1
|
Malheiro LFL, Fernandes MM, Oliveira CA, Barcelos IDS, Fernandes AJV, Silva BS, Ávila JS, Soares TDJ, Amaral LSDB. Renoprotective mechanisms of exercise training against acute and chronic renal diseases - A perspective based on experimental studies. Life Sci 2024; 346:122628. [PMID: 38614303 DOI: 10.1016/j.lfs.2024.122628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/22/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Regular exercise training can lead to several health benefits, reduce mortality risk, and increase life expectancy. On the other hand, a sedentary lifestyle is a known risk factor for chronic diseases and increased mortality. Acute kidney injury (AKI) and chronic kidney disease (CKD) represent a significant global health problem, affecting millions of people worldwide. The progression from AKI to CKD is well-recognized in the literature, and exercise training has emerged as a potential renoprotective strategy. Thus, this article aims to review the main molecular mechanisms underlying the renoprotective actions of exercise training in the context of AKI and CKD, focusing on its antioxidative, anti-inflammatory, anti-apoptotic, anti-fibrotic, and autophagy regulatory effects. For that, bibliographical research was carried out in Medline/PubMed and Scielo databases. Although the pathophysiological mechanisms involved in renal diseases are not fully understood, experimental studies demonstrate that oxidative stress, inflammation, apoptosis, and dysregulation of fibrotic and autophagic processes play central roles in the development of tissue damage. Increasing evidence has suggested that exercise can beneficially modulate these mechanisms, potentially becoming a safe and effective non-pharmacological strategy for kidney health protection and promotion. Thus, the evidence base discussed in this review suggests that an adequate training program emerges as a valuable tool for preserving renal function in experimental animals, mainly through the production of antioxidant enzymes, nitric oxide (NO), irisin, IL-10, and IL-11. Future research can continue to explore these mechanisms to develop specific guidelines for the prescription of exercise training in different populations of patients with kidney diseases.
Collapse
Affiliation(s)
- Lara Fabiana Luz Malheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Brazil
| | - Mariana Masimessi Fernandes
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil
| | - Caroline Assunção Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Brazil
| | - Isadora de Souza Barcelos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil
| | - Ana Jullie Veiga Fernandes
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil
| | - Bruna Santos Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil
| | - Júlia Spínola Ávila
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil
| | - Telma de Jesus Soares
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Brazil; Programa de Pós-Graduação em Biociências, Brazil
| | - Liliany Souza de Brito Amaral
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Brazil; Programa de Pós-Graduação em Biociências, Brazil.
| |
Collapse
|
2
|
Zhao J, Luo J, Deng C, Fan Y, Liu N, Cao J, Chen D, Diao Y. Volatile oil of Angelica sinensis Radix improves cognitive function by inhibiting miR-301a-3p targeting Ppp2ca in cerebral ischemia mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117621. [PMID: 38154524 DOI: 10.1016/j.jep.2023.117621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica Sinensis Radix (ASR) is a commonly used Chinese medicine known for its effects on tonifying blood, promoting blood circulation, and alleviating pain associated with menstrual regulation. Additionally, it has been used in the treatment of vascular cognitive impairment (VCI). The primary pharmacodynamic agent within ASR is volatile oil of Angelica Sinensis Radix (VOASR), which has demonstrated efficacy in combating cognitive impairment, although its mechanism remains unclear. OBJECTIVE This study aimed to elucidate the potential molecular mechanisms underlying VOASR's improvement of cognitive function in cerebral ischemic mice. METHODS A model of cerebral ischemic mice was established through unilateral common carotid artery occlusion (UCCAO) surgery, followed by intervention with VOASR. Cognitive function was assessed using the Morris water maze (MWM) test, while RT-qPCR was utilized to measure the differential expression of miR-301a-3p in the hippocampus. To evaluate cognitive function and hippocampal protein differences, wild-type mice and miR-301a-3p knockout mice were subjected to the MWM test and iTRAQ protein profiling. The relationship between miR-301a-3p and potential target genes was validated through a Dual-Luciferase Reporter experiment. RT-qPCR and Western blot were employed to determine the differential expression of Ppp2ca and synaptic plasticity-related proteins in the mouse hippocampus. RESULTS Intervention with VOASR significantly improved cognitive impairment in cerebral ischemic mice and reduced the expression of miR-301a-3p in the hippocampus. Our findings suggest that miR-301a-3p may regulate cognitive function by targeting Ppp2ca. Furthermore, VOASR intervention led to an increase in the expression of Ppp2ca and synaptic plasticity-related proteins. CONCLUSION Our study indicates that VOASR may be involved in regulating cognitive function by inhibiting miR-301a-3p, consequently increasing the expression of Ppp2ca and synaptic plasticity proteins. These results provide a new target and direction for the treatment of cognitive dysfunction.
