1
|
Fan W, Wang C, Xu K, Liang H, Chi Q. Ccl5 + Macrophages drive pro-inflammatory responses and neutrophil recruitment in sepsis-associated acute kidney injury. Int Immunopharmacol 2024; 143:113339. [PMID: 39418726 DOI: 10.1016/j.intimp.2024.113339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Sepsis leads to dysfunctional immune responses with multi-organ damage, and acute kidney injury (AKI) is a common complication of sepsis. To gain a deeper understanding of the specific underlying mechanisms of sepsis, we investigated the effects of specific macrophages on sepsis. To gain a deeper understanding of the specific underlying mechanisms of sepsis, we investigated the effects of specific macrophages on sepsis. Single-cell sequencing of a mouse model of endotoxemia revealed that sepsis is a common complication of sepsis. Single-cell sequencing of a mouse model of endotoxemia revealed that the emerging macrophage subpopulation Ccl5+ Mac was significantly pro-inflammatory, activating a large number of pathways activating a large number of pathways associated with immune response and inflammatory response, including IL6-JAK-STAT3 signaling, TGF-β signaling, and inflammatory response. Interestingly, we found that Ccl5+ Mac recruits neutrophil through CCL5-CCR1 ligand receptor pairs by cellular communication analysis thereby further affecting sepsis. We therefore hypothesize that this macrophage subpopulation is actively involved in the underlying molecular mechanisms of AKI. We therefore hypothesize that this macrophage subpopulation is actively involved in the underlying molecular mechanisms of AKI in sepsis and provide valuable insights.
Collapse
Affiliation(s)
- Wenlin Fan
- Department of Engineering Mechanics, School of Physics and Mechanics, Wuhan University of Technology, Wuhan, China
| | - Chunli Wang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Kang Xu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Huaping Liang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China.
| | - Qingjia Chi
- Department of Engineering Mechanics, School of Physics and Mechanics, Wuhan University of Technology, Wuhan, China.
| |
Collapse
|
2
|
Guo Y, Qiu Y, Xue T, Yan P, Zhao W, Wang M, Liu C, Zhang N. Association between admission baseline blood potassium levels and all-cause mortality in patients with acute kidney injury combined with sepsis: A retrospective cohort study. PLoS One 2024; 19:e0309764. [PMID: 39565797 PMCID: PMC11578480 DOI: 10.1371/journal.pone.0309764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/17/2024] [Indexed: 11/22/2024] Open
Abstract
INTRODUCTION Imbalances in blood potassium (K) homeostasis is a significant contributor to the emergence of severe complications, especially among critically ill patients. Hypokalemia and hyperkalemia are both associated with an increased risk of adverse events. However, it is not known about the impact of blood K levels on risk of intensive care units (ICU) mortality for Acute kidney injury (AKI) combined with sepsis patients. This study aimed to explore the relationship between admission blood K levels and ICU 30-day mortality in patients with AKI combined with sepsis. METHODS We selected patients diagnosed with AKI and sepsis on their first ICU admission from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. The first blood K levels within 24 hours of admission were categorized into three groups according to tertiles (T1 < 3.9 mmol/L, 3.9 ≤ T2 < 4.5 mmol/L, and T3 ≥ 4.5 mmol/L), with T2 serving as the reference. We examined the association between blood K levels and ICU 30-day mortality using accelerated failure time (AFT) models and survival analysis. RESULTS A total of 8,242 ICU patients with AKI combined with sepsis were included. In multivariate AFT models, each 1 mmol/L increase in blood K levels was associated with a 13% increase in the risk of ICU 30-day mortality (p < 0.001, 95% confidence interval (CI): 1.06-1.20). Extended multivariable AFT models showed that, compared to the middle category, patients with high blood K levels (≥ 4.5 mmol/L) were associated with all-cause mortality (p = 0.002, adjusted hazard ratio (HR) = 1.22, 95% CI: 1.08-1.38), whereas those with low blood K levels (< 3.9 mmol/L) showed no significant difference (p = 0.385, adjusted HR = 1.06, 95% CI: 0.93-1.21). Kaplan-Meier curves indicated that patients with high blood K levels had higher mortality, and those with middle blood potassium levels (3.9 ≤ K < 4.5 mmol/L) had the lowest mortality. CONCLUSION The admission baseline blood K levels were significantly associated with ICU 30-day mortality in intensive care patients suffering from AKI in conjunction with sepsis. Therefore, immediate and careful correction of blood potassium imbalances may prove to be a crucial approach in improving outcomes for these patients.
