-endometriotic niche". This is characterized by chronic inflammation and immunosuppression that support the further progression of initial lesions. This microenvironment is established and shaped in the course of a vivid cross-talk between the tumor or endometrial cells with other stromal, endothelial and immune cells. There is emerging evidence that extracellular vesicles (EVs) play a key role in this cellular communication, mediating both in tumors and endometriosis similar immunosuppressive and pro-inflammatory mechanisms. In this review, we discuss the latest findings about EVs as immunosuppressive factors, highlighting the parallels between gynecological tumors and endometriosis. Furthermore, we outline their role as potential diagnostic or prognostic biomarkers as well as their future in therapeutic applications.
Collapse
Affiliation(s)
- Karolina Soroczynska
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland; (K.S.); (L.Z.); (M.D.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki i Wigury 61 St., 02-091 Warsaw, Poland
| | - Lukasz Zareba
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland; (K.S.); (L.Z.); (M.D.)
- Chair and Department of Biochemistry, Doctoral School, Medical University of Warsaw, Zwirki i Wigury 61 St., 02-091 Warsaw, Poland
| | - Magdalena Dlugolecka
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland; (K.S.); (L.Z.); (M.D.)
- Chair and Department of Biochemistry, Doctoral School, Medical University of Warsaw, Zwirki i Wigury 61 St., 02-091 Warsaw, Poland
| | - Malgorzata Czystowska-Kuzmicz
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland; (K.S.); (L.Z.); (M.D.)
- Correspondence:
| |
Collapse
|