Collapse
Affiliation(s)
- Jie Zhao
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jing Luo
- Shenzhen Hospital of Integrated Traditional and Western Medicine, ShenZhen, 518000, China.
| | - Cuili Deng
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yueying Fan
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Na Liu
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jiahui Cao
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Dongfeng Chen
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yuanming Diao
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Li X, Sun M, Wang Z, Sun S, Wang Y. Recent advances in mechanistic studies of heart failure with preserved ejection fraction and its comorbidities-Role of microRNAs. Eur J Clin Invest 2024; 54:e14130. [PMID: 38071416 DOI: 10.1111/eci.14130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/22/2023] [Accepted: 11/11/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a multifaceted syndrome with a complex aetiology commonly associated with comorbidities such as diabetes mellitus, obesity, hypertension and renal disease. Various diseases induce systemic, chronic and low-grade inflammation; microvascular dysfunction; metabolic stress; tissue ischemia; and fibrosis, leading to HFpEF. An effective treatment for HFpEF is lacking, largely owing to its pathophysiological heterogeneity. Recent studies have revealed that microRNAs (miRNAs) play crucial roles in regulating the pathogenesis of HFpEF and its comorbidities. METHODS This narrative review included original articles and reviews published over the past 20 years found through 'PubMed' and 'Web of Science'. The search terms included "HFpEF," "MicroRNAs," "comorbidities," "Microvascular Dysfunction (MVD)," "inflammation," "pathophysiology," "endothelial dysfunction," "energy metabolism abnormalities" "cardiac fibrosis" and "treatment." RESULTS Inflammation, MVD, abnormal energy metabolism, myocardial hypertrophy and myocardial fibrosis are important pathophysiological mechanisms underlying HFpEF. As gene expression regulators, miRNAs may contribute to the pathophysiology of HFpEF and are expected to serve in the stratification of patients with HFpEF and as prognostic indicators for monitoring treatment responses. CONCLUSIONS A customized strategy based on miRNAs has emerged as an effective treatment for HFpEF. In this review, we discuss recent research surrounding miRNAs and HFpEF and propose potential miRNA targets for the pathophysiology of HFpEF and its comorbidities. Although current research concerning miRNAs and their therapeutic potential is in its early stages, miRNA-based diagnostics and therapeutics hold great promise in the future.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Min Sun
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Zhe Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Siming Sun
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Mohammadkhani R, Ranjbar K, Salehi I, Komaki A, Zarrinkalam E, Amiri P. Comparison of the preconditioning effect of different exercise training modalities on myocardial ischemia-reperfusion injury. PLoS One 2023; 18:e0295169. [PMID: 38051732 DOI: 10.1371/journal.pone.0295169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023] Open
Abstract
The study of exercise preconditioning can develop strategies to prevent cardiovascular diseases and outline the efficient exercise model. However, the exercise type with the most protective effect against ischemia-reperfusion injury is unknown. In this study, we examined the effects of three kinds of exercise preconditioning on myocardial ischemia-reperfusion in adult rats and explored the possible underlying mechanisms. Male Wistar rats subjected to ten weeks of endurance, resistance, and concurrent training underwent ischemia (30 min) and reperfusion (120 min) induction. Then, infarction size, serum levels of the CK-MB, the redox status, and