1
|
Allam EAH, Sabra MS. Plant-based therapies for urolithiasis: a systematic review of clinical and preclinical studies. Int Urol Nephrol 2024; 56:3687-3718. [PMID: 39042342 DOI: 10.1007/s11255-024-04148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE Urolithiasis, the formation of kidney stones, is a common and severe condition. Despite advances in understanding its pathophysiology, affordable treatment options are needed worldwide. Hence, the interest is in herbal medicines as alternative or supplementary therapy for urinary stone disease. This review explores the use of plant extracts and phytochemicals in preventing and treating urolithiasis. METHODS Following PRISMA standards, we systematically reviewed the literature on PubMed/Medline, focusing on herbal items evaluated in in vivo models, in vitro studies, and clinical trials related to nephrolithiasis/urolithiasis. We searched English language publications from January 2021 to December 2023. Studies assessing plant extracts and phytochemicals' therapeutic potential in urolithiasis were included. Data extracted included study design, stone type, plant type, part of plant used, solvent type, main findings, and study references. RESULTS A total of 64 studies were included. Most studies used ethylene glycol to induce hyperoxaluria and nephrolithiasis in rat models. Various extraction methods were used to extract bioactive compounds from different plant parts. Several plants and phytochemicals, including Alhagi maurorum, Aerva lanata, Dolichos biflorus, Cucumis melo, and quercetin, demonstrated potential effectiveness in reducing stone formation, size, and number. CONCLUSIONS Natural substances offer an alternative or supplementary approach to current treatments, potentially reducing pain and improving the quality of life for urolithiasis patients. However, further research is needed to clarify their mechanisms of action and optimize their therapeutic use. The potential of plant-based therapies in treating urolithiasis is promising, and ongoing research is expected to lead to treatment advancements benefiting patients globally.
Collapse
Affiliation(s)
- Essmat A H Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Mahmoud S Sabra
- Pharmacology Department, Faculty of Veterinary Medicine, Assiut University, Egypt, 71526, Egypt
| |
Collapse
|
2
|
Sun Y, Sun H, Zhang Z, Tan F, Qu Y, Lei X, Xu Q, Wang J, Shu L, Xiao H, Yang Z, Liu H. New insight into oxidative stress and inflammatory responses to kidney stones: Potential therapeutic strategies with natural active ingredients. Biomed Pharmacother 2024; 179:117333. [PMID: 39243436 DOI: 10.1016/j.biopha.2024.117333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
Kidney stones, a prevalent urological disorder, are closely associated with oxidative stress (OS) and the inflammatory response. Recent research in the field of kidney stone treatment has indicated the potential of natural active ingredients to modulate OS targets and the inflammatory response in kidney stones. Oxidative stress can occur through various pathways, increasing the risk of stone formation, while the inflammatory response generated during kidney stone formation further exacerbates OS, forming a detrimental cycle. Both antioxidant systems related to OS and inflammatory mediators associated with inflammation play roles in the pathogenesis of kidney stones. Natural active ingredients, abundant in resources and possessing antioxidative and anti-inflammatory properties, have the ability to decrease the risk of stone formation and improve prognosis by reducing OS and suppressing pro-inflammatory cytokine expression or pathways. Currently, numerous developed natural active ingredients have been clinically applied and demonstrated satisfactory therapeutic efficacy. This review aims to provide novel insights into OS and inflammation targets in kidney stones as well as summarize research progress on potential therapeutic strategies involving natural active ingredients. Future studies should delve deeper into exploring efficacy and mechanisms of action of diverse natural active ingredients, proposing innovative treatment strategies for kidney stones, and continuously uncovering their potential applications.
