1
|
Deng F, Zhou B, Zhang S, Cai L. Dexmedetomidine-mediated improvement of perioperative neurocognitive disorders by miR-184-3p-mediated NLRP3. Brain Res 2024; 1842:149051. [PMID: 38830564 DOI: 10.1016/j.brainres.2024.149051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Perioperative neurocognitive disorders (PND) is a neurological complication in the perioperative period, which may lead to severe poor prognosis. Dexmedetomidine (Dex) is a commonly used sedative in the perioperative period. However, the effect of intraoperative anesthetic Dex on PND remains complicated and confusing. METHODS PND model was established using aged male mice, treated with Dex, and subjected to behavioral tests. The effect of Dex on pyroptosis was assessed by western blot, enzyme-linked immunosorbent assay and immunofluorescence. In addition, the miRNA expression profile of PND mice was identified by small RNA sequencing and performed PCR to detect miRNAs. Finally, the effect of miRNA on mice neuron pyroptosis was verified in vitro. RESULTS We found postoperative cognitive was declined in PND mice compared with control group, while preoperative injection of Dex improved short-term working memory and anxious exploration behavior, alleviated the cognitive impairment. Intriguingly, Dex ameliorated hippocampal inflammation and neuron pyroptosis in PND mice as evidenced by the reduced GSDMD, NLRP3, IL-1β and IL-18. The miRNA expression profile of PND mice hippocampus was disordered, including 5 miRNAs up-regulated and 17 miRNAs down-regulated, compared to the sham group. Dysregulated miRNAs were mainly enriched in biological functions related to neuronal development and signaling pathways related to pyroptosis. MiR-184-3p was the key miRNA, overexpression of miR-184-3p blocked the inhibitory effect of Dex on neuron pyroptosis, which was manifested as increased expression of GSDMD and NLRP3, increased inflammatory factors IL-1β and IL-18. CONCLUSIONS This study revealed that miR-184-3p may mediate NLRP3 to prevent the alleviating effect of Dex on PND, which provides a new potential way to improve the therapeutic intervention of PND.
Collapse
Affiliation(s)
- Fumou Deng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Bin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Shenglan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lily Cai
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China..
| |
Collapse
|
2
|
Fang M, Lu L, Lou J, Ou J, Yu Q, Tao X, Zhu J, Lin Z. FGF21 Alleviates Hypoxic-Ischemic White Matter Injury in Neonatal Mice by Mediating Inflammation and Oxidative Stress Through PPAR-γ Signaling Pathway. Mol Neurobiol 2024:10.1007/s12035-024-04549-y. [PMID: 39485628 DOI: 10.1007/s12035-024-04549-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
White matter injury (WMI), the most common type of brain damage in infants born preterm, is characterized by failure in oligodendrocyte progenitor cell maturation and myelination, thereby contributing to long-term neurological impairments. Regrettably, effective therapies for promoting remyelination and improving function are currently lacking for this growing population affected by WMI. Recombinant human fibroblast growth factor (rhFGF) 21 modulated microglial activation and then ameliorated brain damage and improved neurological deficits in several central nervous system diseases. However, the effects of rhFGF21 treatment on WMI in preterm infants remain uncertain. In this study, we established an in vivo mouse model of cerebral hypoxia-ischemia (HI)-induced brain WMI and an in vitro model using oxygen-glucose deprivation (OGD)-treated HMC3 cells to investigate the neuroprotective effects of rhFGF21 against WMI and elucidated the potential mechanism. Our findings demonstrated that administration of rhFGF21 significantly ameliorated the retardation of oligodendrocyte differentiation, promoted myelination, and mitigated axonal deficits, synaptic loss, and GFAP scarring, thereby improving lifelong cognitive and neurobehavioral dysfunction associated with WMI. Moreover, rhFGF21 modulated microglial polarization, promoted a shift from the M1 to the M2 microglial phenotype, and suppressed microglial activation, thus ameliorating inflammatory response and oxidative stress. Additionally, rhFGF21 treatment significantly inhibited the HMGB1/NF-κB pathway linked to inflammation, and activated the NRF2 pathway associated with oxidative stress through the upregulation of PPAR-γ. Importantly, the beneficial effects of rhFGF21 on HI-induced WMI and microglial activation were dramatically inhibited by PPAR-γ antagonist and its siRNA. Our findings provide compelling evidence that rhFGF21 treatment mitigated the inflammatory response and oxidative stress through the modulation of microglial polarization via the PPAR-γ-mediated HMGB1/NF-κB pathway and the NRF2 pathway, respectively, contributes to neuroprotection and the amelioration of WMI in neonatal mice. Thus, rhFGF21 represents a promising therapeutic agent for the treatment of neonatal WMI.
Collapse
Affiliation(s)
- Mingchu Fang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Liying Lu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Lou
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiahao Ou
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianqian Yu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyue Tao
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianghu Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Yang D, Su J, Chen Y, Chen G. The NF-κB pathway: Key players in neurocognitive functions and related disorders. Eur J Pharmacol 2024; 984:177038. [PMID: 39369877 DOI: 10.1016/j.ejphar.2024.177038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Perioperative neurocognitive disorder (PND) is a common complication of surgical anesthesia, yet its precise etiology remains unclear. Neuroinflammation is a key feature of PND, influenced by both patient -related and surgical variables. The nuclear factor-κB (NF-κB) transcription factor family plays a critical role in regulating the body's immunological proinflammatory response, which is pivotal in the development of PND. Surgery and anesthesia trigger the activation of the NF-κB signaling pathway, leading to the initiation of inflammatory cascades, disruption of the blood-brain barrier, and neuronal injury. Immune cells and glial cells are central to these pathological processes in PND. Furthermore, this study explores the interactions between NF-κB and various signaling molecules, including Tlr4, P2X, α7-nAChR, ROS, HIF-1α, PI3K/Ak, MicroRNA, Circular RNA, and histone deacetylases, within the context of PND. Targeting NF-κB as a therapeutic approach for PND shows promise as a potential treatment strategy.