angiogenesis proteins (VEGF, ANGP-1, and ANGP-2) were measured in the cardiac tissue. Results showed that different exercise training modes have the same reduction effects on infarction size, but ischemia-reperfusion-induced CK-MB was lower in response to endurance training and concurrent training. Furthermore, cardiac VEGF levels increased in all three kinds of exercise preconditioning but ischemia-reperfusion-induced ANGP-1 elevated more in endurance training. The cardiac GPX activity was improved significantly through the resistance and concurrent exercise compared to the endurance exercise. In addition, all three exercise preconditioning models decreased MPO levels, and ischemia reperfusion-induced MDA was lower in endurance and resistance training. Overall, these results indicated that cardioprotection of exercise training against ischemia-reperfusion injury depends on the exercise modality. Cardioprotective effects of aerobic, resistance, and concurrent exercises are due to different mechanisms. The preconditioning effects of endurance training are mediated mainly by pervasive angiogenic responses and resistance training through oxidative stress amelioration. The preconditioning effects of concurrent training rely on both angiogenesis and oxidative stress amelioration.
Collapse
Affiliation(s)
| | - Kamal Ranjbar
- Department of Physical Education and Sport Science, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ebrahim Zarrinkalam
- Faculty of Physical Education and Sport Sciences, Department of Physical Education, Islamic Azad University, Hamedan Branch, Hamedan, Iran
| | - Parsa Amiri
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Yang J, Li B, Wang J, Fan W. Puerarin alleviates chronic renal failure-induced pyroptosis in renal tubular epithelial cells by targeting miR-342-3p/TGF-β/SMAD axis. Genes Genomics 2023; 45:1563-1573. [PMID: 37747643 DOI: 10.1007/s13258-023-01448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Chronic renal failure (CRF) is the result of kidney damage. Puerarin is a flavonoid with specific nephroprotective effect, but its effect on CRF needs further research. This study explored the effect of puerarin on CRF and the potential molecular mechanism. METHODS Adenine was used to establish an in vivo CRF model in rats, and rats were intragastrically administered with puerarin at a dose of 400 mg/kg body weight once a day from day 1 to day 28. Hematoxylin and eosin (HE) and Masson staining were used to observe the morphology and fibrosis of kidney tissue. Lipopolysaccharide (LPS) (400 ng/mL)/H2O2 (200 µM) was applied to human kidney 2 (HK-2) cells to construct an in vitro CRF model. Enzyme-linked immunosorbent assay (ELISA) was performed to validate interleukin (IL)-1β and IL-18 levels. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was performed to detect microRNA (miR)-342-3p levels. Transforming growth factor beta (TGF-β)1, SMAD2, SMAD3, and pyroptosis marker proteins were detected by Western blot. The interaction between miR-342-3p and TGF-β/SMAD was determined by a dual-luciferase reporter gene assay. Cell Counting Kit-8 (CCK-8) assay was utilized to determine cell viability. RESULTS In the CRF model, puerarin alleviated renal injury and fibrosis and reduced creatinine (Cr) and blood urea nitrogen (BUN) levels. At the same time, miR-342-3p was downregulated, while the TGF-β/SMAD axis was activated and levels of IL-1β and IL-18 were increased. After treatment of CRF rats with puerarin, the expression level of miR-342-3p was increased, the TGF-β/SMAD axis was inhibited, and the secretion of IL-1β and IL-18 was decreased. MiR-342-3p directly bound to and negatively regulated the expression of TGF-β1, SMAD2, and SMAD3. In the in vitro CRF model, miR-342-3p inhibited HK-2 cell pyroptosis by inhibiting the TGF-β/SMAD axis. CONCLUSION Puerarin reduced renal injury and pyroptosis in CRF rats by targeting the miR-342-3p/TGF-β/SMAD axis.