Collapse
Affiliation(s)
- Yifan Guo
- Department of Endocrinology and Nephropathy, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Qiu
- Department of Endocrinology, Miyun Hospital District, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Taiqi Xue
- Department of Endocrinology and Nephropathy, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Pu Yan
- Department of Endocrinology and Nephropathy, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjing Zhao
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Mengdi Wang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Cheng Liu
- Department of Human Anatomy, Program for Cancer and Cell Biology, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ning Zhang
- Department of Endocrinology and Nephropathy, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Ergin B, Kutucu DE, Kapucu A, van Dam W, Moretto L, Heyman P, Ince C. Hemoadsorption improves kidney microcirculatory oxygenation and oxygen consumption, ameliorates tubular injury, and improves kidney function in a rat model of sepsis-induced AKI. Sci Rep 2024; 14:28552. [PMID: 39558075 PMCID: PMC11574062 DOI: 10.1038/s41598-024-79997-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024] Open
Abstract
Microcirculatory dysfunction, hypoxia, and inflammation are considered to be central in the pathogenesis of sepsis-induced acute kidney injury (AKI). In this experimental study, we hypothesized that extracorporeal removal of inflammatory cytokines by hemoadsorption (HA) therapy may mitigate renal injury associated with sepsis-induced AKI. To this end, we investigated renal microcirculatory oxygenation and perfusion, oxygen consumption, lactate, systemic hemodynamic variables, tubular cell integrity, inflammatory mediators, and kidney function in a rat model of septic AKI elicited by endotoxin infusion. Three groups of rats were investigated on extracorporeal circulation: HA only, LPS, and LPS + HA. Endotoxin infusion reduced cortex microcirculatory oxygenation and raised creatinine and lactate levels. Renal microcirculatory oxygenation, measured by two independent techniques (phosphorescence (µPO2) and spectrophotometry/Doppler (µHbO2sat and [Formula: see text])), was ameliorated by HA therapy. The renal oxygen consumption, lactate and creatinine levels were restored in the LPS + HA group. A reduced amount of injured tubular cells was found in histological analysis of the kidneys. This experimental study demonstrated an improvement in multiple determinants of kidney oxygenation, damage, and systemic blood perfusion by HA in a clinically relevant rat model of septic AKI. Further studies are needed to optimize and support the clinical use of HA as a renal protective strategy.
Collapse
Affiliation(s)
- Bülent Ergin
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Deniz Erol Kutucu
- Department of Zoology, Faculty of Science, University of Istanbul, Istanbul, Turkey
| | - Aysegul Kapucu
- Department of Zoology, Faculty of Science, University of Istanbul, Istanbul, Turkey
| | - Wijnie van Dam
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lorenza Moretto
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Medicine and Surgery, Universita Degli Studi Di Milano-Bicocca, Milano, Italy
| | - Paul Heyman
- Department of Medical Technical Innovation & Development (MIO), Amsterdam UMC, Amsterdam, The Netherlands
| | - Can Ince
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Garduno A, Martín-Loeches I. Targeting Sepsis: Disease Tolerance, Immune Resilience, and Compartmentalized Immunity. Biomedicines 2024; 12:2420. [PMID: 39594987 PMCID: PMC11592085 DOI: 10.3390/biomedicines12112420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
Introduction: Sepsis remains a major contributor to critical care mortality and morbidity worldwide. Despite advances in understanding its complex immunopathology, the compartmentalized nature of immune responses across different organs has yet to be fully translated into targeted therapies. This review explores the burden of sepsis on organ-specific immune dysregulation, immune resilience, and epigenetic reprogramming, emphasizing translational challenges and opportunities. Methods: We implemented a systematic literature search strategy, incorporating data from studies published between 2010 and 2024, to evaluate the role of molecular profiling techniques, including transcriptomics and epigenetic markers, in assessing the feasibility of targeted therapies. Results: Sepsis-induced immune dysregulation manifests differently in various organs, with lung, heart, liver, and kidney responses driven by unique local immune environments. Organ-specific biomarkers, such as the Spns2/S1P axis in lung macrophages, mitochondrial dysfunction in the heart, proenkephalin for early acute kidney injury (AKI), and adrenomedullin for predicting multi-organ failure, offer promising avenues for timely intervention. Furthermore, immune resilience, particularly through regulatory T-cell modulation and cytokine targeting (e.g., IL-18), is crucial for long-term recovery. Epigenetic mechanisms, including histone modification and trained immunity, present opportunities for reprogramming immune responses but require more precision to avoid unintended inflammatory sequelae. Conclusions: A deeper understanding of compartmentalized immune responses and the dynamic immune landscape in sepsis is critical for developing precision therapies. Real-time immune monitoring and organ-targeted interventions could revolutionize sepsis management, although significant barriers remain in clinical translation. Further research is required to establish biomarkers and treatment timing that optimize therapeutic efficacy while minimizing systemic risks.