Collapse
Affiliation(s)
- Yue Sun
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Hongmei Sun
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Zhengze Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Futing Tan
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Yunxia Qu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Xiaojing Lei
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Qingzhu Xu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Jiangtao Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Lindan Shu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Huai Xiao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; National-Local Joint. Engineering Research Center of Entomoceutics, Dali, Yunnan, China
| | - Zhibin Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; National-Local Joint. Engineering Research Center of Entomoceutics, Dali, Yunnan, China.
| | - Heng Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; National-Local Joint. Engineering Research Center of Entomoceutics, Dali, Yunnan, China.
| |
Collapse
|
3
|
Ma T, Chen P, Dong H, Wang X. Identification of key anti-neuroinflammatory components in Gastrodiae Rhizoma based on spectrum-effect relationships and its mechanism exploration. J Pharm Biomed Anal 2024; 248:116266. [PMID: 38879950 DOI: 10.1016/j.jpba.2024.116266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Gastrodiae Rhizoma was proven to have anti-inflammatory activity based on its main component of 4-hydroxybenzyl alcohol (4-HBA) and gastrodin (GAS). However, the anti-inflammatory activity of other phenols has been less reported. In this study, the n-BuOH extract was selected as the active anti-inflammatory part of Gastrodiae Rhizoma based on the LPS-induced inflammatory BV-2 cells. The spectral-effect relationship analysis of the n-BuOH extract showed the main effective components were GAS, 4-HBA, parishin A (PA), parishin B (PB), and parishin C (PC). Among them, PB could reduce LPS-induced expression of nitric oxide (NO), intracellular ROS, TNF-α, IL-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Molecular docking predicted that PB had a good binding capacity to AMPKα and SIRT1 proteins of -12.1 kJ/mol and -7.6 kJ/mol, respectively. The Western Blot results further demonstrated that PB could inhibit NF-κB pathway by activating AMPK/SIRT1 pathway, thus exerting anti-LPS-induced neuroinflammatory effects. This study provides a referable idea for solving the problem of unclear action of TCM with complex compositions and is of great significance for the development of innovative medicines of traditional Chinese medicine.
Collapse
Affiliation(s)
- Tianyu Ma
- Key Laboratory for Applied Technology of Sophisticated Analytic Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Panpan Chen
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Hongjing Dong
- Key Laboratory for Applied Technology of Sophisticated Analytic Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytic Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
4
|
Li HJ, Ye XC, Jia HM, Liu Y, Yu M, Zou ZM. Identification of antidepressant constituents from Xiangfu-chuanxiong herbal medicine pair via spectrum-effect relationship analyses, molecular docking and corticosterone-induced PC12 cells. Fitoterapia 2024; 177:106087. [PMID: 38897250 DOI: 10.1016/j.fitote.2024.106087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/22/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Herbal medicine pair, composed of two single herbs, is a relatively fixed minimum prescription unit in the traditional Chinese medicine's formula and has special significance in clinic. The combination of Xiangfu (the rhizoma of Cyperus rotundus L, XF) and Chuanxiong (the rhizoma of Ligusticum chuanxiong Hort, CX) has been recoded as an herbal medicine pair XF-CX in the Yuan Dynasty (1347 CE) of China and widely used in traditional Chinese medicine formula, including Chaihu Shugan San, which has been clinically used for treatment of depression. However, the optimal ratio of the XF-CX herbal medicine pair and its antidepressant constituents are still unclear. Herein, the antidepressive-like effects of XF-CX herbal medicine pairs with different ratios of XF and CX (2:1, 1:1, 1:2) were evaluated using behavioral despair animal models in mice, and then its potential antidepressant constituents were recognized by spectrum-effect relationship analyses. Finally, the potential antidepressant constituents of the XF-CX herbal medicine pair were validated by molecular docking with glucocorticoid receptor and corticosterone (CORT)-induced PC12 cell injury model. The results indicated that different ratios of XF-CX pairs had antidepressive-like effects, and the XF-CX (2:1) exhibited a more significant effect. Thirty-two potential antidepressant constituents in the XF-CX herbal medicine pair were screened out from the spectrum-effect relationship combined molecular docking analyses. Among them, senkyunolide A, cyperotundone, Z-ligustilide, and levistilide A were validated to have protective effects against CORT-induced injury in PC12 cells. Our findings not only obtained the optimal ratio of XF-CX in the herbal medicine pair for the treatment of depression but also its potential antidepressant constituents, which will benefit in elucidating the mechanism of action and promoting the application of the herbal medicine pair in the clinic.
