1
|
Waidi YO, Jain N. Unlocking new possibilities: application of MXenes in 3D bioprinting for advanced therapy. NANOSCALE 2024; 16:20037-20047. [PMID: 39405122 DOI: 10.1039/d4nr02906b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
3D bioprinting has become a leading contender among additive manufacturing techniques in biomedicine, offering the potential to create functional tissues and organs that could eliminate the need for transplants. However, for complex tissues like muscle, neural, bone, and heart, bioinks need significant improvements in properties like printability, mechanical strength, and functionalities crucial for mimicking natural tissues. Nanomaterial-based bioinks offer exciting possibilities. Among these, MXenes stand out due to their excellent biocompatibility, abundant surface groups for cell interaction, conductivity for electrical stimulation, and photothermal properties. This review delves into the potential of MXenes in 3D bioprinting. We explore the advantages of 3D printing for MXene-based biofabrication, followed by a deep dive into MXenes' properties that make them ideal for tissue engineering and regeneratice medicine. We also provide a concise overview of various 3D bioprinting techniques and the essential criteria for bioinks employed in this process. We then discuss the diverse applications of these MXene-incorporated bioprinted constructs. Finally, we address the current challenges and future directions in this promising field. This comprehensive analysis will provide valuable insights for researchers exploring the exciting potential of nanomaterials beyond MXenes in 3D bioprinting for biomedicine advancements.
Collapse
Affiliation(s)
- Yusuf Olatunji Waidi
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Nipun Jain
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
2
|
Rothammer B, Feile K, Werner S, Frank R, Bartz M, Wartzack S, Schubert DW, Drummer D, Detsch R, Wang B, Rosenkranz A, Marian M. Ti 3C 2T x-UHMWPE Nanocomposites-Towards an Enhanced Wear-Resistance of Biomedical Implants. J Biomed Mater Res A 2024. [PMID: 39446576 DOI: 10.1002/jbm.a.37819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/06/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
There is an urgent need to enhance the mechanical and biotribological performance of polymeric materials utilized in biomedical devices such as load-bearing artificial joints, notably ultrahigh molecular weight polyethylene (UHMWPE). While two-dimensional (2D) materials like graphene, graphene oxide (GO), reduced GO, or hexagonal boron nitride (h-BN) have shown promise as reinforcement phases in polymer matrix composites (PMCs), the potential of MXenes, known for their chemical inertness, mechanical robustness, and wear-resistance, remains largely unexplored in biotribology. This study aims to address this gap by fabricating Ti3C2Tx-UHMWPE nanocomposites using compression molding. Primary objectives include enhancements in mechanical properties, biocompatibility, and biotribological performance, particularly in terms of friction and wear resistance in cobalt chromium alloy pin-on-UHMWPE disk experiments lubricated by artificial synovial fluid. Thereby, no substantial changes in the indentation hardness or the elastic modulus are observed, while the analysis of the resulting wettability and surface tension as well as indirect and direct in vitro evaluation do not point towards cytotoxicity. Most importantly, Ti3C2Tx-reinforced PMCs substantially reduce friction and wear by up to 19% and 44%, respectively, which was attributed to the formation of an easy-to-shear transfer film.
Collapse
Affiliation(s)
- Benedict Rothammer
- Engineering Design, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Klara Feile
- Engineering Design, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Siegfried Werner
- Institute of Polymer Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rainer Frank
- Institute of Polymer Technology, Friedrich-Alexander-Universität Erlangen Nürnberg (FAU), Erlangen, Germany
| | - Marcel Bartz
- Engineering Design, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sandro Wartzack
- Engineering Design, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dirk W Schubert
- Institute of Polymer Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dietmar Drummer
- Institute of Polymer Technology, Friedrich-Alexander-Universität Erlangen Nürnberg (FAU), Erlangen, Germany
| | - Rainer Detsch
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bo Wang
- Department of Functional Materials, Saarland University, Saarbrücken, Germany
| | - Andreas Rosenkranz
- Department of Chemical Engineering, Biotechnology and Materials (FCFM), Universidad de Chile, Santiago, Chile
- ANID - Millennium Science Initiative Program, Millennium Nuclei of Advanced MXenes for Sustainable Applications (AMXSA), Santiago, Chile
| | - Max Marian
- Department of Mechanical and Metallurgical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute of Machine Design and Tribology (IMKT), Leibniz University Hannover, Garbsen, Germany
| |
Collapse
|
3
|
Ferrara V, Perfili C, Artemi G, Iacolino B, Sciandra F, Perini G, Fusco L, Pogorielov M, Delogu LG, Papi M, De Spirito M, Palmieri V. Advanced approaches in skin wound healing - a review on the multifunctional properties of MXenes in therapy and sensing. NANOSCALE 2024; 16:18684-18714. [PMID: 39312211 DOI: 10.1039/d4nr02843k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
In recent years, the use of MXenes, a class of two-dimensional materials composed of transition metal carbides, nitrides, or carbonitrides, has shown significant promise in the field of skin wound healing. This review explores the multifunctional properties of MXenes, focusing on their electrical conductivity, photothermal effects, and biocompatibility in this field. MXenes have been utilized to develop advanced wound healing devices such as hydrogels, patches, and smart bandages for healing examination. These devices offer enhanced antibacterial activity, promote tissue regeneration, and provide real-time monitoring of parameters. The review highlights the synthesis methods, chemical features, and biological effects of MXenes, emphasizing their role in innovative skin repair strategies. Additionally, it discusses the potential of MXene-based sensors for humidity, pH, and temperature monitoring, which are crucial for preventing infections and complications in wound healing. The integration of MXenes into wearable devices represents a significant advancement in wound management, promising improved clinical outcomes and enhanced quality of life for patients.