Collapse
Affiliation(s)
- Alexis Garduno
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James’ Hospital, D08 NHY1 Dublin, Ireland;
| | - Ignacio Martín-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James’ Hospital, D08 NHY1 Dublin, Ireland;
- Hospital Clinic, Universitat de Barcelona, IDIBAPS, CIBERES, 08036 Barcelona, Spain
| |
Collapse
|
5
|
Bi Z, Lv X, Zhang Z, Cai L, Zhang M, Li W, Ding Y, Liu H, Yang K, Zhu Y, Liu G, Wang G. Emerging fatal gout disease in Chinese goslings linked to acute kidney injury induced by novel goose astrovirus infection. Front Cell Infect Microbiol 2024; 14:1470808. [PMID: 39359936 PMCID: PMC11445172 DOI: 10.3389/fcimb.2024.1470808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
A novel goose astrovirus (GAstV) has broken out across China in recent years, causing widespread damage to the poultry industry. In goslings infected with GAstV, the leading cause of death is visceral gout. However, our understanding of the mechanism of gout formation in GAstV infection is largely inadequate. The aim of this study was to examine the pathogenicity of a GAstV strain and explore the molecular mechanisms of visceral gout caused by viral infection in goslings. The virulent GAstV strain HR2105/1 was effectively isolated from the visceral tissue of goslings in gout-affected areas. The whole genome of the HR2105/1 strain was sequenced and analyzed. Subsequently, we established a gosling gout models with experimental GAstV infection. Finally, we conducted a study on the mechanism of GAstV induced acute kidney injury. Phylogenetic analysis of the complete genome sequence showed that it was closely related to the strain circulating in China since 2016, and it was grouped within the GAstV-1 cluster. The clinical signs were reproduced by experimental infection of healthy goslings with the isolated strain and were found to be similar to those reported in clinical cases. Moreover, the virus exhibits strong renal tropism. Infection with the GAstV strain HR2105/1 was found to cause acute kidney injury, as evidenced by increased levels of uric acid and creatinine as well as severe pathological damage. Mechanistic experiments with Masson and Picrosirius Red staining revealed fibrosis in renal tissues after GAstV infection. Furthermore, TUNEL staining revealed that GAstV infection triggered renal cell apoptosis. Additionally, RT-qPCR revealed that GAstV infection caused an excessive inflammatory response by upregulating the expression of IL-1β, IL-6, IL-10, TGF-β, and iNOS in renal tissues. Overall, our findings demonstrate that GAstV infection causes renal damage by inducing renal cell apoptosis, fibrosis, and excessive inflammatory response, which subsequently leads to hyperuricemia and lethal visceral gout formation. This is the first systematic study on the etiology of lethal gout in goslings caused by GAstV infection, and we believe that the findings can guide vaccine development and therapeutic targets for GAstV-associated renal diseases.
Collapse
Affiliation(s)
- Zhuangli Bi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xuan Lv
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zicheng Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Linying Cai
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Miao Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wanxiao Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingying Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Huiwen Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Kang Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yingqi Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guijun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Dong L, Xie YL, Zhang RT, Hu QY. Models of sepsis-induced acute kidney injury. Life Sci 2024; 352:122873. [PMID: 38950643 DOI: 10.1016/j.lfs.2024.122873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Sepsis-induced acute kidney injury (S-AKI) is one of the most serious life-threatening complications of sepsis. The pathogenesis of S-AKI is complex and there is no effective specific treatment. Therefore, it is crucial to choose suitable preclinical models that are highly similar to human S-AKI to study the pathogenesis and drug treatment. In this review, we summarized recent advances in the development models of S-AKI, providing reference for the reasonable selection of experimental models as basic research and drug development of S-AKI.
