1
|
Sakhr HM, Hassan MH, Salah AE, Bakri AH. Clinical and biochemical assessments of circulating High Mobility Group Box Protein1 in children with epilepsy: relation to cognitive function and drug responsiveness. Neurol Sci 2024:10.1007/s10072-024-07795-z. [PMID: 39466324 DOI: 10.1007/s10072-024-07795-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Childhood epilepsy is a major health concern posing a significant burden and having disastrous consequences for cognitive function. High Mobility Group Box1 (HMGB1) is an activator of neuroinflammation, and it is possibly involved in the initiation and progression of epilepsy. We aimed to investigate circulating HMGB1 in children with epilepsy and its connection to cognitive function and drug responsiveness. METHODS Case-control research included 100 epileptic youngsters and 100 healthy matched controls. Serum HMGB1 was measured using a commercially available ELISA assay. Cognitive functions were evaluated by the Stanford-Binet test 5th edition. RESULTS Drug-resistant epilepsy (DRE) was found in 37% of the investigated patients. Epileptic children have lower cognitive function parameter levels versus the control group and lower cognitive function in the DRE group compared to the drug-responsive group (P-value < 0.0001). HMGB1 levels were significantly higher in the patients' group (6.279 µg/L) compared to the control group (2.093 µg/L) and in the drug-resistant group (14.26 µg/L) versus the drug-responsive group (4.88 µg/L). A significant negative correlation was detected between HMGB1 with Full-scale IQ (r = - 0.547, P = 0.000), Visual-spatial reasoning (r = - 0.501, P = 0.000), fluid reasoning (r = - 0.510, P = 0.000), and working memory (r = - 0.555, P = 0.000). Serum HMGB1 cut-off levels > 6.85 µg/L differentiate drug-responsive from resistant patients. CONCLUSION Elevated HMGB1 levels, especially in patients with drug-resistant epilepsy, correlate negatively with cognitive performance, emphasizing its importance as a potential marker for early prediction of drug resistance and impairment of cognitive function.
Collapse
Affiliation(s)
- Hala M Sakhr
- Department of Pediatrics, Faculty of Medicine, South Valley University, Qena, Egypt.
| | - Mohammed H Hassan
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt.
| | - Asmaa E Salah
- Department of Pediatrics, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Ali Helmi Bakri
- Department of Pediatrics, Faculty of Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
2
|
Dash UK, Mazumdar D, Singh S. High Mobility Group Box Protein (HMGB1): A Potential Therapeutic Target for Diabetic Encephalopathy. Mol Neurobiol 2024; 61:8188-8205. [PMID: 38478143 DOI: 10.1007/s12035-024-04081-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 09/21/2024]
Abstract
HMGB (high mobility group B) is one of the ubiquitous non-histone nuclear protein superfamilies that make up the HMG (high mobility group) protein group. HMGB1 is involved in a variety of physiological and pathological processes in the human body, including a structural role in the cell nucleus as well as replication, repair, DNA transcription, and assembly of nuclear proteins. It functions as a signaling regulator in the cytoplasm and a pro-inflammatory cytokine in the extracellular environment. Among several studies, HMGB1 protein is also emerging as a crucial factor involved in the development and progression of diabetic encephalopathy (DE) along with other factors such as hyperglycaemia-induced oxidative and nitrosative stress. Diabetes' chronic side effect is DE, which manifests as cognitive and psychoneurological dysfunction. The HMGB1 is released outside to the extracellular medium in diabetes condition through active or passive routes, where it functions as a damage-associated molecular pattern (DAMP) molecule to activate several signaling pathways by interacting with receptors for advanced glycosylation end-products (RAGE)/toll like receptors (TLR). HMGB1 reportedly activates inflammatory pathways, disrupts the blood-brain barrier, causes glutamate toxicity and oxidative stress, and promotes neuroinflammation, contributing to the development of cognitive impairment and neuronal damage which is suggestive of the involvement of HMGB1 in the enhancement of the diabetes-induced encephalopathic condition. Additionally, HMGB1 is reported to induce insulin resistance, further exacerbating the metabolic dysfunction associated with diabetes mellitus (DM). Thus, the present review explores the possible pathways associated with DM-induced hyperactivation of HMGB1 ultimately leading to DE.