Collapse
Affiliation(s)
- Valeria Ferrara
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, L.go Agostino Gemelli 8, 00136 RM, Rome, Italy.
| | - Caterina Perfili
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, L.go Agostino Gemelli 8, 00136 RM, Rome, Italy.
| | - Giulia Artemi
- Istituto dei Sistemi Complessi, ISC-CNR, Via dei Taurini 19, 00185, RM, Rome, Italy
| | - Brunella Iacolino
- Istituto dei Sistemi Complessi, ISC-CNR, Via dei Taurini 19, 00185, RM, Rome, Italy
| | - Francesca Sciandra
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", SCITEC-CNR, c/o Istituto Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, L.go Vito, 1, 00168 RM, Rome, Italy
| | - Giordano Perini
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, L.go Agostino Gemelli 8, 00136 RM, Rome, Italy.
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, L.go Francesco Vito, 1, 00168 RM, Rome, Italy
| | - Laura Fusco
- ImmuneNanoLab, Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Padova, Italy
| | - Maksym Pogorielov
- Biomedical Research Centre, Sumy State University, Kharkivska Street, 116, 40007, Sumy, Ukraine
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas street, 3, Riga, 1004, Latvia
| | - Lucia Gemma Delogu
- RIC2D, Department of Biological Sciences, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates
- ImmuneNanoLab, Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Padova, Italy
| | - Massimiliano Papi
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, L.go Agostino Gemelli 8, 00136 RM, Rome, Italy.
- Istituto dei Sistemi Complessi, ISC-CNR, Via dei Taurini 19, 00185, RM, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, L.go Francesco Vito, 1, 00168 RM, Rome, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, L.go Agostino Gemelli 8, 00136 RM, Rome, Italy.
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, L.go Francesco Vito, 1, 00168 RM, Rome, Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, L.go Agostino Gemelli 8, 00136 RM, Rome, Italy.
- Istituto dei Sistemi Complessi, ISC-CNR, Via dei Taurini 19, 00185, RM, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, L.go Francesco Vito, 1, 00168 RM, Rome, Italy
| |
Collapse
|
4
|
Yang Q, Xu M, Fang H, Gao Y, Zhu D, Wang J, Chen Y. Targeting micromotion for mimicking natural bone healing by using NIPAM/Nb 2C hydrogel. Bioact Mater 2024; 39:41-58. [PMID: 38800718 PMCID: PMC11127186 DOI: 10.1016/j.bioactmat.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Natural fracture healing is most efficient when the fine-tuned mechanical force and proper micromotion are applied. To mimick this micromotion at the fracture gap, a near-infrared-II (NIR-II)-activated hydrogel was fabricated by integrating two-dimensional (2D) monolayer Nb2C nanosheets into a thermally responsive poly(N-isopropylacrylamide) (NIPAM) hydrogel system. NIR-II-triggered deformation of the NIPAM/Nb2C hydrogel was designed to generate precise micromotion for co-culturing cells. It was validated that micromotion at 1/300 Hz, triggering a 2.37-fold change in the cell length/diameter ratio, is the most favorable condition for the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Moreover, mRNA sequencing and verification revealed that micromotion-induced augmentation was mediated by Piezo1 activation. Suppression of Piezo1 interrupts the mechano-sensitivity and abrogates osteogenic differentiation. Calvarial and femoral shaft defect models were established to explore the biocompatibility and osteoinductivity of the Micromotion Biomaterial. A series of research methods, including radiography, micro-CT scanning, and immunohistochemical staining have been performed to evaluate biosafety and osteogenic efficacy. The in vivo results revealed that tunable micromotion strengthens the natural fracture healing process through the sequential activation of endochondral ossification, promotion of neovascularization, initiation of mineral deposition, and combinatory acceleration of full-thickness osseous regeneration. This study demonstrated that Micromotion Biomaterials with controllable mechanophysical characteristics could promote the osteogenic differentiation of BMSCs and facilitate full osseous regeneration. The design of NIPAM/Nb2C hydrogel with highly efficient photothermal conversion, specific features of precisely controlled micromotion, and bionic-mimicking bone-repair capabilities could spark a new era in the field of regenerative medicine.