Collapse
Affiliation(s)
- Jing Yang
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, 650032, China
| | - Baochao Li
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, 650032, China
| | - Jiangming Wang
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, 650032, China
| | - Wenxing Fan
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, 650032, China.
| |
Collapse
|
6
|
Ao L, Chen Z, Yin J, Leng Y, Luo Y, Fu X, Liu H, Liu X, Gao H, Xie C. Chinese herbal medicine and active ingredients for diabetic cardiomyopathy: molecular mechanisms regulating endoplasmic reticulum stress. Front Pharmacol 2023; 14:1290023. [PMID: 38027018 PMCID: PMC10661377 DOI: 10.3389/fphar.2023.1290023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Diabetic cardiomyopathy (DCM) is one of the serious microvascular complications of diabetes mellitus. It is often associated with clinical manifestations such as arrhythmias and heart failure, and significantly reduces the quality of life and years of survival of patients. Endoplasmic reticulum stress (ERS) is the removal of unfolded and misfolded proteins and is an important mechanism for the maintenance of cellular homeostasis. ERS plays an important role in the pathogenesis of DCM by causing cardiomyocyte apoptosis, insulin resistance, calcium imbalance, myocardial hypertrophy and fibrosis. Targeting ERS is a new direction in the treatment of DCM. A large number of studies have shown that Chinese herbal medicine and active ingredients can significantly improve the clinical outcome of DCM patients through intervention in ERS and effects on myocardial structure and function, which has become one of the hot research directions. Purpose: The aim of this review is to elucidate and summarize the roles and mechanisms of Chinese herbal medicine and active ingredients that have the potential to modulate endoplasmic reticulum stress, thereby contributing to better management of DCM. Methods: Databases such as PubMed, Web of Science, China National Knowledge Internet, and Wanfang Data Knowledge Service Platform were used to search, analyze, and collect literature, in order to review the mechanisms by which phytochemicals inhibit the progression of DCM by targeting the ERS and its key signaling pathways. Keywords used included "diabetic cardiomyopathy" and "endoplasmic reticulum stress." Results: This review found that Chinese herbs and their active ingredients can regulate ERS through IRE1, ATF6, and PERK pathways to reduce cardiomyocyte apoptosis, ameliorate myocardial fibrosis, and attenuate myocardial hypertrophy for the treatment of DCM. Conclusion: A comprehensive source of information on potential ERS inhibitors is provided in this review. The analysis of the literature suggests that Chinese herbal medicine and its active ingredients can be used as potential drug candidates for the treatment of DCM. In short, we cannot ignore the role of traditional Chinese medicine in regulating ERS and treating DCM, and look forward to more research and new drugs to come.
Collapse
Affiliation(s)
- Lianjun Ao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhengtao Chen
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jiacheng Yin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yulin Leng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoxu Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoke Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Rutkowska M, Olszewska MA. Anti-Diabetic Potential of Polyphenol-Rich Fruits from the Maleae Tribe-A Review of In Vitro and In Vivo Animal and Human Trials. Nutrients 2023; 15:3756. [PMID: 37686786 PMCID: PMC10489674 DOI: 10.3390/nu15173756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
The Maleae tribe consists of over one thousand species, including many well-known polyphenol-containing fruit crops with wide-ranging biological properties, e.g., apples (Malus), chokeberries (Aronia), pears (Pyrus), quinces (Cydonia, Chaenomeles), saskatoon (Amelanchier), loquats (Eriobotrya), medlars (Mespilus), rowans (Sorbus), and hawthorns (Crataegus). Considering the current interest in the concept of functional foods and the still-insufficient methods of diabetes management, the anti-diabetic potential of fruits has been studied intensively, including those of the Maleae tribe. This paper is the first comprehensive overview of this selected topic, covering articles published from 2000 to 2023 (131 articles in total). The first part of this review focuses on the potential mechanisms of action of fruits investigated so far (46 species), including their effects on tissue-specific glucose transport and the expression or activity of proteins in the insulin signalling pathway. The second part covers the phytocompounds responsible for particular fruits' activity-primarily polyphenols (e.g., flavonols, dihydrochalcones, proanthocyanidins, anthocyanins, phenolic acids), but also polysaccharides, triterpenes, and their additive and synergistic effects. In summary, fruits from the Maleae tribe seem promising as functional foods and anti-diabetic agents; however, their prospects for more expansive pro-health application require further research, especially more profound in vivo trials.