Collapse
Affiliation(s)
- Hui-Jun Li
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Xiao-Chuan Ye
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Hong-Mei Jia
- Institute of Medicinal Plant Development, State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Yang Liu
- Institute of Medicinal Plant Development, State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Meng Yu
- Institute of Medicinal Plant Development, State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Zhong-Mei Zou
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Institute of Medicinal Plant Development, State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
5
|
Huang L, Liu Q, Zhang W, Lin B, Gao Y, Deng H, Zhang S. Comprehensive Quality Evaluation of Danggui-Jianzhong Decoction by Fingerprint Analysis, Multi-Component Quantitation and UPLC-Q-TOF-MS. J Chromatogr Sci 2024; 62:635-648. [PMID: 38819084 DOI: 10.1093/chromsci/bmae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/16/2024] [Indexed: 06/01/2024]
Abstract
Danggui-Jianzhong decoction (DGJZ) is a famous classical traditional Chinese medicine formula, which ingredients are complex and the quality is difficult to control. Our study aimed to identify the overall chemical profile of DGJZ qualitatively by ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and UPLC. A total of 77 components, including terpenoids, flavonoids, phenolic acids, gingerols and other components, were firstly detected and characterized by UPLC-Q-TOF-MS and 18 peaks marked after analyzing the UPLC fingerprint. Finally, paeoniflorin, liquiritin, ferulic acid, cinnamic acid, glycyrrhizic acid and 6-gingerol were quantified, which was validated in terms of linearity, precision, accuracy, repeatability and recovery. Taken together, the chemical constitutes of DGJZ were systematically identified and a reliable quantitative method coupled with fingerprint analysis was successfully employed for evaluating the holistic quality, which will provide a robust foundation for the quality control of DGJZ.
Collapse
Affiliation(s)
- Lanyi Huang
- Guangdong Pharmaceutical University, 280 Outer Ring East Road, University City, Guangzhou, Guangdong Province, 510006, China
| | - Qing Liu
- Sinopharm Group Medi-World Pharmaceutical Co. Ltd, No. 2, Keyuan Hengsan Road, High tech Park, Ronggui Street, Shunde District, Foshan, Guangdong Province, 528303, China
| | - Wenfang Zhang
- Sinopharm Group Medi-World Pharmaceutical Co. Ltd, No. 2, Keyuan Hengsan Road, High tech Park, Ronggui Street, Shunde District, Foshan, Guangdong Province, 528303, China
| | - Bishan Lin
- Sinopharm Group Medi-World Pharmaceutical Co. Ltd, No. 2, Keyuan Hengsan Road, High tech Park, Ronggui Street, Shunde District, Foshan, Guangdong Province, 528303, China
| | - Yongjian Gao
- Sinopharm Group Medi-World Pharmaceutical Co. Ltd, No. 2, Keyuan Hengsan Road, High tech Park, Ronggui Street, Shunde District, Foshan, Guangdong Province, 528303, China
| | - Hong Deng
- Guangdong Pharmaceutical University, 280 Outer Ring East Road, University City, Guangzhou, Guangdong Province, 510006, China
| | - Shu Zhang
- Guangdong Pharmaceutical University, 280 Outer Ring East Road, University City, Guangzhou, Guangdong Province, 510006, China
| |
Collapse
|
6
|
Wubuli A, Abdulla R, Zhao J, Wu T, Aisa HA. Exploring anti-inflammatory and antioxidant-related quality markers of Artemisia absinthium L. based on spectrum-effect relationship. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1152-1173. [PMID: 38591190 DOI: 10.1002/pca.3350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Artemisia absinthium L. is a well-known medicinal, aromatic, and edible plant with important medicinal and economic properties and a long history of use in treating liver inflammation and other diseases; however, there has been insufficient progress in quality control. OBJECTIVE This study aimed to investigate the quality markers for the anti-inflammatory and antioxidant activities of A. absinthium based on spectrum-effect relationship analysis. MATERIALS AND METHODS Eighteen batches of A. absinthium from different origins were used. Chemical fingerprints were obtained by ultra-performance liquid chromatography (UPLC). The chemical compositions were identified by quadrupole-Orbitrap high-resolution mass spectrometry. Anti-inflammatory activity was assessed by inhibition of cyclooxygenase-2 and 15-lipoxygenase in vitro and inhibition of nitric oxide release in lipopolysaccharide-induced BV-2 cells. Antioxidant activity was assessed by DPPH and ABTS radical scavenging assays. The relationship between bioactivity and chemical fingerprints was then analyzed using chemometrics including gray relational analysis, bivariate correlation analysis, and orthogonal partial least squares analysis. RESULTS Different batches of A. absinthium extracts possessed significant anti-inflammatory and antioxidant activities to varying degrees. Eighty compounds were identified from A. absinthium, and 12 main common peaks were obtained from the UPLC fingerprints. P3 (chlorogenic acid), P5 (isochlorogenic acid A), and P6 (isochlorogenic acid C) were screened as the most promising active compounds by correlation analysis and further validated for their remarkable anti-inflammatory effects. CONCLUSION This is the first study to screen the quality markers of A. absinthium by establishing the spectrum-effect relationship, which can provide a reference for the development of quality standards and further research on A. absinthium.