Collapse
Affiliation(s)
- Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Mengqiao Xu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Haoyu Fang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jing Wang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
5
|
Bravo M, Fortuni B, Mulvaney P, Hofkens J, Uji-I H, Rocha S, Hutchison JA. Nanoparticle-mediated thermal Cancer therapies: Strategies to improve clinical translatability. J Control Release 2024; 372:751-777. [PMID: 38909701 DOI: 10.1016/j.jconrel.2024.06.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Despite significant advances, cancer remains a leading global cause of death. Current therapies often fail due to incomplete tumor removal and nonspecific targeting, spurring interest in alternative treatments. Hyperthermia, which uses elevated temperatures to kill cancer cells or boost their sensitivity to radio/chemotherapy, has emerged as a promising alternative. Recent advancements employ nanoparticles (NPs) as heat mediators for selective cancer cell destruction, minimizing damage to healthy tissues. This approach, known as NP hyperthermia, falls into two categories: photothermal therapies (PTT) and magnetothermal therapies (MTT). PTT utilizes NPs that convert light to heat, while MTT uses magnetic NPs activated by alternating magnetic fields (AMF), both achieving localized tumor damage. These methods offer advantages like precise targeting, minimal invasiveness, and reduced systemic toxicity. However, the efficacy of NP hyperthermia depends on many factors, in particular, the NP properties, the tumor microenvironment (TME), and TME-NP interactions. Optimizing this treatment requires accurate heat monitoring strategies, such as nanothermometry and biologically relevant screening models that can better mimic the physiological features of the tumor in the human body. This review explores the state-of-the-art in NP-mediated cancer hyperthermia, discussing available nanomaterials, their strengths and weaknesses, characterization methods, and future directions. Our particular focus lies in preclinical NP screening techniques, providing an updated perspective on their efficacy and relevance in the journey towards clinical trials.
Collapse
Affiliation(s)
- M Bravo
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia; Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - B Fortuni
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - P Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - J Hofkens
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; Max Planck Institute for Polymer Research, Mainz D-55128, Germany
| | - H Uji-I
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita ward, Sapporo 001-0020, Hokkaido, Japan
| | - S Rocha
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | - J A Hutchison
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
6
|
Wu C, Xia L, Feng W, Chen Y. MXene-Mediated Catalytic Redox Reactions for Biomedical Applications. Chempluschem 2024; 89:e202300777. [PMID: 38358020 DOI: 10.1002/cplu.202300777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/16/2024]
Abstract
Reactive oxygen species (ROS) play a crucial role in orchestrating a myriad of physiological processes within living systems. With the advent of materdicine, an array of nanomaterials has been intricately engineered to influence the redox equilibrium in biological milieus, thereby pioneering a distinctive therapeutic paradigm predicated on ROS-centric biochemistry. Among these, two-dimensional carbides, nitrides, and carbonitrides, collectively known as MXenes, stand out due to their multi-valent and multi-elemental compositions, large surface area, high conductivity, and pronounced local surface plasmon resonance effects, positioning them as prominent contributors in ROS modulation. This review aims to provide an overview of the advancements in harnessing MXenes for catalytic redox reactions in various biological applications, including tumor, anti-infective, and anti-inflammatory therapies. The emphasis lies on elucidating the therapeutic mechanism of MXenes, involving both pro-oxidation and anti-oxidation processes, underscoring the redox-related therapeutic applications facilitated by self-catalysis, photo-excitation, and sono-excitation properties of MXenes. Furthermore, this review highlights the existing challenges and outlines future development trends in leveraging MXenes for ROS-involving disease treatments, marking a significant step towards the integration of these nanomaterials into clinical practice.