Collapse
Affiliation(s)
- Danfeng Yang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junwei Su
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
4
|
Yang W, Yu J, Wang H, He J, Pei R. Relationship between high-mobility group box-l and cognitive impairments induced by myocardial ischemia-reperfusion in elderly rats. Exp Gerontol 2024; 195:112540. [PMID: 39122228 DOI: 10.1016/j.exger.2024.112540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Myocardial ischemia-reperfusion (MI/R) can lead to structural and functional abnormalities in the hippocampal neurons of the brain. High-mobility group box-l (HMGB1) is implicated in the activation of immune cells and the stimulation of inflammatory responses. However, the specific role of HMGB1 in cognitive impairment induced by MI/R in elderly rats has yet to be elucidated. METHODS Elderly rats underwent surgical procedures to induce MI/R. To evaluate the learning and memory abilities of these rats, a water maze test and a new-object recognition test were administered. Nissl staining was utilised to examine hippocampal neuron damage. Enzyme-linked immunosorbent assay, western blotting, and real-time quantitative polymerase chain reaction (RT-qPCR) analyses were conducted to measure the expression levels of HMGB1, inflammatory cytokines, and molecular pathways. RESULTS The study found that MI/R induced cognitive impairment in elderly rats. There was an observed increase in serum HMGB1 levels, along with elevated concentrations of pro-inflammatory cytokines in the plasma and hippocampus, accompanied by a decrease in anti-inflammatory cytokines. Moreover, substantial damage was evident in the hippocampal neurons of rats exposed to MI/R. In the brains of these rats, there was an increased expression of HMGB1, the receptor for advanced glycation end products (RAGE), toll-like receptor 4 (TLR4), phosphorylated p65, interleukin-1β (IL-1β), IL-6, IL-23, tumour necrosis factor-α (TNF-α), caspase-3, and Bax. In contrast, the expression of B-cell lymphoma 2 was decreased. The RT-qPCR analyses indicated elevated levels of HMGB1, RAGE, TLR4, IL-1β, IL-6, IL-23, TNF-α, caspase-3, and Bax mRNA. CONCLUSION The increased concentration of serum and hippocampal inflammatory factors in the brains of elderly rats subjected to MI/R suggests that cognitive impairment may be induced through the activation of the HMGB1/TLR4/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Wenqu Yang
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China.
| | - Jing Yu
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Hui Wang
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Jiandong He
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Ruomeng Pei
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| |
Collapse
|
5
|
Wang K, Wang Y, Zhang T, Chang B, Fu D, Chen X. The Role of Intravenous Anesthetics for Neuro: Protection or Toxicity? Neurosci Bull 2024:10.1007/s12264-024-01265-4. [PMID: 39153174 DOI: 10.1007/s12264-024-01265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/15/2024] [Indexed: 08/19/2024] Open
Abstract
The primary intravenous anesthetics employed in clinical practice encompass dexmedetomidine (Dex), propofol, ketamine, etomidate, midazolam, and remimazolam. Apart from their established sedative, analgesic, and anxiolytic properties, an increasing body of research has uncovered neuroprotective effects of intravenous anesthetics in various animal and cellular models, as well as in clinical studies. However, there also exists conflicting evidence pointing to the potential neurotoxic effects of these intravenous anesthetics. The role of intravenous anesthetics for neuro on both sides of protection or toxicity has been rarely summarized. Considering the mentioned above, this work aims to offer a comprehensive understanding of the underlying mechanisms involved both in the central nerve system (CNS) and the peripheral nerve system (PNS) and provide valuable insights into the potential safety and risk associated with the clinical use of intravenous anesthetics.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Bingcheng Chang
- The Second Affiliated Hospital of Guizhou, University of Traditional Chinese Medicine, Guiyang, 550003, China
| | - Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China.
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
6
|
Chen Z, Zuo Z, Song X, Zuo Y, Zhang L, Ye Y, Ma Y, Pan L, Zhao X, Jin Y. Mapping Theme Trends and Research Frontiers in Dexmedetomidine Over Past Decade: A Bibliometric Analysis. Drug Des Devel Ther 2024; 18:3043-3061. [PMID: 39050803 PMCID: PMC11268573 DOI: 10.2147/dddt.s459431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
Background Dexmedetomidine, an α2-adrenergic receptor (α2-AR) agonist, is extensively used in clinical and animal studies owing to its sedative, analgesic, and anxiolytic effects. The diverse range of research domains associated with dexmedetomidine poses challenges in defining pivotal research directions. Therefore, this study aimed to conduct a qualitative and quantitative bibliometric study in the field of dexmedetomidine over the past decade to establish current research trends and emerging frontiers. Methods Relevant publications in the field of dexmedetomidine between 2014 and 2023 were extracted from the Web of Science Core Collection database. The bibliometric analysis, incorporating statistical and visual analyses, was conducted using CiteSpace (6.1.R6) and R (4.3.1). Results The present study encompassed a total of 5,482 publications, exhibiting a consistent upward trend over the past decade. The United States and its institutions had the highest centrality. Ji, Fuhai, and Ebert, Thomas J. were identified as the most productive author and the most cited author, respectively. As anticipated, the most cited journal was Anesthesiology. Moreover, cluster analysis of cited references and co-occurrence of keywords revealed that recent studies were primarily focused on sedation, delirium, and opioid-free anesthesia. Finally, a timeline view of keywords clusters and keywords burst demonstrated that primary research frontiers were stress response, neuroinflammation, delirium, opioid-free anesthesia, peripheral nerve block, and complications. Conclusion Current research trends and directions are focused on sedation, delirium, and opioid-free anesthesia, as evidenced by our results. The frontier of future research is anticipated to encompass basic investigations into dexmedetomidine, including stress response and neuroinflammation, as well as clinical studies focusing on delirium, opioid-free anesthesia, peripheral nerve block, and associated complications.