Collapse
Affiliation(s)
- Ayixiamuguli Wubuli
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rahima Abdulla
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Jiangyu Zhao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Tao Wu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Macarini AF, Mariano LNB, Zanovello M, da Silva RDCV, Corrêa R, de Souza P. Protective Role of Rosmarinic Acid in Experimental Urolithiasis: Understanding Its Impact on Renal Parameters. Pharmaceuticals (Basel) 2024; 17:702. [PMID: 38931369 PMCID: PMC11206490 DOI: 10.3390/ph17060702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to assess the ability of rosmarinic acid (RA) to prevent kidney stone formation in an ethylene glycol and ammonium chloride (EG/AC) model. There was an increase in diuresis in the normotensive (NTRs) and hypertensive rats (SHRs) treated with hydrochlorothiazide (HCTZ) and exposed to EG/AC, while RA restored urine volume in NTRs. The EG/AC groups exhibited lower urine pH and electrolyte imbalance; these parameters were not affected by any of the treatments. Both HCTZ+EG/AC and RA+EG/AC reduced calcium oxalate crystal formation in NTR and SHR urine. Kidney tissue analysis revealed alterations in oxidative stress and inflammation parameters in all EG/AC-receiving groups, with RA enhancing antioxidant defenses in SHRs. Additionally, crystals were found in the kidney histology of all EG/AC-exposed groups, with reduced Bowman's capsule areas in NTRs and SHRs. The NTR VEH+EG/AC group showed intense renal damage, while the others maintained their structures, where treatments with HCTZ and RA were fundamental for kidney protection in the NTRs. Docking analysis showed that RA exhibited good binding affinity with matrix metalloproteinase-9, phosphoethanolamine cytidylyltransferase, and human glycolate oxidase enzymes. The data disclosed herein underscore the importance of further research to understand the underlying mechanisms better and validate the potential of RA for clinical use.
Collapse
Affiliation(s)
| | | | | | | | | | - Priscila de Souza
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai 458, Itajaí 88302-901, Brazil
| |
Collapse
|
8
|
Du R, Ye L, Chen X, Meng Y, Zhou L, Chen Q, Zheng G, Hu J, Shi Z. Screening of Key Components for Melanogenesis Inhibition of Polygonum cuspidatum Extract Based on the Spectrum-Effect Relationship and Molecular Docking. Molecules 2024; 29:857. [PMID: 38398609 PMCID: PMC10891599 DOI: 10.3390/molecules29040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 02/25/2024] Open
Abstract
Polygonum cuspidatum (PC) extract has been listed in the "Catalog of Used Cosmetic Ingredients (2021 Edition)", which can inhibit melanogenesis, thus exerting a whitening effect, and has been widely used in cosmetics. However, there are currently no quality standards for PC extract used in cosmetics, and the bioactive components associated with anti-melanogenesis remain unclear. In view of this, the present study was the first to investigate the spectrum-effect relationship between fingerprints of PC extract and melanogenesis inhibition. Ten batches of PC extract fingerprints were established by HPLC. Pearson's correlation analysis, gray correlation analysis (GRA) and orthogonal partial least squares regression analysis (OPLSR) were used to screen out resveratrol, emodin and physcion as the main whitening active ingredients using the inhibition of tyrosinase in B16F10 cells as the pharmacological index. Then, the melanogenesis inhibitory effects of the above three components were verified by tyrosinase inhibition and a melanin content assay in B16F10 cells. The interaction between small molecules and proteins was investigated by the molecular docking method, and it was confirmed by quantitative real-time PCR (qRT-PCR) that resveratrol, emodin and physcion significantly down-regulated the transcript levels of melanogenesis-related factors. In conclusion, this study established a general model combining HPLC fingerprinting and melanogenesis inhibition and also analyzed the spectrum-effect relationship of PC extract, which provided theoretical support for the quality control of PC extract in whitening cosmetics.