Collapse
Affiliation(s)
- Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Zhejiang, 325088, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Zhejiang, 325088, China
| |
Collapse
|
7
|
Iravani S, Nazarzadeh Zare E, Makvandi P. Multifunctional MXene-Based Platforms for Soft and Bone Tissue Regeneration and Engineering. ACS Biomater Sci Eng 2024; 10:1892-1909. [PMID: 38466909 DOI: 10.1021/acsbiomaterials.3c01770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
MXenes and their composites hold great promise in the field of soft and bone tissue regeneration and engineering (TRE). However, there are challenges that need to be overcome, such as ensuring biocompatibility and controlling the morphologies of MXene-based scaffolds. The future prospects of MXenes in TRE include enhancing biocompatibility through surface modifications, developing multifunctional constructs, and conducting in vivo studies for clinical translation. The purpose of this perspective about MXenes and their composites in soft and bone TRE is to critically evaluate their potential applications and contributions in this field. This perspective aims to provide a comprehensive analysis of the challenges, advantages, limitations, and future prospects associated with the use of MXenes and their composites for soft and bone TRE. By examining the existing literature and research, the review seeks to consolidate the current knowledge and highlight the key findings and advancements in MXene-based TRE. It aims to contribute to the understanding of MXenes' role in promoting soft and bone TRE, addressing the challenges faced in terms of biocompatibility, morphology control, and tissue interactions.
Collapse
Affiliation(s)
- Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Avenue, Isfahan 81756-33551, Iran
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran
- Centre of Research Impact and Outreach, Chitkara University, Rajpura 140417, Punjab, India
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, Zhejiang, China
- Chitkara Centre for Research and Development, Chitkara University, Kalujhanda 174103, Himachal Pradesh, India
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| |
Collapse
|
8
|
Perini G, Palmieri V, Papait A, Augello A, Fioretti D, Iurescia S, Rinaldi M, Vertua E, Silini A, Torelli R, Carlino A, Musarra T, Sanguinetti M, Parolini O, De Spirito M, Papi M. Slow and steady wins the race: Fractionated near-infrared treatment empowered by graphene-enhanced 3D scaffolds for precision oncology. Mater Today Bio 2024; 25:100986. [PMID: 38375317 PMCID: PMC10875229 DOI: 10.1016/j.mtbio.2024.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Surgically addressing tumors poses a challenge, requiring a tailored, multidisciplinary approach for each patient based on the unique aspects of their case. Innovative therapeutic regimens combined to reliable reconstructive methods can contribute to an extended patient's life expectancy. This study presents a detailed comparative investigation of near-infrared therapy protocols, examining the impact of non-fractionated and fractionated irradiation regimens on cancer treatment. The therapy is based on the implantation of graphene oxide/poly(lactic-co-glycolic acid) three-dimensional printed scaffolds, exploring their versatile applications in oncology by the examination of pro-inflammatory cytokine secretion, immune response, and in vitro and in vivo tumor therapy. The investigation into cell death patterns (apoptosis vs necrosis) underlines the pivotal role of protocol selection underscores the critical influence of treatment duration on cell fate, establishing a crucial parameter in therapeutic decision-making. In vivo experiments corroborated the profound impact of protocol selection on tumor response. The fractionated regimen emerged as the standout performer, achieving a substantial reduction in tumor size over time, surpassing the efficacy of the non-fractionated approach. Additionally, the fractionated regimen exhibited efficacy also in targeting tumors in proximity but not in direct contact to the scaffolds. Our results address a critical gap in current research, highlighting the absence of a standardized protocol for optimizing the outcome of photodynamic therapy. The findings underscore the importance of personalized treatment strategies in achieving optimal therapeutic efficacy for precision cancer therapy.