Collapse
Affiliation(s)
- Zheping Chen
- Department of Anesthesiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People’s Republic of China
| | - Zhenxiang Zuo
- Department of Gastroenterology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People’s Republic of China
| | - Xinyu Song
- Department of Anesthesiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People’s Republic of China
| | - Yaqun Zuo
- Department of Anesthesiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People’s Republic of China
| | - Le Zhang
- Department of Anesthesiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People’s Republic of China
| | - Yuyang Ye
- Department of Anesthesiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People’s Republic of China
| | - Yufeng Ma
- Department of Anesthesiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People’s Republic of China
| | - Lili Pan
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Xin Zhao
- Department of Anesthesiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People’s Republic of China
| | - Yanwu Jin
- Department of Anesthesiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People’s Republic of China
| |
Collapse
|
7
|
Zhao GG, Lou C, Gao RL, Lei FX, Zhao J. Combined use of dexmedetomidine and nalbuphine in laparoscopic radical gastrectomy for gastric cancer. World J Gastrointest Oncol 2024; 16:2952-2959. [PMID: 39072152 PMCID: PMC11271771 DOI: 10.4251/wjgo.v16.i7.2952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Radical laparoscopic gastrectomy is an important treatment modality for gastric cancer. Surgery requires general anesthesia, and patients are susceptible to the effects of anesthetic drugs and carbon dioxide insufflation during the procedure, leading to inflammation or severe pain, which can affect patient outcome. AIM To explore the efficacy of combining dexmedetomidine (DEX) with nalbuphine in patients underwent laparoscopic radical gastrectomy for gastric cancer. METHODS Patients scheduled to undergo laparoscopic radical gastrectomy were selected and randomly assigned to A or B group. In A group, patients received an intravenous injection of nalbuphine 0.2 mg/kg + DEX 0.4 μg/kg 10 min before the end of surgery; in B group, patients received only an intravenous injection of nalbuphine. The trends in hemodynamic parameter fluctuations, awakening quality during the recovery period, serum inflammatory markers, agitation scores, cough severity, incidence, and duration of postoperative delirium (POD) were compared. RESULTS The mean arterial pressure and heart rate in the A group were more stable (P < 0.05). The A group had a lower average awakening time, extubation time, and agitation scores during recovery than the B group. Agitation control in the A group was more effective at different time points (P < 0.05). Patients in the A group had lower serum interleukin (IL)-6, tumour necrosis factor alpha, and IL-10 levels at 1 h after surgery than the B group. The incidence of coughing and duration of POD were lower and shorter in the A group than in the B group. Adverse reactions caused by the two anesthesia methods were less frequent in the A group than in the B group (P < 0.05). CONCLUSION The use of DEX and nalbuphine in patients undergoing laparoscopic radical gastrectomy for gastric cancer help reducing the inflammatory response, cough severity, and agitation and helps maintain hemodynamic stability.
Collapse
Affiliation(s)
- Guo-Guang Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an 271000, Shandong Province, China
| | - Chao Lou
- Department of Anesthesiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an 271000, Shandong Province, China
| | - Rong-Lei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an 271000, Shandong Province, China
| | - Fu-Xing Lei
- Department of Anesthesiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an 271000, Shandong Province, China
| | - Jing Zhao
- Department of Dermatology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an 271000, Shandong Province, China
| |
Collapse
|
8
|
Zhu X, Lin J, Yang P, Wu S, Lin H, He W, Lin D, Cao M. Surgery induces neurocognitive disorder via neuroinflammation and glymphatic dysfunction in middle-aged mice with brain lymphatic drainage impairment. Front Neurosci 2024; 18:1426718. [PMID: 38975244 PMCID: PMC11225229 DOI: 10.3389/fnins.2024.1426718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Background Brain lymphatic drainage impairment is a prevalent characteristic in both aging and neurodegeneration. Surgery is more likely to induce excessive neuroinflammation and postoperative neurocognitive disorder (PND) among patients with aging and neurodegeneration. We hypothesized that surgical trauma may aggravate PND through preexisting cerebral lymphatic drainage impairment. However, there remains limited understanding about the role of surgery in changes of neurocognitive function in the populations with preoperative brain lymphatic drainage impairment. This study aims to expand our insight into surgery-induced glymphatic dysfunction, neuroinflammation and PND in middle-aged mice with preoperative brain lymphatic drainage impairment. Materials and methods Deep cervical lymph nodes ligation (LdcLNs) was performed on middle-aged mice to establish preoperative brain lymphatic drainage impairment. A month later, laparotomy was performed on these mice with or without LdcLNs followed by analysis of brain neuroinflammation, glymphatic function, neuronal damage, and behavioral test. Results LdcLNs disrupted meningeal lymphatic drainage. In middle-aged mice with LdcLNs, surgery exacerbated more serious glymphatic dysfunction accompanied by aggravation of A1 astrocytes activation and AQP4 depolarization. Furthermore, surgery caused neuronal damage via reducing expression of neuronal nuclei (NeuN), post-synaptic density protein 95 (PSD95) and synaptophysin (SYP), as well as impairment in exploratory behavior and spatial working memory in middle-aged mice with LdcLNs. Additionally, surgery induced neuroinflammation with elevated microglia activation and increased the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, as well as activated more expression of HMGB1/TLR-4/NF-κB pathway in middle-aged mice with LdcLNs. Conclusion Surgery exacerbates neuroinflammation and glymphatic dysfunction, ultimately resulting in neuronal damage and neurocognitive disorder in middle-aged mice with preoperative brain lymphatic drainage impairment. These results suggest that brain lymphatic drainage impairment may be a deteriorating factor in the progression of PND, and restoring its function may serve as a potential strategy against PND.