Collapse
Affiliation(s)
- Ruojun Du
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (R.D.); (X.C.); (Y.M.); (L.Z.); (Q.C.)
| | - Lichun Ye
- Clinical College of Chinese Medicine, Hubei University of Traditional Chinese Medicine, Wuhan 430065, China;
| | - Xinyan Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (R.D.); (X.C.); (Y.M.); (L.Z.); (Q.C.)
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (R.D.); (X.C.); (Y.M.); (L.Z.); (Q.C.)
| | - Lei Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (R.D.); (X.C.); (Y.M.); (L.Z.); (Q.C.)
| | - Qiao Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (R.D.); (X.C.); (Y.M.); (L.Z.); (Q.C.)
| | - Guohua Zheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (R.D.); (X.C.); (Y.M.); (L.Z.); (Q.C.)
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (R.D.); (X.C.); (Y.M.); (L.Z.); (Q.C.)
| | - Zhaohua Shi
- Key Laboratory of Resources and Compound of Traditional Chinese Medicine, Ministry of Education, Hubei University of Traditional Chinese Medicine, Wuhan 430065, China
- Hubei Shizhen Laboratory, Wuhan 430065, China
| |
Collapse
|
9
|
Tang L, Zhao HQ, Yang H, Hu C, Ma SJ, Xiao WZ, Qing YH, Yang L, Zhou RR, Liu J, Zhang SH. Spectrum-effect relationship combined with bioactivity evaluation to discover the main anxiolytic active components of Baihe Dihuang decoction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117090. [PMID: 37640258 DOI: 10.1016/j.jep.2023.117090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/06/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anxiety disorders leads to a decline in quality of life and increased risk of morbidity and mortality. The Baihe Dihuang decoction (BDD) is a classic Chinese medical formula that has been widely used to treat anxiety disorders for thousands of years in China. However, the pharmacodynamic material that is responsible for the antianxiety of BDD remains unclear. AIM OF THE STUDY To screen the main ingredients of anti-anxiety in BDD based on the establishment of spectrum-effect relationship and verified experiment. METHODS The UPLC-Q-TOF/MS technique was utilized to establish fingerprints of various fractions of BDD and identify the main compounds. The anti-anxiety effects of BDD were comprehensively evaluated through multiple assessments, including the open field test, elevated plus maze test, and neurotransmitters tests. Then, the spectrum-effect relationship was established through Pearson correlation analysis, gray correlation analysis, orthogonal partial least squares regression analysis. The spectrum-effect relationship results were confirmed through various measures on an anxiety condition cell model, induced by a corticosterone and lipopolysaccharide intervention. These measures included assessing neuronal cell viability, morphology, apoptosis, synaptic damage, and the expression of neurotransmitters and inflammatory factors. RESULTS In the UPLC-Q-TOF-MS fingerprint, 46 common peaks were identified. The pharmacological results indicated that different fractions of BDD have strong effects on improving anxiety-like behavior and regulating neurotransmitters. Among them, butanol fraction has the highest comprehensive evaluation score of anti-anxiety efficacy, which is main active fraction of BDD for anti-anxiety. The analysis of the spectrum-effect relationship revealed that the 46 peaks exhibited varying degrees of correlation with the anti-anxiety efficacy indicators of BDD. Among them, 14 components have a high correlation with the anti-anxiety efficacy indicators, which may be the potential anti-anxiety efficacy components of BDD. The in vitro activity verification of active components verified our prediction, regaloside A, B, C, D, H, acteoside, and isoacteoside improved neuronal cell viability, cell morphology, apoptosis, and synaptic damage. Additionally, regaloside A, B, C, D, H and acteoside regulated the neurotransmitter levels, while regaloside A, B, C, D, acteoside and isoacteoside inhibited the levels of inflammatory cytokines. CONCLUSION The butanol fraction was found to be the main active fraction of BDD, and 14 compounds were the major anxiolytic active components. The results of verifying the major active components were consistent with the predicted results of the spectrum-effect analysis. The developed spectrum-effect analysis in this study demonstrates high accuracy and reliability for screening active components in TCMs.