Collapse
Affiliation(s)
- Udit Kumar Dash
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Debashree Mazumdar
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Santosh Singh
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India.
| |
Collapse
|
3
|
Navaseelan L, Retinasamy T, Shaikh MF, Arulsamy A. High Mobility Group Box-1 (HMGB1), a Key Mediator of Cognitive Decline in Neurotrauma with a Potential for Targeted Therapy: A Comprehensive Review. FRONT BIOSCI-LANDMRK 2024; 29:322. [PMID: 39344324 DOI: 10.31083/j.fbl2909322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 10/01/2024]
Abstract
Neurotrauma plays a significant role in secondary injuries by intensifying the neuroinflammatory response in the brain. High Mobility Group Box-1 (HMGB1) protein is a crucial neuroinflammatory mediator involved in this process. Numerous studies have hypothesized about the underlying pathophysiology of HMGB1 and its role in cognition, but a definitive link has yet to be established. Elevated levels of HMGB1 in the hippocampus and serum have been associated with declines in cognitive performance, particularly in spatial memory and learning. This review also found that inhibiting HMGB1 can improve cognitive deficits following neurotrauma. Interestingly, HMGB1 levels are linked to the modulation of neuroplasticity and may offer neuroprotective effects in the later stages of neurotraumatic events. Consequently, administering HMGB1 during the acute phase may help reduce neuroinflammatory effects that lead to cognitive deficits in the later stages of neurotrauma. However, further research is needed to understand the time-dependent regulation of HMGB1 and the clinical implications of treatments targeting HMGB1 after neurotrauma.
Collapse
Affiliation(s)
- Locshiny Navaseelan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, NSW 2800, Australia
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
4
|
Wu Y, Chen D, Gao Y, Xu Q, Zhou Y, Ni Z, Na M. Immunosuppressive regulatory cells in cancer immunotherapy: restrain or modulate? Hum Cell 2024; 37:931-943. [PMID: 38814516 DOI: 10.1007/s13577-024-01083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Immunosuppressive regulatory cells (IRCs) play important roles in negatively regulating immune response, and are mainly divided into myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). Large numbers of preclinical and clinical studies have shown that inhibition or reduction of IRCs could effectively elevate antitumor immune responses. However, several studies also reported that excessive inhibition of IRCs function is one of the main reasons causing the side effects of cancer immunotherapy. Therefore, the reasonable regulation of IRCs is crucial for improving the safety and efficiency of cancer immunotherapy. In this review, we summarised the recent research advances in the cancer immunotherapy by regulating the proportion of IRCs, and discussed the roles of IRCs in regulating tumour immune evasion and drug resistance to immunotherapies. Furthermore, we also discussed how to balance the potential opportunities and challenges of using IRCs to improve the safety of cancer immunotherapies.
Collapse
Affiliation(s)
- Yan Wu
- Department of Burn and Plastic Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, 210031, Jiangsu, People's Republic of China
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Dongfeng Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yang Gao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Qinggang Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Manli Na
- Department of Burn and Plastic Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, 210031, Jiangsu, People's Republic of China.