Collapse
Affiliation(s)
- Liang Dong
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Yi-Ling Xie
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Ren-Tao Zhang
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Qiong-Ying Hu
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China.
| |
Collapse
|
7
|
Hassan NF, El-Ansary MR, Selim HMRM, Ousman MS, Khattab MS, El-Ansary MRM, Gad ES, Moursi SMM, Gohar A, Gowifel AMH. Alirocumab boosts antioxidant status and halts inflammation in rat model of sepsis-induced nephrotoxicity via modulation of Nrf2/HO-1, PCSK9/HMGB1/NF-ᴋB/NLRP3 and Fractalkine/CX3CR1 hubs. Biomed Pharmacother 2024; 177:116929. [PMID: 38889644 DOI: 10.1016/j.biopha.2024.116929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024] Open
Abstract
Acute kidney injury (AKI) is a devastating consequence of sepsis, accompanied by high mortality rates. It was suggested that inflammatory pathways are closely linked to the pathogenesis of lipopolysaccharide (LPS)-induced AKI. Inflammatory signaling, including PCSK9, HMGB1/RAGE/TLR4/MYD88/NF-κB, NLRP3/caspase-1 and Fractalkine/CX3CR1 are considered major forerunners in this link. Alirocumab, PCSK9 inhibitor, with remarkable anti-inflammatory features. Accordingly, this study aimed to elucidate the antibacterial effect of alirocumab against E. coli in vitro. Additionally, evaluation of the potential nephroprotective effects of alirocumab against LPS-induced AKI in rats, highlighting the potential underlying mechanisms involved in these beneficial actions. Thirty-six adult male Wistar rats were assorted into three groups (n=12). Group I; was a normal control group, whereas sepsis-mediated AKI was induced in groups II and III through single-dose intraperitoneal injection of LPS on day 16. In group III, animals were given alirocumab. The results revealed that LPS-induced AKI was mitigated by alirocumab, evidenced by amelioration in renal function tests (creatinine, cystatin C, KIM-1, and NGAL); oxidative stress biomarkers (Nrf2, HO-1, TAC, and MDA); apoptotic markers and renal histopathological findings. Besides, alirocumab pronouncedly hindered LPS-mediated inflammatory response, confirmed by diminishing HMGB1, TNF-α, IL-1β, and caspase-1 contents; the gene expression of PCSK9, RAGE, NF-ᴋB and Fractalkine/CX3CR1, along with mRNA expression of TLR4, MYD88, and NLRP3. Regarding the antibacterial actions, results showed that alirocumab displayed potential anti-bacterial activity against pathogenic gram-negative E. coli. In conclusion, alirocumab elicited nephroprotective activities against LPS-induced AKI via modulation of Nrf2/HO-1, PCSK9, HMGB1/RAGE/TLR4/MYD88/NF-ᴋB/NLRP3/Caspase-1, Fractalkine/CX3R1 and apoptotic axes.
Collapse
Affiliation(s)
- Noha F Hassan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| | - Mona R El-Ansary
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia; Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt.
| | - Mona S Ousman
- Emergency Medical Services, College of Applied Sciences, AlMaarefa University, P.O. Box 71666, Riyadh, Saudi Arabia.
| | - Marwa S Khattab
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza 1211, Egypt.
| | - Mahmoud R M El-Ansary
- Medical Microbiology and Immunology Department, Faculty of Medicine, Misr University for Science and Technology (MUST), Giza 12566, Egypt.
| | - Enas S Gad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia; Department of Pharmacology and Toxicology, faculty of Pharmacy, Sinai University-Kantara branch, Ismailia, Egypt
| | - Suzan M M Moursi
- Medical Physiology Department, Faculty of Medicine, Zagazig University, 44519, Egypt.
| | - Asmaa Gohar
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University, sixth of October city, Giza, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City, Suez, 43713, Egypt.