Collapse
Affiliation(s)
- Lin Tang
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Hong-Qing Zhao
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Hui Yang
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Chao Hu
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Si-Jing Ma
- Hunan Academy of Chinese Medicine, Changsha, Hunan Province, China
| | - Wang-Zhong Xiao
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Yu-Hui Qing
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Lei Yang
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Rong-Rong Zhou
- Hunan Academy of Chinese Medicine, Changsha, Hunan Province, China.
| | - Jian Liu
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Shui-Han Zhang
- Hunan Academy of Chinese Medicine, Changsha, Hunan Province, China.
| |
Collapse
|
10
|
Li S, Huang X, Li Y, Ding R, Wu X, Li L, Li C, Gu R. Spectrum-Effect Relationship in Chinese Herbal Medicine: Current Status and Future Perspectives. Crit Rev Anal Chem 2023:1-22. [PMID: 38127670 DOI: 10.1080/10408347.2023.2290056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The quality of Chinese herbal medicine (CHM) directly impacts clinical efficacy and safety. Fingerprint technology is an internationally recognized method for evaluating the quality of CHM. However, the existing quality evaluation models based on fingerprint technology have blocked the ability to assess the internal quality of CHM and cannot comprehensively reflect the correlation between pharmacodynamic information and active constituents. Through mathematical methods, a connection between the "Spectrum" (fingerprint) and the "Effect" (pharmacodynamic data) was established to conduct a spectrum-effect relationship (SER) of CHM to unravel the active component information associated with the pharmacodynamic activity. Consequently, SER can efficiently address the limitations of the segmentation of chemical components and pharmacodynamic effect in CHM and further improve the quality evaluation of CHM. This review focuses on the recent research progress of SER in the field of CHM, including the establishment of fingerprint, the selection of data analysis methods, and their recent applications in the field of CHM. Various advanced fingerprint techniques are introduced, followed by the data analysis methods used in recent years are summarized. Finally, the applications of SER based on different research subjects are described in detail. In addition, the advantages of combining SER with other data are discussed through practical applications, and the research on SER is summarized and prospected. This review proves the validity and development potential of the SER and provides a reference for the development and application of quality evaluation methods for CHM.
Collapse
Affiliation(s)
- Si Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuemei Wu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Canlin Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Liu YM, Li XQ, Zhang XR, Chen YY, Liu YP, Zhang HQ, Chen Y. Uncovering the key pharmacodynamic material basis and possible molecular mechanism of extract of Epimedium against liver cancer through a comprehensive investigation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116765. [PMID: 37328080 DOI: 10.1016/j.jep.2023.116765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver cancer is a worldwide malignant tumor, and currently lacks effective treatments. Clinical studies have shown that epimedium (YYH) has therapeutic effects on liver cancer, and some of its prenylflavonoids have demonstrated anti-liver cancer activity through multiple mechanisms. However, there is still a need for systematic research to uncover the key pharmacodynamic material basis and mechanism of YYH. AIM OF THE STUDY This study aimed to screen the anti-cancer material basis of YYH via integrating spectrum-effect analysis with serum pharmacochemistry, and explore the multi-target mechanisms of YYH against liver cancer by combining network pharmacology with metabolomics. MATERIALS AND METHODS The anti-cancer effect of the extract of YYH (E-YYH) was first evaluated in mice with xenotransplantation H22 tumor cells burden and cultured hepatic cells. Then, the interaction between E-YYH compounds and the cytotoxic effects was revealed through spectrum-effect relationship analysis. And the cytotoxic effects of screened compounds were verified in hepatic cells. Next, UHPLC-Q-TOF-MS/MS was employed to identify the absorbed components of E-YYH in rat plasma to distinguish anti-cancer components. Subsequently, network pharmacology based on anti-cancer materials and metabolomics were used to discover the potential anti-tumor mechanisms of YYH. Key targets and biomarkers were identified and pathway enrichment analysis was performed. RESULTS The anti-cancer effect of E-YYH was verified through in vitro and in vivo experiments. Six anti-cancer compounds in plasma (icariin, baohuoside Ⅰ, epimedin C, 2″-O-rhamnosyl icariside Ⅱ, epimedin B and sagittatoside B) were screened out by spectrum-effect analysis. Forty-five liver-cancer-related targets were connected with these compounds. Among these targets, PTGS2, TNF, NOS3 and PPARG were considered to be the potential key targets preliminarily verified by molecular docking. Meanwhile, PI3K/AKT signaling pathway and arachidonic acid metabolism were found to be associated with E-YYH's efficacy in network pharmacology and metabolomics analysis. CONCLUSIONS Our research revealed the characteristics of multi-component, multi-target and multi-pathway mechanism of E-YYH. This study also provided an experimental basis and scientific evidence for the clinical application and rational development of YYH.