Collapse
Affiliation(s)
- Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185, Rome, Italy
| | - Andrea Papait
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
- Dipartimento di Scienze della Vita e Salute Pubblica, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Alberto Augello
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
| | - Daniela Fioretti
- Istituto di Farmacologia Traslazionale (IFT), Dipartimento di Scienze Biomediche, CNR, 00133, Rome, Italy
| | - Sandra Iurescia
- Istituto di Farmacologia Traslazionale (IFT), Dipartimento di Scienze Biomediche, CNR, 00133, Rome, Italy
| | - Monica Rinaldi
- Istituto di Farmacologia Traslazionale (IFT), Dipartimento di Scienze Biomediche, CNR, 00133, Rome, Italy
| | - Elsa Vertua
- Centro di Ricerca Eugenia Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124, Brescia, Italy
| | - Antonietta Silini
- Centro di Ricerca Eugenia Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124, Brescia, Italy
| | - Riccardo Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Angela Carlino
- Dipartimento di Medicina e Chirurgia, Università Internazionale San Camillo per la Salute e le Scienze Mediche (Unicamillus), 00131, Rome, Italy
| | - Teresa Musarra
- Unità di Patologia Testa e Collo, Polmone e Endocrinologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ornella Parolini
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
- Dipartimento di Scienze della Vita e Salute Pubblica, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
| |
Collapse
|
9
|
Friggeri G, Moretti I, Amato F, Marrani AG, Sciandra F, Colombarolli SG, Vitali A, Viscuso S, Augello A, Cui L, Perini G, De Spirito M, Papi M, Palmieri V. Multifunctional scaffolds for biomedical applications: Crafting versatile solutions with polycaprolactone enriched by graphene oxide. APL Bioeng 2024; 8:016115. [PMID: 38435469 PMCID: PMC10908559 DOI: 10.1063/5.0184933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
The pressing need for multifunctional materials in medical settings encompasses a wide array of scenarios, necessitating specific tissue functionalities. A critical challenge is the occurrence of biofouling, particularly by contamination in surgical environments, a common cause of scaffolds impairment. Beyond the imperative to avoid infections, it is also essential to integrate scaffolds with living cells to allow for tissue regeneration, mediated by cell attachment. Here, we focus on the development of a versatile material for medical applications, driven by the diverse time-definite events after scaffold implantation. We investigate the potential of incorporating graphene oxide (GO) into polycaprolactone (PCL) and create a composite for 3D printing a scaffold with time-controlled antibacterial and anti-adhesive growth properties. Indeed, the as-produced PCL-GO scaffold displays a local hydrophobic effect, which is translated into a limitation of biological entities-attachment, including a diminished adhesion of bacteriophages and a reduction of E. coli and S. aureus adhesion of ∼81% and ∼69%, respectively. Moreover, the ability to 3D print PCL-GO scaffolds with different heights enables control over cell distribution and attachment, a feature that can be also exploited for cellular confinement, i.e., for microfluidics or wound healing applications. With time, the surface wettability increases, and the scaffold can be populated by cells. Finally, the presence of GO allows for the use of infrared light for the sterilization of scaffolds and the disruption of any bacteria cell that might adhere to the more hydrophilic surface. Overall, our results showcase the potential of PCL-GO as a versatile material for medical applications.
Collapse
Affiliation(s)
| | - I. Moretti
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - F. Amato
- Dipartimento di Chimica, Università di Roma “La Sapienza,” p.le A. Moro 5, I-00185 Roma, Italy
| | - A. G. Marrani
- Dipartimento di Chimica, Università di Roma “La Sapienza,” p.le A. Moro 5, I-00185 Roma, Italy
| | - F. Sciandra
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”-SCITEC (CNR), C/O Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168-Roma, Italy
| | - S. G. Colombarolli
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”-SCITEC (CNR), C/O Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168-Roma, Italy
| | - A. Vitali
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”-SCITEC (CNR), C/O Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168-Roma, Italy
| | - S. Viscuso
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”-SCITEC (CNR), C/O Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168-Roma, Italy
| | | | - L. Cui
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | | | - M. De Spirito
- Authors to whom correspondence should be addressed: and
| | - M. Papi
- Authors to whom correspondence should be addressed: and
| | | |
Collapse
|
10
|
Lorencova L, Kasak P, Kosutova N, Jerigova M, Noskovicova E, Vikartovska A, Barath M, Farkas P, Tkac J. MXene-based electrochemical devices applied for healthcare applications. Mikrochim Acta 2024; 191:88. [PMID: 38206460 PMCID: PMC10784403 DOI: 10.1007/s00604-023-06163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
The initial part of the review provides an extensive overview about MXenes as novel and exciting 2D nanomaterials describing their basic physico-chemical features, methods of their synthesis, and possible interfacial modifications and techniques, which could be applied to the characterization of MXenes. Unique physico-chemical parameters of MXenes make them attractive for many practical applications, which are shortly discussed. Use of MXenes for healthcare applications is a hot scientific discipline which is discussed in detail. The article focuses on determination of low molecular weight analytes (metabolites), high molecular weight analytes (DNA/RNA and proteins), or even cells, exosomes, and viruses detected using electrochemical sensors and biosensors. Separate chapters are provided to show the potential of MXene-based devices for determination of cancer biomarkers and as wearable sensors and biosensors for monitoring of a wide range of human activities.