| | - Ayah M H Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| |
Collapse
|
8
|
Yavuz A, Küçük A, Ergörün Aİ, Dursun AD, Yiğman Z, Alkan M, Arslan M. Evaluation of the efficacy of silymarin and dexmedetomidine on kidney and lung tissue in the treatment of sepsis in rats with cecal perforation. Exp Ther Med 2024; 27:242. [PMID: 38655036 PMCID: PMC11036365 DOI: 10.3892/etm.2024.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/27/2023] [Indexed: 04/26/2024] Open
Abstract
Sepsis is a systemic inflammatory response syndrome that develops in the host against microorganisms. This response develops away from the primary infection site and results in end-organ damage. The present study aimed to investigate the protective and therapeutic effects on lung and kidney tissue of silymarin (S) and dexmedetomidine (DEX) applied 1 h before and after sepsis induced by the cecal ligation and puncture (CLP) method in rats. A total of 62 rats was randomly divided into eight groups: i) Control (n=6); ii) cecal perforation (CLP; n=8); iii) S + CLP (n=8; S + CLP; S administered 1 h before CPL); iv) CLP + S (n=8; S administered 1 h after CLP); v) DEX + CLP (n=8; D + CLP; DEX administered 1 h before CLP); vi) CLP + D (n=8; DEX administered 1 h after CLP); vii) SD + CLP (n=8; S and DEX administered 1 h before CLP) and viii) CLP + SD (n=8; S and DEX administered 1 h after CLP). After the cecum filled with stool, it was tied with 3/0 silk under the ileocecal valve and the anterior surface of the cecum was punctured twice with an 18-gauge needle. A total of 100 mg/kg silymarin and 100 µg/kg DEX were administered intraperitoneally to the treatment groups. Lung and kidney tissue samples were collected to evaluate biochemical and histopathological parameters. In the histopathological examination, all parameters indicating kidney injury; interstitial edema, peritubular capillary dilatation, vacuolization, ablation of tubular epithelium from the basement membrane, loss of brush border in the proximal tubule epithelium, cell swelling and nuclear defragmentation; were increased in the CLP compared with the control group. Silymarin administration increased kidney damage, including ablation of tubular epithelium from the basement membrane, compared with that in the CLP group. DEX significantly reduced kidney damage compared with the CLP and silymarin groups. The co-administration of DEX + silymarin decreased kidney damage, although it was not as effective as DEX-alone. To conclude, intraperitoneal DEX ameliorated injury in CLP rats. DEX + silymarin partially ameliorated injury but silymarin administration increased damage. As a result, silymarin has a negative effects with this dosage and DEX has a protective effect. In the present study, it was determined that using the two drugs together had a greater therapeutic effect than silymarin and no differences in the effects were not observed any when the application times of the agents were changed.
Collapse
Affiliation(s)
- Aydin Yavuz
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Ayşegül Küçük
- Department of Physiology, Faculty of Medicine, Kutahya Health Science University, Kutahya 43020, Turkey
| | - Aydan İremnur Ergörün
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Ali Doğan Dursun
- Department of Physiology, Faculty of Medicine, Atılım University, Ankara 06830, Turkey
| | - Zeynep Yiğman
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
- Neuroscience and Neurotechnology Center of Excellence, Gazi University, Ankara 06510, Turkey
| | - Metin Alkan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Mustafa Arslan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
- Life Sciences Application and Research Center, Gazi University, Ankara 06830, Turkey
- Laboratory Animal Breeding and Experimental Research Center, Gazi University, Ankara 06510, Turkey
| |
Collapse
|
9
|
Pais T, Jorge S, Lopes JA. Acute Kidney Injury in Sepsis. Int J Mol Sci 2024; 25:5924. [PMID: 38892111 PMCID: PMC11172431 DOI: 10.3390/ijms25115924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Sepsis-associated kidney injury is common in critically ill patients and significantly increases morbidity and mortality rates. Several complex pathophysiological factors contribute to its presentation and perpetuation, including macrocirculatory and microcirculatory changes, mitochondrial dysfunction, and metabolic reprogramming. Recovery from acute kidney injury (AKI) relies on the evolution towards adaptive mechanisms such as endothelial repair and tubular cell regeneration, while maladaptive repair increases the risk of progression to chronic kidney disease. Fundamental management strategies include early sepsis recognition and prompt treatment, through the administration of adequate antimicrobial agents, fluid resuscitation, and vasoactive agents as needed. In septic patients, organ-specific support is often required, particularly renal replacement therapy (RRT) in the setting of severe AKI, although ongoing debates persist regarding the ideal timing of initiation and dosing of RRT. A comprehensive approach integrating early recognition, targeted interventions, and close monitoring is essential to mitigate the burden of SA-AKI and improve patient outcomes in critical care settings.
Collapse
Affiliation(s)
| | | | - José António Lopes
- Nephrology and Renal Transplantation Department, Unidade Local de Saúde Santa Maria, 1649-028 Lisbon, Portugal; (T.P.)