Collapse
Affiliation(s)
- Yi-Min Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Xiao-Qi Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Xiao-Ran Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Yuan-Yuan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Yu-Ping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Huang-Qin Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
12
|
He P, Zhang C, Yang Y, Tang S, Liu X, Yong J, Peng T. Spectrum-Effect Relationships as an Effective Approach for Quality Control of Natural Products: A Review. Molecules 2023; 28:7011. [PMID: 37894489 PMCID: PMC10609026 DOI: 10.3390/molecules28207011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
As natural products with biological activity, the quality of traditional Chinese medicines (TCM) is the key to their clinical application. Fingerprints based on the types and contents of chemical components in TCM are an internationally recognized quality evaluation method but ignore the correlation between chemical components and efficacy. Through chemometric methods, the fingerprints represented by the chemical components of TCM were correlated with its pharmacodynamic activity results to obtain the spectrum-effect relationships of TCM, which can reveal the pharmacodynamic components information related to the pharmacodynamic activity and solve the limitations of segmentation of chemical components and pharmacodynamic research in TCM. In the 20th anniversary of the proposed spectrum-effect relationships, this paper reviews its research progress in the field of TCM, including the establishment of fingerprints, pharmacodynamic evaluation methods, chemometric methods and their practical applications in the field of TCM. Furthermore, the new strategy of spectrum-effect relationships research in recent years was also discussed, and the application prospects of this technology were discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Teng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (P.H.); (C.Z.); (Y.Y.); (S.T.); (X.L.); (J.Y.)
| |
Collapse
|
13
|
Hong SY, Qin BL. The Protective Role of Dietary Polyphenols in Urolithiasis: Insights into Antioxidant Effects and Mechanisms of Action. Nutrients 2023; 15:3753. [PMID: 37686790 PMCID: PMC10490426 DOI: 10.3390/nu15173753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Urolithiasis is a common urological disease with increasing prevalence and high recurrence rates around the world. Numerous studies have indicated reactive oxygen species (ROS) and oxidative stress (OS) were crucial pathogenic factors in stone formation. Dietary polyphenols are a large group of natural antioxidant compounds widely distributed in plant-based foods and beverages. Their diverse health benefits have attracted growing scientific attention in recent decades. Many literatures have reported the effectiveness of dietary polyphenols against stone formation. The antiurolithiatic mechanisms of polyphenols have been explained by their antioxidant potential to scavenge free radicals and ROS, modulate the expression and the activity of endogenous antioxidant and prooxidant enzymes, regulate signaling pathways associated with OS, and maintain cell morphology and function. In this review, we first describe OS and its pathogenic effects in urolithiasis and summarize the classification and sources of dietary polyphenols. Then, we focus on the current evidence defining their antioxidant potential against stone formation and put forward challenges and future perspectives of dietary polyphenols. To conclude, dietary polyphenols offer potential applications in the treatment and prevention of urolithiasis.
Collapse
Affiliation(s)
| | - Bao-Long Qin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|