Collapse
Affiliation(s)
- Xiaoqiu Zhu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingrun Lin
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pengfeng Yang
- Department of Ultrasound Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shaotao Wu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huijun Lin
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen He
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Daowei Lin
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minghui Cao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Yang H, Zhao Y, Chen Y, Yang T, Dou X, Li J, Yang G, Feng G, Fang H, Fan H, Zhang S. Dexmedetomidine Alleviates Acute Stress-Induced Acute Kidney Injury by Attenuating Inflammation and Oxidative Stress via Inhibiting the P2X 7R/NF-κB/NLRP3 Pathway in Rats. Inflammation 2024:10.1007/s10753-024-02065-8. [PMID: 38896231 DOI: 10.1007/s10753-024-02065-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
This study aimed to investigate the potential protective effects of Dexmedetomidine (DEX) against acute kidney injury (AKI) induced by acute stress (AS). Wistar rats were divided into five groups: Control, DEX, AS, AS + DEX, and AS + A438079. The results showed that AS led to AKI by increasing inflammatory biomarkers and oxidative stress-related indicators. The acute stress model in rats was successfully established. Renal function, histopathology, oxidative stress, and inflammation were assessed. Localization of P2X7 receptor (P2X7R) was determined by immunofluorescence. Additionally, the key inflammatory proteins of the P2X7R/NF-κB/NLRP3 signaling pathway were measured by Western blotting. DEX significantly improved kidney function, alleviated kidney injury, and reduced oxidative stress and inflammation. DEX inhibited the activation of the P2X7R, decreased the expression of NF-κB, NLRP3 inflammasome, and Caspase-1, and inhibited the expression of interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα). Furthermore, DEX also alleviated AS-induced AKI by inhibiting the excessive production of reactive oxygen species (ROS) and reducing oxidative stress. In conclusion, DEX attenuates AS-induced AKI by mitigating inflammation and oxidative stress through the inhibition of the P2X7R/NF-κB/NLRP3 pathway in rats.
Collapse
Affiliation(s)
- Haotian Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Academy of Agricultural Science Branch of Animal Husbandry and Veterinary Branch, Qiqihar, China
| | - Yuan Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yongping Chen
- College of Veterinary Medicine, Agricultural University, Qingdao, China
| | - Tianyuan Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinyi Dou
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Junfeng Li
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Guiyan Yang
- Department of Pathology and Laboratory Medicine, Davis Health, University of California, Sacramento, CA, USA
| | - Guofeng Feng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hao Fang
- College of Optoelectronic Engineering, Chongqing University, Chongqing, China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Shuai Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
10
|
Pan B, Qian Y, Han B. Association of dexmedetomidine and intraoperative thermal insulation with postoperative outcomes in colorectal cancer resection. Int J Neurosci 2024:1-7. [PMID: 38712830 DOI: 10.1080/00207454.2024.2352772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024]
Abstract
OBJECTIVE To investigate the effects of dexmedetomidine combined with intraoperative thermal insulation on postoperative cognitive function, cellular immune status and inflammatory markers in patients undergoing radical resection for colorectal cancer. METHODS Fifty patients who underwent radical resection of colorectal cancer in our hospital from March 2020 to September 2021 were selected and divided into observation group (26 cases with dexmedetomidine combined with intraoperative thermal insulation intervention) and control group (24 cases with conventional anesthesia management). The evaluation measures included the mini-mental state scale (MMSE) score, CD4+ T cell, CD8+ T cell ratio and CD4+/CD8+ ratio, the level of inflammatory markers (IL-6, TNF-α, CRP), and the incidence of postoperative complications. RESULTS The MMSE score of the observation group was significantly higher than that of the control group on the 3rd day after operation (p < 0.001). After treatment, the proportion of CD4+ T cells, the proportion of CD8+ T cells and the ratio of CD4+/CD8+ in observation group were higher than those in control group (p < 0.01), while the inflammatory markers IL-6, TNF-α and CRP were lower than those in control group (p < 0.01). The incidence of postoperative cognitive dysfunction (POCD) in the observation group (7.69%) was significantly lower than that in the control group (33.33%) (p = 0.010), and the postoperative infection rate was also significantly decreased (p = 0.042). CONCLUSION Dexmedetomidine combined with intraoperative insulation can significantly improve postoperative cognitive function, maintain immune balance, reduce inflammatory response, and reduce the incidence of POCD and other postoperative complications in patients with radical resection of colorectal cancer.