| |
Collapse
|
10
|
Shi J, Han H, Chen S, Liu W, Li Y. Machine learning for prediction of acute kidney injury in patients diagnosed with sepsis in critical care. PLoS One 2024; 19:e0301014. [PMID: 38603693 PMCID: PMC11008834 DOI: 10.1371/journal.pone.0301014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/09/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Acute Kidney Injury (AKI) is a common and severe complication in patients diagnosed with sepsis. It is associated with higher mortality rates, prolonged hospital stays, increased utilization of medical resources, and financial burden on patients' families. This study aimed to establish and validate predictive models using machine learning algorithms to accurately predict the occurrence of AKI in patients diagnosed with sepsis. METHODS This retrospective study utilized real observational data from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. It included patients aged 18 to 90 years diagnosed with sepsis who were admitted to the ICU for the first time and had hospital stays exceeding 48 hours. Predictive models, employing various machine learning algorithms including Light Gradient Boosting Machine (LightGBM), EXtreme Gradient Boosting (XGBoost), Random Forest (RF), Decision Tree (DT), Artificial Neural Network (ANN), Support Vector Machine (SVM), and Logistic Regression (LR), were developed. The dataset was randomly divided into training and test sets at a ratio of 4:1. RESULTS A total of 10,575 sepsis patients were included in the analysis, of whom 8,575 (81.1%) developed AKI during hospitalization. A selection of 47 variables was utilized for model construction. The models derived from LightGBM, XGBoost, RF, DT, ANN, SVM, and LR achieved AUCs of 0.801, 0.773, 0.772, 0.737, 0.720, 0.765, and 0.776, respectively. Among these models, LightGBM demonstrated the most superior predictive performance. CONCLUSIONS These machine learning models offer valuable predictive capabilities for identifying AKI in patients diagnosed with sepsis. The LightGBM model, with its superior predictive capability, could aid clinicians in early identification of high-risk patients.
Collapse
Affiliation(s)
- Jianshan Shi
- Interventional Vascular Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, P. R. China
| | - Huirui Han
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, R.P. China
- Hainan Engineering Research Center for Health Big Data, Hainan Medical University, Haikou, P. R. China
| | - Song Chen
- Department of Critical Medicine, Wanning People’s Hospital, Wanning, P. R. China
| | - Wei Liu
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, R.P. China
- Hainan Engineering Research Center for Health Big Data, Hainan Medical University, Haikou, P. R. China
| | - Yanfen Li
- Department of Infection, The First Affiliated Hospital of Hainan Medical University, Haikou, P. R. China
| |
Collapse
|
11
|
Shao Y, Yu W, Cai H. Dehydroandrographolide facilitates M2 macrophage polarization by downregulating DUSP3 to inhibit sepsis-associated acute kidney injury. Immun Inflamm Dis 2024; 12:e1249. [PMID: 38629726 PMCID: PMC11022615 DOI: 10.1002/iid3.1249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Sepsis is perceived as lethal tissue damage and significantly increases mortality in combination with acute kidney injury (AKI). M2 macrophages play important roles in the secretion of anti-inflammatory and tissue repair mediators. We aimed to study the role of Dehydroandrographolide (Deh) in sepsis-associated AKI in vitro and in vivo through lipopolysaccharide (LPS)-induced macrophages model and cecal ligation and puncture-induced AKI mice model, and to reveal the mechanism related to M2 macrophage polarization. METHODS Enzyme-linked immunosorbent assay kits were used to assess the levels of inflammatory factors. Expression of markers related to M1 macrophages and M2 macrophages were analyzed. Additionally, dual specificity phosphatase 3 (DUSP3) expression was tested. Cell apoptosis was evaluated by flow cytometry analysis and terminal-deoxynucleotidyl transferase-mediated nick end labeling staining. Moreover, renal histological assessment was performed by using hematoxylin and eosin staining. RESULTS Deh reduced inflammation of THP-1-derived macrophages exposed to LPS. Besides, Deh induced the polarization of M1 macrophages to M2 and downregulated DUSP3 expression in THP-1-derived macrophages under LPS conditions. Further, DUSP3 overexpression reversed the impacts of Deh on the inflammation and M2 macrophages polarization of THP-1-derived macrophages stimulated by LPS. Additionally, human proximal tubular epithelial cells (HK-2) in the condition medium from DUSP3-overexpressed THP-1-derived macrophages treated with LPS and Deh displayed decreased viability and increased apoptosis and inflammation. The in vivo results suggested that Deh improved the renal function, ameliorated pathological injury, induced the polarization of M1 macrophages to M2, suppressed inflammation and apoptosis, and downregulated DUSP3 expression in sepsis-induced mice. CONCLUSION Deh facilitated M2 macrophage polarization by downregulating DUSP3 to inhibit septic AKI.
Collapse
Affiliation(s)
- Yanyan Shao
- Department of PediatricsThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou CityChina
| | - Weihao Yu
- Department of PediatricsThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou CityChina
| | - Hailun Cai
- Department of PediatricsThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou CityChina
| |
Collapse
|
12
|
Peng Y, Fang Y, Li Z, Liu C, Zhang W. Saa3 promotes pro-inflammatory macrophage differentiation and contributes to sepsis-induced AKI. Int Immunopharmacol 2024; 127:111417. [PMID: 38134592 DOI: 10.1016/j.intimp.2023.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
Sepsis-induced acute kidney injury (SAKI) is a life-threatening condition with complex pathophysiology, often exacerbated by immune cell dysregulation. In this comprehensive study, we leverage publicly available single-cell RNA sequencing (scRNA-seq) datasets to unravel the intricate immune responses occurring during SAKI, shedding light on macrophages as critical players. Specifically, we identify Saa3, a gene primarily expressed in macrophages, as a potent pro-inflammatory cytokine in SAKI. Saa3hi Ccl2hi monocyte-derived infiltrated macrophages (IMs) emerge as a central effector subset, fostering inflammation, and directly engaging with renal cells. Our findings suggest that Saa3 may be a promising predictive marker of SAKI, although further exploration of human homologs is warranted.