Collapse
Affiliation(s)
- Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic.
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Natalia Kosutova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Monika Jerigova
- International Laser Center, Slovak Center of Scientific and Technical Information, Ilkovicova 3, 841 04, Bratislava, Slovak Republic
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Mlynska Dolina, 842 15, Bratislava, Slovak Republic
| | - Eva Noskovicova
- International Laser Center, Slovak Center of Scientific and Technical Information, Ilkovicova 3, 841 04, Bratislava, Slovak Republic
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Mlynska Dolina, 842 15, Bratislava, Slovak Republic
| | - Alica Vikartovska
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Marek Barath
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Pavol Farkas
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic.
| |
Collapse
|
11
|
Perini G, Palmieri V, Friggeri G, Augello A, De Spirito M, Papi M. Carboxylated graphene quantum dots-mediated photothermal therapy enhances drug-membrane permeability, ROS production, and the immune system recruitment on 3D glioblastoma models. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
AbstractGraphene quantum dots (GQDs) are biocompatible nanoparticles employed in biomedical field, thanks to their size and photophysical properties. GQDs have shown the capability to cross biological barriers, including the blood–brain barrier, which makes them promising agents for brain diseases therapy. It has been shown that surface-functionalized GQDs enhance membrane fluidity and intracellular uptake, exerting a synergistic effect with antitumor drugs at subtherapeutic doses. Here, we tested GQDs effects in combination with chemotherapeutic agents doxorubicin and temozolomide, on a complex 3D spheroid model of glioblastoma. We observed that the capability of GQDs to absorb and convert near-infrared light into heat is a key factor in membrane permeability enhancement on 3D model. This non-invasive therapeutic strategy named photothermal therapy (PTT), combined to chemotherapy at subtherapeutic doses, significantly increased the effect of antitumor drugs by reducing tumor growth and viability. Furthermore, the increase in membrane permeability due to GQDs-mediated PTT enhanced the release of reactive oxygen species with strong migration of the immune system towards irradiated cancer spheroids. Our data indicate that the increase in membrane permeability can enhance the efficacy of antitumor drugs at subtherapeutic doses against glioblastoma, reducing side effects, and directing immune response, ultimately improving quality of life for patients.
Collapse
|
12
|
Pektas H, Demidov Y, Ahvan A, Abie N, Georgieva VS, Chen S, Farè S, Brachvogel B, Mathur S, Maleki H. MXene-Integrated Silk Fibroin-Based Self-Assembly-Driven 3D-Printed Theragenerative Scaffolds for Remotely Photothermal Anti-Osteosarcoma Ablation and Bone Regeneration. ACS MATERIALS AU 2023; 3:711-726. [PMID: 38089660 PMCID: PMC10636780 DOI: 10.1021/acsmaterialsau.3c00040] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 12/30/2023]
Abstract
Aiming to address the bone regeneration and cancer therapy functionalities in one single material, in this study, we developed a dual-functional theragenerative three-dimensional (3D) aerogel-based composite scaffold from hybridization of photo-cross-linked silk fibroin (SF) biopolymer with MXene (Ti3C2) two-dimensional (2D) nanosheets. To fabricate the scaffold, we first develop a dual-cross-linked SF-based aerogel scaffold through 3D printing and photo-cross-linking of the self-assembly-driven methacrylate-modified SF (SF-MA) gel with controlled pore size, macroscopic geometry, and mechanical stability. In the next step, to endow a remotely controlled photothermal antiosteosarcoma ablation function to fabricated aerogel scaffold, MXene 2D nanosheets with strong near-infrared (NIR) photon absorption properties were integrated into the 3D-printed scaffolds. While 3D-printed MXene-modified dual-cross-linked SF composite scaffolds can mediate the in vitro growth and proliferation of preosteoblastic cell lines, they also endow a strong photothermal effect upon remote irradiation with NIR laser but also significantly stimulate bone mineral deposition on the scaffold surface. Additionally, besides the local release of the anticancer model drug, the generated heat (45-53 °C) mediated the photothermal ablation of cancer cells. The developed aerogel-based composites and chosen therapeutic techniques are thought to render a significant breakthrough in biomaterials' future clinical applications.