Collapse
Affiliation(s)
- Bei Pan
- Department of Anesthesiology, Second Affiliated Hospital of Wannan Medical University, Wuhu, China
| | - Yuying Qian
- Department of Anesthesiology, Second Affiliated Hospital of Wannan Medical University, Wuhu, China
| | - Bei Han
- Department of Anesthesiology, Second Affiliated Hospital of Wannan Medical University, Wuhu, China
| |
Collapse
|
11
|
Chen Y, Zhou Y, Cai J, Xu J, Hu C, Chen H, Hong Y, Pan N, Jiang Y, Zhou C, Wei H, Xu Z, Liu L, Wu X, Cui W. The activation of RARα prevents surgery-induced cognitive impairments via the inhibition of neuroinflammation and the restoration of synaptic proteins in elderly mice. Int Immunopharmacol 2024; 130:111772. [PMID: 38432148 DOI: 10.1016/j.intimp.2024.111772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Post-operative cognitive dysfunction (POCD) is a multi-etiological symptom mainly occurred in elderly people after surgery. The activation of retinoic acid receptor α (RARα), a transcriptional factor, was previously predicated to be negatively associated with the occurrence of POCD. However, the mechanisms underlying anti-POCD effects of RARα were still unclear. In this study, AM580, a selective agonist of RARα, and all-trans-retinoic acid (ATRA), a pan agonist of RAR, significantly alleviated cognitive dysfunction and increased the expression of RARα in elderly mice after surgery, which was decreased by RO41-5253, an antagonist of RARα. A bioinformatic study further predicted that the activation of RARα might produce anti-POCD effects via the restoration of synaptic proteins. Both agonists inhibited the expression of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (Myd88) and the phosphorylation of nuclear factorkappa-B (NF-κB), leading to the prevention of microglial over-activation and pro-inflammatory cytokines secretion in the hippocampal regions of elderly mice after surgery. Moreover, AM580 and ATRA increased the expression of brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95), and the phosphorylation of extracellular signal-regulated kinase (ERK) and cAMP-response element binding protein (CREB). All these results suggested that the activation of RARα prevented surgery-induced cognitive impairments via the inhibition of neuroinflammation by the reduction of the TLR4/Myd88/NF-κB pathway and the restoration of synaptic proteins by the activation of the BDNF/ERK/CREB pathway, providing a further support that RARα could be developed as a therapeutic target for POCD.
Collapse
Affiliation(s)
- Yuan Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, China; Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yi Zhou
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Jinhan Cai
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Jiayi Xu
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Chenwei Hu
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Huiyue Chen
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yirui Hong
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Nanyi Pan
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yujie Jiang
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Chenhui Zhou
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, China
| | - Hua Wei
- Ningbo College of Health Sciences, Ningbo 315100, China
| | - Zhipeng Xu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 200120, China
| | - Lin Liu
- Women and Children's Hospital of Ningbo University, Ningbo 315211, China
| | - Xiang Wu
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, China; Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo 315211, China.
| | - Wei Cui
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, China; Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo 315211, China; Ningbo Kangning Hospital, Ningbo 315211, China.
| |
Collapse
|
12
|
Li Z, He M, Dai D, Gao X, Liang H, Xiong L. Middle aged CAMKII-Cre:Cbs fl/fl mice: a new model for studying perioperative neurocognitive disorders. Exp Anim 2024; 73:109-123. [PMID: 37766548 PMCID: PMC10877146 DOI: 10.1538/expanim.23-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Postoperative complications, such as perioperative neurocognitive disorders (PND), have become a major issue affecting surgical outcomes. However, the mechanism of PND remains unclear, and stable animal models of middle-aged PND are lacking. S-adenosylmethionine (SAM), a cystathionine beta-synthase (CBS) allosteric activator, can reduce the level of plasma homocysteine and prevent the occurrence of PND. However, the time and resource-intensive process of constructing models of PND in elderly animals have limited progress in PND research and innovative therapy development. The present study aimed to construct a stable PND model in middle-aged CAMKII-Cre:Cbsfl/fl mice whose Cbs was specifically knocked out in CAMKII positive neurons. Behavioral tests showed that these middle-aged mice displayed cognitive deficits which were aggravated by exploratory laparotomy under isoflurane anesthesia. Compared with typical PND mice which were 18-month-old, these middle-aged mice showed similar cognitive deficits after undergoing exploratory laparotomy under isoflurane anesthesia. Though there was no significant difference in the number of neurons in either the hippocampus or the cortex, a significant increase in numbers of microglia and astrocytes in the hippocampus was observed. These indicate that middle-aged CAMKII-Cre:Cbsfl/fl mice can be used as a new PND model for mechanistic studies and therapy development for PND.
Collapse
Affiliation(s)
- Zhen Li
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, P.R. China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
| | - Mengfan He
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, P.R. China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
| | - Danqing Dai
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, P.R. China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
| | - Xiaofei Gao
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, P.R. China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
| | - Huazheng Liang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, P.R. China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Monash Suzhou Research Institute, Suzhou, Jiangsu Province, 215127, P.R. China
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, P.R. China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
| |
Collapse
|
13
|
Lian X, Zhang X, Chen W, Xue F, Wang G. Dexmedetomidine mitigates neuroinflammation in an Alzheimer's disease mouse model via the miR-204-3p/FBXL7 signaling axis. Brain Res 2024; 1822:148612. [PMID: 37778649 DOI: 10.1016/j.brainres.2023.148612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by neuroinflammation. Dexmedetomidine (Dex) is known for its neuroprotective properties in clinical settings. In this study, we investigated the potential of Dex in protecting against neuroinflammation in an AD mouse model induced by amyloid-beta (Aβ) injection. First, in the AD mouse model, Aβ injection were administered, and the model was confirmed through behavioral tests, including the Morris water maze and Y-maze. Neuroinflammatory states in Aβ-injected mice were assessed using hematoxylin and eosin staining and enzyme-linked immunosorbent assay. Expression levels of microRNA (miR)-204-3p and F-box/LRR-repeat protein 7 (FBXL7) in mouse tissues were determined through real-time quantitative polymerase chain reaction and Western blot. The binding interaction between miR-204-3p and FBXL7 was elucidated using dual-luciferase analysis. Aβ-injected mice exhibited cognitive impairment, neuroinflammation, and downregulated miR-204-3p. Upregulation of miR-204-3p reduced inflammatory infiltration and mitigated neuroinflammation in Aβ-injected mice. Dex treatment reduced inflammation in hippocampal tissues of Aβ-injected mice. Dex treatment upregulated miR-204-3p, leading to suppressed FBXL7 expression in tissues. Inhibition of miR-204-3p or overexpression of FBXL7 reversed the alleviating effect of Dex on neuroinflammation in Aβ-injected mice. Overall, Dex increased miR-204-3p expression, resulting in the inhibition of FBXL7, and subsequently alleviated neuroinflammation in Aβ-injected mice.