Collapse
Affiliation(s)
- Yi Peng
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Yan Fang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhilan Li
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Chenxi Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Weiru Zhang
- Department of General Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
| |
Collapse
|
13
|
Wei S, Zhang Y, Dong H, Chen Y, Wang X, Zhu X, Zhang G, Guo S. Machine learning-based prediction model of acute kidney injury in patients with acute respiratory distress syndrome. BMC Pulm Med 2023; 23:370. [PMID: 37789305 PMCID: PMC10548692 DOI: 10.1186/s12890-023-02663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/16/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) can make cases of acute respiratory distress syndrome (ARDS) more complex, and the combination of the two can significantly worsen the prognosis. Our objective is to utilize machine learning (ML) techniques to construct models that can promptly identify the risk of AKI in ARDS patients. METHOD We obtained data regarding ARDS patients from the Medical Information Mart for Intensive Care III (MIMIC-III) and MIMIC-IV databases. Within the MIMIC-III dataset, we developed 11 ML prediction models. By evaluating various metrics, we visualized the importance of its features using Shapley additive explanations (SHAP). We then created a more concise model using fewer variables, and optimized it using hyperparameter optimization (HPO). The model was validated using the MIMIC-IV dataset. RESULT A total of 928 ARDS patients without AKI were included in the analysis from the MIMIC-III dataset, and among them, 179 (19.3%) developed AKI after admission to the intensive care unit (ICU). In the MIMIC-IV dataset, there were 653 ARDS patients included in the analysis, and among them, 237 (36.3%) developed AKI. A total of 43 features were used to build the model. Among all models, eXtreme gradient boosting (XGBoost) performed the best. We used the top 10 features to build a compact model with an area under the curve (AUC) of 0.850, which improved to an AUC of 0.865 after the HPO. In extra validation set, XGBoost_HPO achieved an AUC of 0.854. The accuracy, sensitivity, specificity, positive prediction value (PPV), negative prediction value (NPV), and F1 score of the XGBoost_HPO model on the test set are 0.865, 0.813, 0.877, 0.578, 0.957 and 0.675, respectively. On extra validation set, they are 0.724, 0.789, 0.688, 0.590, 0.851, and 0.675, respectively. CONCLUSION ML algorithms, especially XGBoost, are reliable for predicting AKI in ARDS patients. The compact model maintains excellent predictive ability, and the web-based calculator improves clinical convenience. This provides valuable guidance in identifying AKI in ARDS, leading to improved patient outcomes.
Collapse
Affiliation(s)
- Shuxing Wei
- Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China
| | - Yongsheng Zhang
- Department of Health Management, Shandong Engineering Laboratory of Health Management, Institute of Health Management, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Hongmeng Dong
- Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China
| | - Ying Chen
- Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China
| | - Xiya Wang
- Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China
| | - Xiaomei Zhu
- Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China
| | - Guang Zhang
- Department of Health Management, Shandong Engineering Laboratory of Health Management, Institute of Health Management, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
| | - Shubin Guo
- Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
14
|
Yue L, Gu Y, Xu J, Liu T. Roles of noncoding RNAs in septic acute kidney injury. Biomed Pharmacother 2023; 165:115269. [PMID: 37541179 DOI: 10.1016/j.biopha.2023.115269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Septic acute kidney injury (SAKI) is one of the most common and life-threatening complications of sepsis. Patients with SAKI have increased mortality. However, the underlying pathogenesis is unclear, and the treatment targeting SAKI is unsatisfactory. Thus, identifying optimal biomarkers for SAKI diagnosis and treatment is an urgent requisite. Accumulating evidence indicates that noncoding RNAs (ncRNAs) are involved in the occurrence and progression of SAKI. In the present review, we summarized the studies of ncRNAs in SAKI, including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs). The ncRNAs are divided into protective and damage factors according to their role in SAKI, and their expression patterns, functions, and molecular mechanisms were elaborated. Next, we proposed that ncRNAs have the potential to be diagnostic and prognostic biomarkers for SAKI and as new therapeutic targets. This review aimed to provide a comprehensive overview of ncRNAs in SKAI and explored the clinical value of ncRNAs as ideal biomarkers of SAKI.