Collapse
Affiliation(s)
- Magdalena Rutkowska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland;
| | | |
Collapse
|
8
|
Liu J, Chen H, Li X, Song C, Wang L, Wang D. Micro-Executor of Natural Products in Metabolic Diseases. Molecules 2023; 28:6202. [PMID: 37687031 PMCID: PMC10488769 DOI: 10.3390/molecules28176202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Obesity, diabetes, and cardiovascular diseases are the major chronic metabolic diseases that threaten human health. In order to combat these epidemics, there remains a desperate need for effective, safe, and easily available therapeutic strategies. Recently, the development of natural product research has provided new methods and options for these diseases. Numerous studies have demonstrated that microRNAs (miRNAs) are key regulators of metabolic diseases, and natural products can improve lipid and glucose metabolism disorders and cardiovascular diseases by regulating the expression of miRNAs. In this review, we present the recent advances involving the associations between miRNAs and natural products and the current evidence showing the positive effects of miRNAs for natural product treatment in metabolic diseases. We also encourage further research to address the relationship between miRNAs and natural products under physiological and pathological conditions, thus leading to stronger support for drug development from natural products in the future.
Collapse
Affiliation(s)
- Jinxin Liu
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (J.L.); (C.S.)
| | - Huanwen Chen
- Center for Agricultural and Rural Development, Zhangdian District, Zibo 255000, China;
| | - Xiaoli Li
- Zibo Digital Agriculture and Rural Development Center, Zibo 255000, China;
| | - Chunmei Song
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (J.L.); (C.S.)
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Deguo Wang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (J.L.); (C.S.)
- Key Laboratory of Biomarker Based Rapid-Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China
| |
Collapse
|
9
|
Yang L, Jian Y, Zhang ZY, Qi BW, Li YB, Long P, Yang Y, Wang X, Huang S, Huang J, Zhou LF, Ma J, Jiang CQ, Hu YH, Xiao WJ. Network-pharmacology-based research on protective effects and underlying mechanism of Shuxin decoction against myocardial ischemia/reperfusion injury with diabetes. World J Diabetes 2023; 14:1057-1076. [PMID: 37547579 PMCID: PMC10401449 DOI: 10.4239/wjd.v14.i7.1057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Patients with diabetes mellitus are at higher risk of myocardial ischemia/ reperfusion injury (MI/RI). Shuxin decoction (SXT) is a proven recipe modi-fication from the classic herbal formula "Wu-tou-chi-shi-zhi-wan" according to the traditional Chinese medicine theory. It has been successfully used to alleviate secondary MI/RI in patients with diabetes mellitus in the clinical setting. However, the underlying mechanism is still unclear.
AIM To further determine the mechanism of SXT in attenuating MI/RI associated with diabetes.
METHODS This paper presents an ensemble model combining network pharmacology and biology. The Traditional Chinese Medicine System Pharmacology Database was accessed to select key components and potential targets of the SXT. In parallel, therapeutic targets associated with MI/RI in patients with diabetes were screened from various databases including Gene Expression Omnibus, DisGeNet, Genecards, Drugbank, OMIM, and PharmGKB. The potential targets of SXT and the therapeutic targets related to MI/RI in patients with diabetes were intersected and subjected to bioinformatics analysis using the Database for Annotation, Visualization and Integrated Discovery. The major results of bioinformatics analysis were subsequently validated by animal experiments.