Collapse
Affiliation(s)
- Xia Lian
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaomin Zhang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wenchao Chen
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fang Xue
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Gaiqing Wang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Neurology, Sanya Central Hospital (Hainan Third People's Hospital), Hainan Medical University, Sanya, Hainan 572000, China.
| |
Collapse
|
14
|
Jufar AH, May CN, Booth LC, Evans RG, Cochrane AD, Marino B, Birchall I, Hood SG, McCall PR, Sanders RD, Yao ST, Ortega-Bernal V, Skene A, Bellomo R, Miles LF, Lankadeva YR. Effects of dexmedetomidine on kidney and brain tissue microcirculation and histology in ovine cardiopulmonary bypass: a randomised controlled trial. Anaesthesia 2023; 78:1481-1492. [PMID: 37880924 DOI: 10.1111/anae.16152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/27/2023]
Abstract
Cardiac surgery requiring cardiopulmonary bypass is associated with postoperative acute kidney injury and neurocognitive disorders, including delirium. Intra-operative inflammation and/or impaired tissue perfusion/oxygenation are thought to be contributors to these outcomes. It has been hypothesised that these problems may be ameliorated by the highly selective α2 -agonist, dexmedetomidine. We tested the effects of dexmedetomidine on renal and cerebral microcirculatory tissue perfusion, oxygenation and histology in a clinically relevant ovine model. Sixteen sheep were studied while conscious, after induction of anaesthesia and during 2 h of cardiopulmonary bypass. Eight sheep were allocated randomly to receive an intravenous infusion of dexmedetomidine (0.4-0.8 μg.kg-1 .h-1 ) from induction of anaesthesia to the end of cardiopulmonary bypass, and eight to receive an equivalent volume of matched placebo (0.9% sodium chloride). Commencement of cardiopulmonary bypass decreased renal medullary tissue oxygenation in the placebo group (mean (95%CI) 5.96 (4.24-7.23) to 1.56 (0.84-2.09) kPa, p = 0.001), with similar hypoxic levels observed in the dexmedetomidine group (6.33 (5.33-7.07) to 1.51 (0.33-2.39) kPa, p = 0.002). While no differences in kidney function (i.e. reduced creatinine clearance) were evident, a greater incidence of histological renal tubular injury was observed in sheep receiving dexmedetomidine (7/8 sheep) compared with placebo (2/8 sheep), p = 0.041. Graded on a semi-quantitative scale (0-3), median (IQR [range]) severity of histological renal tubular injury was higher in the dexmedetomidine group compared with placebo (1.5 (1-2 [0-3]) vs. 0 (0-0.3 [0-1]) respectively, p = 0.013). There was no difference in cerebral tissue microglial activation (neuroinflammation) between the groups. Dexmedetomidine did not reduce renal medullary hypoxia or cerebral neuroinflammation in sheep undergoing cardiopulmonary bypass.
Collapse
Affiliation(s)
- A H Jufar
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - C N May
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - L C Booth
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - R G Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - A D Cochrane
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - B Marino
- Cell Saving and Perfusion Resources, Melbourne, Australia
| | - I Birchall
- Neurohistology Laboratory, Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - S G Hood
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - P R McCall
- Department of Critical Care, University of Melbourne, Melbourne, Australia
| | - R D Sanders
- Central Clinical School and NHMRC Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - S T Yao
- Cardiovascular Neuroscience Laboratory, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
| | - V Ortega-Bernal
- Cardiovascular Neuroscience Laboratory, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
| | - A Skene
- Department of Anatomical Pathology, Austin Health, Melbourne, Australia
| | - R Bellomo
- Department of Critical Care, University of Melbourne, Melbourne, Australia
| | - L F Miles
- Department of Critical Care, University of Melbourne, Melbourne, Australia
| | - Y R Lankadeva
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| |
Collapse
|
15
|
Zhao J, Nie Z, Miao H, Wu F, Ma T. Electroacupuncture reduces cerebral ischemia-induced neuronal damage in the hippocampal CA1 region in rats by inhibiting HMGB1 and p-JNK overexpression. Int J Neurosci 2023:1-8. [PMID: 37999988 DOI: 10.1080/00207454.2023.2288541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND The cornu ammonis 1 (CA1) region of the hippocampus is a sensitive area that is susceptible to injury caused by cerebral ischemia. High-mobility group box 1 (HMGB1) and phosphorylated c-Jun N-terminal kinase (p-JNK) play important roles in mediating cerebral ischemic injury. OBJECTIVE To elucidate the mechanism through which electroacupuncture (EA) via the Baihui (GV20) and Zusanli (ST36) acupoints protects neurons. METHODS A rat model of permanent middle cerebral artery occlusion (pMCAO) was established. Sprague-Dawley rats were divided into four groups: sham-operated control, pMCAO control, EA, and sham-EA (SEA). In the EA and SEA groups, the GV20 and ST36 acupoints were selected for treatment. However, the SEA group was treated only by superficial pricking of the skin at the two acupoints without the application of electricity. Neurological function was assessed using the neurological deficit function score, and neuronal damage was detected through Nissl staining. HMGB1 and p-JNK expression was evaluated using immunohistochemical staining and western blot assays. RESULTS The behavioural experiments showed that the EA treatment improved the neurological deficits in the pMCAO rats. The Nissl staining results revealed that EA reduced neural tissue damage. The immunohistochemical staining and western blot results showed that EA inhibited HMGB1 and p-JNK overexpression. By contrast, none of these EA effects were observed in the SEA group. CONCLUSION EA may reduce ischemia-induced neuronal damage in the hippocampal CA1 region by inhibiting the overexpression of both HMGB1 and p-JNK.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Human Anatomy, Wannan Medical College, Wuhu, China