Collapse
Affiliation(s)
- Lili Yue
- Division of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yulu Gu
- Division of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Juntian Xu
- Division of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Tongqiang Liu
- Division of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
15
|
Balkrishna A, Sinha S, Kumar A, Arya V, Gautam AK, Valis M, Kuca K, Kumar D, Amarowicz R. Sepsis-mediated renal dysfunction: Pathophysiology, biomarkers and role of phytoconstituents in its management. Biomed Pharmacother 2023; 165:115183. [PMID: 37487442 DOI: 10.1016/j.biopha.2023.115183] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
Sepsis has evolved as an enormous health issue amongst critically ill patients. It is a major risk factor that results in multiple organ failure and shock. Acute kidney injury (AKI) is one of the most frequent complications underlying sepsis, which portends a heavy burden of mortality and morbidity. Thus, the present review is aimed to provide an insight into the recent progression in the molecular mechanisms targeting dysregulated immune response and cellular dysfunction involved in the development of sepsis-associated AKI, accentuating the phytoconstituents as eligible candidates for attenuating the onset and progression of sepsis-associated AKI. The pathogenesis of sepsis-mediated AKI entails a complicated mechanism and is likely to involve a distinct constellation of hemodynamic, inflammatory, and immune mechanisms. Novel biomarkers like neutrophil gelatinase-associated lipocalin, soluble triggering receptor expressed on myeloid cells 1, procalcitonin, alpha-1-microglobulin, and presepsin can help in a more sensitive diagnosis of sepsis-associated AKI. Many bioactive compounds like curcumin, resveratrol, baicalin, quercetin, and polydatin are reported to play an important role in the prevention and management of sepsis-associated AKI by decreasing serum creatinine, blood urea nitrogen, cystatin C, lipid peroxidation, oxidative stress, IL-1β, TNF-α, NF-κB, and increasing the activity of antioxidant enzymes and level of PPARγ. The plant bioactive compounds could be developed into a drug-developing candidate in managing sepsis-mediated acute kidney injury after detailed follow-up studies. Lastly, the gut-kidney axis may be a more promising therapeutic target against the onset of septic AKI, but a deeper understanding of the molecular pathways is still required.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Sugandh Sinha
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India.
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Ajay Kumar Gautam
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, Hradec Kralove, Czech Republic.
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
16
|
Tang J, Xie L, Liu H, Wu L, Li X, Du H, Wang X, Li X, Yang Y. The effect of NK cell therapy on sepsis secondary to lung cancer: A case report. Open Life Sci 2023; 18:20220702. [PMID: 37671093 PMCID: PMC10476478 DOI: 10.1515/biol-2022-0702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 09/07/2023] Open
Abstract
Patients with sepsis face high mortality rates and a bleak prognosis, prompting the need for advanced therapeutic interventions. A male patient diagnosed with moderately low-differentiated squamous cell carcinoma received diverse treatments, including radiotherapy, chemotherapy, immunotherapy, and targeted therapy to inhibit angiogenesis. Subsequently, he developed sepsis after comprehensive treatment, and conventional antibiotic combinations proved ineffective in combating the infection. As an experimental approach, allogeneic natural killer (NK) cell infusion was administered. Following the NK cell infusion, the patient regained consciousness, and laboratory analyses showed reduced infection-related markers, suppressed serum inflammatory cytokines, and elevated anti-tumor cytokines. However, the therapeutic effect only lasted 2-3 days. In vitro investigations demonstrated that the allogeneic NK cell product reduced interleukin-6 levels in the patient's serum. Moreover, subsequent co-cultivation of the NK cell product with the patient's serum resulted in a decrease in the proportion of cytotoxic subpopulations of NK cells and a downregulation of the expression of NK-mediated killing molecules. In conclusion, adoptive transfusion of allogeneic NK cells may improve sepsis symptoms in patients with tumor-related sepsis. In vitro co-culture tests hold promise in providing predictive biomarkers for treatment effectiveness.
Collapse
Affiliation(s)
- Jingling Tang
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lulu Xie
- The Department of Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Honglin Liu
- Cancer Biotherapy Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Liyun Wu
- Cancer Biotherapy Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Xiaoyang Li
- Cancer Biotherapy Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Hang Du
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Xinjun Wang
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Xiaoyun Li
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Yuan Yang
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Yunyan District, Guiyang, Guizhou 550004, China
| |
Collapse
|