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Ye J, Gao S, Liu Z, Chen X, He J, Hu Z. The HMGB1-RAGE axis in nucleus accumbens facilitates cocaine-induced conditioned place preference via modulating microglial activation. Brain Behav 2024; 14:e3457. [PMID: 38450910 PMCID: PMC10918599 DOI: 10.1002/brb3.3457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/22/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
INTRODUCTION Repeated exposure to cocaine induces microglial activation. Cocaine exposure also induces a release of high mobility group box-1 (HMGB1) from neurons into the extracellular space in the nucleus accumbens (NAc). HMGB1 is an important late inflammatory mediator of microglial activation. However, whether the secretion of HMGB1 acts on microglia or contributes to cocaine addiction is largely unknown. METHODS Rats were trained by intraperitoneal cocaine administration and cocaine-induced conditioned place preference (CPP). Expression of HMGB1 was regulated by viral vectors. Activation of microglia was inhibited by minocycline. Interaction of HMGB1 and the receptor for advanced glycation end products (RAGE) was disrupted by peptide. RESULTS Cocaine injection facilitated HMGB1 signaling, together with the delayed activation of microglia concurrently in the NAc. Furthermore, the inhibition of HMGB1 or microglia activation attenuated cocaine-induced CPP. Box A, a specific antagonist to interrupt the interaction of HMGB1 and RAGE, abolished the expression of cocaine reward memory. Meanwhile, the inhibition of HMGB1-RAGE interaction suppressed cocaine-induced microglial activation, as well as the consolidation of cocaine-induced memory. CONCLUSION All above results suggest that the neural HMGB1 induces activation of microglia through RAGE, which contributes to the consolidation of cocaine reward memory. These findings offer HMGB1-RAGE axis as a new target for the treatment of drug addiction.
Collapse
Affiliation(s)
- Jian Ye
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shuang‐Qi Gao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Departments of NeurosurgeryThird Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina
| | - Zi‐Cun Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xi Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jin‐Gang He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhuang‐Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhanChina
- The Research Center for Depression, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
6
|
Tefr Faridová A, Heřman H, Danačíková Š, Svoboda J, Otáhal J. Serum biomarkers of hypoxic-ischemic brain injury. Physiol Res 2023; 72:S461-S474. [PMID: 38165751 PMCID: PMC10861251 DOI: 10.33549/physiolres.935214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Brain injury is a multifaceted condition arising from nonspecific damage to nervous tissue. The resulting cognitive developmental impairments reverberate through patients' lives, affecting their families, and even the broader economic landscape. The significance of early brain injury detection lies in its potential to stave off severe consequences and enhance the effectiveness of tailored therapeutic interventions. While established methods like neuroimaging and neurophysiology serve as valuable diagnostic tools, their demanding nature restricts their accessibility, particularly in scenarios such as small hospitals, nocturnal or weekend shifts, and cases involving unstable patients. Hence, there is a pressing need for more accessible and efficient diagnostic avenues. Among the spectrum of brain injuries, hypoxic-ischemic encephalopathy stands out as a predominant affliction in the pediatric population. Diagnosing brain injuries in newborns presents challenges due to the subjective nature of assessments like Apgar scores and the inherent uncertainty in neurological examinations. In this context, methods like magnetic resonance and ultrasound hold recommendations for more accurate diagnosis. Recognizing the potential of serum biomarkers derived from blood samples, this paper underscores their promise as a more expedient and resource-efficient means of assessing brain injuries. The review compiles current insights into serum biomarkers, drawing from experiments conducted on animal models as well as human brain pathologies. The authors aim to elucidate specific characteristics, temporal profiles, and the available corpus of experimental and clinical data for serum biomarkers specific to brain injuries. These include neuron-specific enolase (NSE), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), S100 calcium-binding protein beta (S100B), glial fibrillary acidic protein (GFAP), and high-mobility-group-protein-box-1 (HMGB1). This comprehensive endeavor contributes to advancing the understanding of brain injury diagnostics and potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- A Tefr Faridová