| | - Zeyin Nie
- Department of Human Anatomy, Wannan Medical College, Wuhu, China
| | - Huachun Miao
- Department of Human Anatomy, Wannan Medical College, Wuhu, China
| | - Feng Wu
- Department of Human Anatomy, Wannan Medical College, Wuhu, China
| | - Tongjun Ma
- Department of Human Anatomy, Wannan Medical College, Wuhu, China
| |
Collapse
|
16
|
Yonamine CY, Michalani MLE, Moreira RJ, Machado UF. Glucose Transport and Utilization in the Hippocampus: From Neurophysiology to Diabetes-Related Development of Dementia. Int J Mol Sci 2023; 24:16480. [PMID: 38003671 PMCID: PMC10671460 DOI: 10.3390/ijms242216480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The association of diabetes with cognitive dysfunction has at least 60 years of history, which started with the observation that children with type 1 diabetes mellitus (T1D), who had recurrent episodes of hypoglycemia and consequently low glucose supply to the brain, showed a deficit of cognitive capacity. Later, the growing incidence of type 2 diabetes mellitus (T2D) and dementia in aged populations revealed their high association, in which a reduced neuronal glucose supply has also been considered as a key mechanism, despite hyperglycemia. Here, we discuss the role of glucose in neuronal functioning/preservation, and how peripheral blood glucose accesses the neuronal intracellular compartment, including the exquisite glucose flux across the blood-brain barrier (BBB) and the complex network of glucose transporters, in dementia-related areas such as the hippocampus. In addition, insulin resistance-induced abnormalities in the hippocampus of obese/T2D patients, such as inflammatory stress, oxidative stress, and mitochondrial stress, increased generation of advanced glycated end products and BBB dysfunction, as well as their association with dementia/Alzheimer's disease, are addressed. Finally, we discuss how these abnormalities are accompained by the reduction in the expression and translocation of the high capacity insulin-sensitive glucose transporter GLUT4 in hippocampal neurons, which leads to neurocytoglycopenia and eventually to cognitive dysfunction. This knowledge should further encourage investigations into the beneficial effects of promising therapeutic approaches which could improve central insulin sensitivity and GLUT4 expression, to fight diabetes-related cognitive dysfunctions.
Collapse
Affiliation(s)
- Caio Yogi Yonamine
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Maria Luiza Estimo Michalani
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (M.L.E.M.); (R.J.M.)
| | - Rafael Junges Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (M.L.E.M.); (R.J.M.)
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (M.L.E.M.); (R.J.M.)
| |
Collapse
|
17
|
Zhang S, Zhang Y, Zheng Y, Zhu S, Sun J, Deng Y, Wang Q, Zhai Q. Dexmedetomidine attenuates sleep deprivation-induced inhibition of hippocampal neurogenesis via VEGF-VEGFR2 signaling and inhibits neuroinflammation. Biomed Pharmacother 2023; 165:115085. [PMID: 37392656 DOI: 10.1016/j.biopha.2023.115085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
Long periods of sleep deprivation (SD) have serious effects on health. While the α2 adrenoceptor agonist dexmedetomidine (DEX) can improve sleep quality for patients who have insomnia, the effect of DEX on cognition and mechanisms after SD remains elusive. C57BL/6 mice were subjected to 20 h SD daily for seven days. DEX (100 μg/kg) was administered intravenously twice daily (at 1:00 p.m. and 3:00 p.m.) during seven days of SD. We found that systemic administration of DEX attenuated cognitive deficits by performing the Y maze and novel object recognition tests and increased DCX+, SOX2+, Ki67+, and BrdU+NeuN+/NeuN+ cell numbers in the dentate gyrus (DG) region of SD mice by using immunofluorescence, western blotting, and BrdU staining. DEX did not reverse the decrease in DCX+, SOX2+, or Ki67+ cell numbers in SD mice after administration of the α2A-adrenoceptor antagonist BRL-44408. Furthermore, the vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor 2 (VEGFR2) expression was upregulated in SD+DEX mice compared with SD mice. Luminex analysis showed that the neurogenic effects of DEX were possibly related to the inhibition of neuroinflammation, including IL-1α, IL-2, CCL5, and CXCL1. Our results suggested that DEX alleviated the impaired learning and memory of SD mice potentially by inducing hippocampal neurogenesis via the VEGF-VEGFR2 signaling pathway and by suppressing neuroinflammation, and α2A adrenoceptors are required for the neurogenic effects of DEX after SD. This novel mechanism may add to our knowledge of DEX in the clinical treatment of impaired memory caused by SD.