RESULTS According to the hypothesis derived from bioinformatics analysis, SXT could possibly ameliorate lipid metabolism disorders and exert anti-apoptotic effects in MI/RI associated with diabetes by reducing oxidized low density lipoprotein (LDL) and inhibiting the advanced glycation end products (AGE)-receptor for AGE (RAGE) signaling pathway. Subsequent animal experiments confirmed the hypothesis. The treatment with a dose of SXT (2.8 g/kg/d) resulted in a reduction in oxidized LDL, AGEs, and RAGE, and regulated the level of blood lipids. Besides, the expression of apoptosis-related proteins such as Bax and cleaved caspase 3 was down-regulated, whereas Bcl-2 expression was up-regulated. The findings indicated that SXT could inhibit myocardial apoptosis and improve cardiac function in MI/RI in diabetic rats.
CONCLUSION This study indicated the active components and underlying molecular therapeutic mechanisms of SXT in MI/RI with diabetes. Moreover, animal experiments verified that SXT could regulate the level of blood lipids, alleviate cardiomyocyte apoptosis, and improve cardiac function through the AGE-RAGE signaling pathway.
Collapse
Affiliation(s)
- Ling Yang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan Province, China
| | - Yang Jian
- Department of Clinical Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China
| | - Zai-Yuan Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan Province, China
| | - Bao-Wen Qi
- South China Hospital of Shenzhen University, Shenzhen 518116, Guangdong Province, China
| | - Yu-Bo Li
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan Province, China
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China
| | - Yao Yang
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China
| | - Xue Wang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan Province, China
| | - Shuo Huang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan Province, China
| | - Jing Huang
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan Province, China
| | - Long-Fu Zhou
- Department of Biomedical Engineering, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China
| | - Jie Ma
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China
| | - Chang-Qing Jiang
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China
| | - Yong-He Hu
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan Province, China
| | - Wen-Jing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China
| |
Collapse
|
10
|
Wan X, Liao J, Lai H, Zhang S, Cui J, Chen C. Roles of microRNA-192 in diabetic nephropathy: the clinical applications and mechanisms of action. Front Endocrinol (Lausanne) 2023; 14:1179161. [PMID: 37396169 PMCID: PMC10309560 DOI: 10.3389/fendo.2023.1179161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most common and intractable microvascular complications of diabetes worldwide, serving as the main cause of terminal renal disease. Due to the lack of early specific symptoms and diagnostic markers, DN severely threatens the sufferer's life. MicroRNA-192 (miR-192) was early identified in human renal cortical tissue and stored and excreted in urine as microvesicles. MiR-192 was found to be involved in the development of DN. For the first time, the present review summarized all the current evidence on the topic of the roles of miR-192 in DN. Finally, 28 studies (ten clinical trials and eighteen experimental studies) were eligible for thorough reviewing. Most of the clinical trials (7/10, 70%) indicated miR-192 might be a protective factor for DN development and progression, while the majority of experimental studies (14/18, 78%) suggested miR-192 might be a pathogenic factor for DN. Mechanistically, miR-192 interacts with various direct targeted proteins (i.e., ZEB1, ZEB2, SIP1, GLP1R, and Egr1) and signaling cascades (i.e., SMAD/TGF-β and PTEN/PI3K/AKT), together contribute to the pathogenesis of DN through epithelial-to-mesenchymal transition (EMT), extracellular matrix deposition, and fibrosis formation. The current review highlights the dual role of miR-192 in the development of DN. Low serum miR-192 expression could be applied for the early prediction of DN (the early stage of DN), while the high miR-192 level in renal tissues and urine may imply the progression of DN (the late stage of DN). Further investigations are still warranted to illustrate this inconsistent phenomenon, which may facilitate promoting the therapeutic applications of miR-192 in predicting and treating DN.
Collapse
Affiliation(s)
- Xiaoqing Wan
- Department of Nephrology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Hongting Lai
- Clinical Medical College, Tianjin Medical University, Tianjin, China
| | - Shilong Zhang
- Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jianling Cui
- Department of Nephrology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Chunyan Chen
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| |
Collapse
|