- A. Tefr Faridová, Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague 5, Czech Republic. and
| | | | | | | | | |
Collapse
|
7
|
Razali K, Mohd Nasir MH, Kumar J, Mohamed WMY. Mitophagy: A Bridge Linking HMGB1 and Parkinson's Disease Using Adult Zebrafish as a Model Organism. Brain Sci 2023; 13:1076. [PMID: 37509008 PMCID: PMC10377498 DOI: 10.3390/brainsci13071076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/21/2023] [Accepted: 05/30/2023] [Indexed: 07/30/2023] Open
Abstract
High-mobility group box 1 (HMGB1) has been implicated as a key player in two critical factors of Parkinson's disease (PD): mitochondrial dysfunction and neuroinflammation. However, the specific role of HMGB1 in PD remains elusive. We investigated the effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration on mitochondrial dysfunction and HMGB1-associated inflammatory genes as well as locomotor activity in zebrafish, aiming to elucidate the role of HMGB1 in PD. Adult zebrafish received MPTP injections, and locomotor activity was measured at 24- and 48-h post-administration. Gene expression levels related to mitophagy (fis1, pink1, and park2) and HMGB1-mediated inflammation (hmgb1, tlr4, and nfkb) were quantified through RT-qPCR analysis. Following MPTP injection, the significant increase in transcript levels of fis1, pink1, and park2 indicated notable changes in PINK1/Parkin mitophagy, while the upregulation of hmgb1, tlr4, and nfkb genes pointed to the activation of the HMGB1/TLR4/NFκB inflammatory pathway. Furthermore, MPTP-injected zebrafish exhibited decreased locomotor activity, evident through reduced distance travelled, mean speed, and increased freezing durations. HMGB1 plays a major role in cellular processes as it is involved in both the mitophagy process and functions as a pro-inflammatory protein. MPTP administration in adult zebrafish activated mitophagy and inflammatory signaling, highlighting the significant role of HMGB1 as a mediator in both processes and further emphasizing its significant contribution to PD pathogenesis.
Collapse
Affiliation(s)
- Khairiah Razali
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan 25200, Pahang, Malaysia
| | - Mohd Hamzah Mohd Nasir
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan 25200, Pahang, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Kuala Lumpur 56000, Selangor, Malaysia
| | - Wael M Y Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan 25200, Pahang, Malaysia
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Shebin El-Kom 32511, Menoufia, Egypt
| |
Collapse
|
8
|
Sbai O, Bazzani V, Tapaswi S, McHale J, Vascotto C, Perrone L. Is Drp1 a link between mitochondrial dysfunction and inflammation in Alzheimer's disease? Front Mol Neurosci 2023; 16:1166879. [PMID: 37251647 PMCID: PMC10213291 DOI: 10.3389/fnmol.2023.1166879] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Recent advances highlight that inflammation is critical to Alzheimer Disease (AD) pathogenesis. Indeed, several diseases characterized by inflammation are considered risk factors for AD, such as type 2 diabetes, obesity, hypertension, and traumatic brain injury. Moreover, allelic variations in genes involved in the inflammatory cascade are risk factors for AD. AD is also characterized by mitochondrial dysfunction, which affects the energy homeostasis of the brain. The role of mitochondrial dysfunction has been characterized mostly in neuronal cells. However, recent data are demonstrating that mitochondrial dysfunction occurs also in inflammatory cells, promoting inflammation and the secretion of pro-inflammatory cytokines, which in turn induce neurodegeneration. In this review, we summarize the recent finding supporting the hypothesis of the inflammatory-amyloid cascade in AD. Moreover, we describe the recent data that demonstrate the link between altered mitochondrial dysfunction and the inflammatory cascade. We focus in summarizing the role of Drp1, which is involved in mitochondrial fission, showing that altered Drp1 activation affects the mitochondrial homeostasis and leads to the activation of the NLRP3 inflammasome, promoting the inflammatory cascade, which in turn aggravates Amyloid beta (Ab) deposition and tau-induced neurodegeneration, showing the relevance of this pro-inflammatory pathway as an early event in AD.
Collapse
Affiliation(s)
- Oualid Sbai
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis, Tunisia
| | | | | | - Joshua McHale
- Department of Medicine, University of Udine, Udine, Italy
| | - Carlo Vascotto
- Department of Medicine, University of Udine, Udine, Italy
- IMol Polish Academy of Sciences, Warsaw, Poland
| | - Lorena Perrone
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|