Collapse
Affiliation(s)
- Shuyue Zhang
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Ying Zhang
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yige Zheng
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China
| | - Shan Zhu
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Jianyu Sun
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yingying Deng
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| | - Qian Zhai
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
18
|
Yonamine CY, Passarelli M, Suemoto CK, Pasqualucci CA, Jacob-Filho W, Alves VAF, Marie SKN, Correa-Giannella ML, Britto LR, Machado UF. Postmortem Brains from Subjects with Diabetes Mellitus Display Reduced GLUT4 Expression and Soma Area in Hippocampal Neurons: Potential Involvement of Inflammation. Cells 2023; 12:cells12091250. [PMID: 37174649 PMCID: PMC10177173 DOI: 10.3390/cells12091250] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetes mellitus (DM) is an important risk factor for dementia, which is a common neurodegenerative disorder. DM is known to activate inflammation, oxidative stress, and advanced glycation end products (AGEs) generation, all capable of inducing neuronal dysfunctions, thus participating in the neurodegeneration progress. In that process, disturbed neuronal glucose supply plays a key role, which in hippocampal neurons is controlled by the insulin-sensitive glucose transporter type 4 (GLUT4). We investigated the expression of GLUT4, nuclear factor NF-kappa B subunit p65 [NFKB (p65)], carboxymethyllysine and synapsin1 (immunohistochemistry), and soma area in human postmortem hippocampal samples from control, obese, and obese+DM subjects (41 subjects). Moreover, in human SH-SY5Y neurons, tumor necrosis factor (TNF) and glycated albumin (GA) effects were investigated in GLUT4, synapsin-1 (SYN1), tyrosine hydroxylase (TH), synaptophysin (SYP) proteins, and respective genes; NFKB binding activity in the SLC2A4 promoter; effects of increased histone acetylation grade by histone deacetylase 3 (HDAC3) inhibition. Hippocampal neurons (CA4 area) of obese+DM subjects displayed reduced GLUT4 expression and neuronal soma area, associated with increased expression of NFKB (p65). Challenges with TNF and GA decreased the SLC2A4/GLUT4 expression in SH-SY5Y neurons. TNF decreased SYN1, TH, and SYP mRNAs and respective proteins, and increased NFKB binding activity in the SLC2A4 promoter. Inhibition of HDAC3 increased the SLC2A4 expression and the total neuronal content of CRE-binding proteins (CREB/ICER), and also counterbalanced the repressor effect of TNF upon these parameters. This study revealed reduced postmortem human hippocampal GLUT4 content and neuronal soma area accompanied by increased proinflammatory activity in the brains of DM subjects. In isolated human neurons, inflammatory activation by TNF reduced not only the SLC2A4/GLUT4 expression but also the expression of some genes related to neuronal function (SYN1, TH, SYP). These effects may be related to epigenetic regulations (H3Kac and H4Kac status) since they can be counterbalanced by inhibiting HDAC3. These results uncover the improvement in GLUT4 expression and/or the inhibition of HDAC3 as promising therapeutic targets to fight DM-related neurodegeneration.
Collapse
Affiliation(s)
- Caio Yogi Yonamine
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Marisa Passarelli
- Laboratório de Lipides (LIM-10) do HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil
- Programa de Pos-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01525-000, Brazil
| | - Claudia Kimie Suemoto
- Divisao de Geriatria, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 01246-000, Brazil
| | | | - Wilson Jacob-Filho
- Divisao de Geriatria, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 01246-000, Brazil
| | - Venâncio Avancini Ferreira Alves
- Laboratório de Investigação Médica em Patologia Hepática, (LIM14) do Hospital das Clínicas (HCFMUSP), Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | | | - Maria Lucia Correa-Giannella
- Laboratorio de Carboidratos e Radioimunoensaio (LIM-18) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 01246-000, Brazil
| | - Luiz Roberto Britto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
19
|
Neuroprotective Effects of Phytochemicals against Aluminum Chloride-Induced Alzheimer’s Disease through ApoE4/LRP1, Wnt3/β-Catenin/GSK3β, and TLR4/NLRP3 Pathways with Physical and Mental Activities in a Rat Model. Pharmaceuticals (Basel) 2022; 15:ph15081008. [PMID: 36015156 PMCID: PMC9416484 DOI: 10.3390/ph15081008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Alzheimer’s disease (AD) is a neurodegenerative disorder that is associated with abnormal cognition. AD is aided in its initiation and progression by hereditary and environmental factors. Aluminum (Al) is a neurotoxic agent that causes oxidative stress, which is linked to AD progression. Additionally, Nrf2/HO-1, APOE4/LRP1, Wnt3/β-catenin, and TLR4/NLRP3 are the main signaling pathways involved in AD pathogenesis. Several phytochemicals are promising options in delaying AD evolution. Objectives: This study aimed at studying the neuroprotective effects of some phytochemicals as morin (MOR), thymol (TML), and thymoquinone (TMQ) on physical and mental activities (PhM) in Al chloride (AlCl3)-induced AD rat model. Another objective was to determine the specificity of phytochemicals to AD signaling pathways using molecular docking. Methods: Eighty male Dawley rats were divided into eight groups. Each group received: saline (control group), AlCl3, (ALAD), PhM, either alone or with a combination of MOR, TML, and/or TMQ for five weeks. Animals were then subjected to behavioral evaluation. Brain tissues were used for histopathological and biochemical analyses to determine the extent of neurodegeneration. The effect of phytochemicals on AlCl3-induced oxidative stress and the main signaling pathways involved in AD progression were also investigated. Results: AlCl3 caused a decline in spatial learning and memory, as well as histopathological changes in the brains of rats. Phytochemicals combined with PhM restored antioxidant activities, increased HO-1 and Nrf2 levels, blocked inflammasome activation, apoptosis, TLR4 expression, amyloide-β generation, and tau hyperphophorylation. They also brought ApoE4 and LRP1 levels back to normal and regulated Wnt3/β-catenin/GSK3β signaling pathway. Conclusions: The use of phytochemicals with PhM is a promising strategy for reducing AD by modulating Nrf2/HO-1, TLR4/NLRP3, APOE4/LRP1, and Wnt3/β-catenin/GSK-3β signaling pathways.
Collapse
|