Collapse
Affiliation(s)
- Hadice
Kübra Pektas
- Department
of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
| | - Yan. Demidov
- Department
of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
| | - Aslin Ahvan
- Department
of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
| | - Nahal Abie
- Department
of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
- Department
of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Milano 20054, Italy
| | - Veronika S. Georgieva
- Experimental
Neonatology, Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne 50939, Germany
- Center
for Biochemistry, Medical Faculty, University
of Cologne, Cologne 50923, Germany
| | - Shiyi Chen
- Department
of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
| | - Silvia Farè
- Department
of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Milano 20054, Italy
| | - Bent Brachvogel
- Experimental
Neonatology, Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne 50939, Germany
- Center
for Biochemistry, Medical Faculty, University
of Cologne, Cologne 50923, Germany
| | - Sanjay Mathur
- Department
of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
| | - Hajar Maleki
- Department
of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
- Center
for Molecular Medicine Cologne, CMMC Research Center, Robert-Koch-Str. 21, Cologne 50931, Germany
| |
Collapse
|
13
|
Zarepour A, Karasu Ç, Mir Y, Nematollahi MH, Iravani S, Zarrabi A. Graphene- and MXene-based materials for neuroscience: diagnostic and therapeutic applications. Biomater Sci 2023; 11:6687-6710. [PMID: 37646462 DOI: 10.1039/d3bm01114c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
MXenes and graphene are two-dimensional materials that have gained increasing attention in neuroscience, particularly in sensing, theranostics, and biomedical engineering. Various composites of graphene and MXenes with fascinating thermal, optical, magnetic, mechanical, and electrical properties have been introduced to develop advanced nanosystems for diagnostic and therapeutic applications, as exemplified in the case of biosensors for neurotransmitter detection. These biosensors display high sensitivity, selectivity, and stability, making them promising tools for neuroscience research. MXenes have been employed to create high-resolution neural interfaces for neuroelectronic devices, develop neuro-receptor-mediated synapse devices, and stimulate the electrophysiological maturation of neural circuits. On the other hand, graphene/derivatives exhibit therapeutic applicability in neuroscience, as exemplified in the case of graphene oxide for targeted delivery of therapeutic agents to the brain. While MXenes and graphene have potential benefits in neuroscience, there are also challenges/limitations associated with their use, such as toxicity, environmental impacts, and limited understanding of their properties. In addition, large-scale production and commercialization as well as optimization of reaction/synthesis conditions and clinical translation studies are very important aspects. Thus, it is important to consider the use of these materials in neuroscience research and conduct further research to obtain an in-depth understanding of their properties and potential applications. By addressing issues related to biocompatibility, long-term stability, targeted delivery, electrical interfaces, scalability, and cost-effectiveness, MXenes and graphene have the potential to greatly advance the field of neuroscience and pave the way for innovative diagnostic and therapeutic approaches for neurological disorders. Herein, recent advances in therapeutic and diagnostic applications of graphene- and MXene-based materials in neuroscience are discussed, focusing on important challenges and future prospects.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey.
| | - Çimen Karasu
- Cellular Stress Response and Signal Transduction Research Laboratory, Department of Medical Pharmacology, Faculty of Medicine, Gazi University, 06500 Ankara, Turkey
| | - Yousof Mir
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Hadi Nematollahi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey.
| |
Collapse
|
14
|
Kim D, Paik J, Kim H. Effect of gold nanoparticles distribution radius on photothermal therapy efficacy. Sci Rep 2023; 13:12135. [PMID: 37495612 PMCID: PMC10371995 DOI: 10.1038/s41598-023-39040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Lasers are used in various fields, however, in the medical field, they are mainly used for incision or chemotherapy. Photothermal therapy (PTT) is an anti-cancer treatment technique that uses lasers and the photothermal effect to increase the temperature of tumor tissue and induce its death. In this study, the therapeutic effect of PTT using gold nanoparticles as a photothermal converter was analyzed numerically for the occurrence of squamous cell carcinoma inside a skin section consisting four layers. Numerical modeling was implemented to calculate the temperature distribution inside the biological tissue while varying the distribution radius of gold nanoparticles in the tumor tissue, the number of injections, and the intensity of the irradiating laser. For the given situation, the optimal treatment effect was observed when the distribution radius ratio of the injected gold nanoparticles (GNPs) was 1, the number of injections was 7, and the intensity of the irradiated laser was 52 mW. Three apoptotic variables were used to quantitively evaluate the effect of PTT in each case and thus suggest the optimal treatment effect. However, although the temperature range at which apoptosis occurs is known, the maintenance of that temperature range is still under research and the temporal influence of apoptosis remains to be determined.
Collapse
Affiliation(s)
- Donghyuk Kim
- Department of Mechanical Engineering, Ajou University, Gyeonggi-Do, Suwon-Si, 16499, Korea
| | - Jeeyong Paik
- Department of Mechanical Engineering, Ajou University, Gyeonggi-Do, Suwon-Si, 16499, Korea
| | - Hyunjung Kim
- Department of Mechanical Engineering, Ajou University, Gyeonggi-Do, Suwon-Si, 16499, Korea.
| |
Collapse
|
15
|
Khabisi MA, Shirini F, Shirini K, Khorsand H, Marian M, Rosenkranz A. Additively Manufactured MAX- and MXene-Composite Scaffolds for Bone Regeneration- Recent Advances and Future Perspectives. Colloids Surf B Biointerfaces 2023; 225:113282. [PMID: 37003247 DOI: 10.1016/j.colsurfb.2023.113282] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Human bones can suffer from various injuries, such as fractures, bone cancer, among others, which has initiated research activities towards bone replacement using advanced bio-materials. However, it is still challenging to design bio-scaffolds with bone-inducing agents to regenerate bone defects. In this regard, MAX-phases and MXenes (early transition metal carbides and/or nitrides) have gained notable attention due to their unique hydrophilicity, bio-compatibility, chemical stability, and photothermal properties. They can be used in bone tissue engineering as a suitable replacement or reinforcement for common bio-materials (polymers, bio-glasses, metals, or hydroxyapatite). To fabricate bio-scaffolds, additive manufacturing is prospective due to the possibility of controlling porosity and creating complex shapes with high resolution. Until now, no comprehensive article summarizing the existing state-of-the-art related to bone scaffolds reinforced by MAX-phases and MXenes fabricated by additive manufacturing has been published. Therefore, our article addresses the reasons for using bone scaffolds and the importance of choosing the most suitable material. We critically discuss the recent developments in bone tissue engineering and regenerative medicine using MAX-phases and MXenes with a particular emphasis on manufacturing, mechanical properties, and bio-compatibility. Finally, we discuss the existing challenges and bottlenecks of bio-scaffolds reinforced by MAX-phases and MXenes before deriving their future potential.
Collapse
|
16
|
Parra-Muñoz N, Soler M, Rosenkranz A. Covalent functionalization of MXenes for tribological purposes - a critical review. Adv Colloid Interface Sci 2022; 309:102792. [DOI: 10.1016/j.cis.2022.102792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/01/2022]
|
17
|
Iravani P, Iravani S, Varma RS. MXene-Chitosan Composites and Their Biomedical Potentials. MICROMACHINES 2022; 13:1383. [PMID: 36144006 PMCID: PMC9500609 DOI: 10.3390/mi13091383] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/21/2023]
Abstract
Today, MXenes with fascinating electronic, thermal, optical, and mechanical features have been broadly studied for biomedical applications, such as drug/gene delivery, photothermal/photodynamic therapy, antimicrobials/antivirals, sensing, tissue engineering, and regenerative medicine. In this context, various MXene-polymer composites have been designed to improve the characteristics such as physiological stability, sustained/controlled release behaviors, biodegradability, biocompatibility, selectivity/sensitivity, and functionality. Chitosan with advantages of ease of modification, biodegradability, antibacterial activities, non-toxicity, and biocompatibility can be considered as attractive materials for designing hybridized composites together with MXenes. These hybrid composites ought to be further explored for biomedical applications because of their unique properties such as high photothermal conversion efficiency, improved stability, selectivity/sensitivity, stimuli-responsiveness behaviors, and superior antibacterial features. These unique structural, functional, and biological attributes indicate that MXene-chitosan composites are attractive alternatives in biomedical engineering. However, several crucial aspects regarding the surface functionalization/modification, hybridization, nanotoxicological analyses, long-term biosafety assessments, biocompatibility, in vitro/in vivo evaluations, identification of optimization conditions, implementation of environmentally-benign synthesis techniques, and clinical translation studies are still need to be examined by researchers. Although very limited studies have revealed the great potentials of MXene-chitosan hybrids in biomedicine, the next steps should be toward the extensive research and detailed analyses in optimizing their properties and improving their functionality with a clinical and industrial outlook. Herein, recent developments in the use of MXene-chitosan composites with biomedical potentials are deliberated, with a focus on important challenges and future perspectives. In view of the fascinating properties and multifunctionality of MXene-chitosan composites, these hybrid materials can open significant new opportunities in the future for bio- and nano-medicine arena.
Collapse
Affiliation(s)
- Parisa Iravani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|