1
|
Shah M, Hameed A, Kashif M, Majeed N, Muhammad J, Shah N, Rehan T, Khan A, Uddin J, Khan A, Kashtoh H. Advances in agar-based composites: A comprehensive review. Carbohydr Polym 2024; 346:122619. [PMID: 39245496 DOI: 10.1016/j.carbpol.2024.122619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
This review article explores the developments and applications in agar-based composites (ABCs), emphasizing various constituents such as metals, clay/ceramic, graphene, and polymers across diversified fields like wastewater treatment, drug delivery, food packaging, the energy sector, biomedical engineering, bioplastics, agriculture, and cosmetics. The focus is on agar as a sustainable and versatile biodegradable polysaccharide, highlighting research that has advanced the technology of ABCs. A bibliometric analysis is conducted using the Web of Science database, covering publications from January 2020 to March 2024, processed through VOSviewer Software Version 1.6.2. This analysis assesses evolving trends and scopes in the literature, visualizing co-words and themes that underscore the growing importance and potential of ABCs in various applications. This review paper contributes by showcasing the existing state-of-the-art knowledge and motivating further development in this promising field.
Collapse
Affiliation(s)
- Muffarih Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Abdul Hameed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Muhammad Kashif
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Noor Majeed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Javariya Muhammad
- Department of Zoology Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Nasrullah Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan.
| | - Touseef Rehan
- department of Biochemistry, Women University Mardan, Mardan 23200, KP, Pakistan
| | - Abbas Khan
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, 616 Birkat Al Mauz, Nizwa, Sultanate of Oman; Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea.
| |
Collapse
|
2
|
Tao B, Wang F, Zhu L. Liquid-liquid phase separation-related signature predicts prognosis and therapeutic response in esophageal adenocarcinoma. Anal Chim Acta 2024; 1330:343202. [PMID: 39489946 DOI: 10.1016/j.aca.2024.343202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Esophageal adenocarcinoma is a leading cause of mortality worldwide. New evidence indicates that liquid-liquid phase separation is related to malignancies. The current study aims at exploring the functions of liquid-liquid phase separation within esophageal adenocarcinoma. Patients within the TCGA dataset were classified using liquid-liquid phase separation-related genes. Significantly differentially expressed genes and prognostic factors for overall survival have been screened by Cox regression. Based on the liquid-liquid phase separation score, the construction of a prognostic model and liquid-liquid phase separation signature was constructed. Tumor mutation burden and drug sensitivity were analyzed in two groups: high liquid-liquid phase separation scores, and low liquid-liquid phase separation scores. According to liquid-liquid phase separation, some small-molecule compounds targeting esophageal adenocarcinoma were screened. The results were verified in vitro with an external cohort. RESULTS 87 samples are involved, and 61 liquid-liquid phase separation-related genes may influence esophageal adenocarcinoma by changing DNA conformation and metabolism. Meanwhile, based on a high liquid-liquid phase separation score and low score group including 43 patients, it is found that the result significantly lowered the 5-year overall survival to 32.6 %, compared to 64.8 % in the low-score group of 44 patients with p < 0.001. The high score group had an average TIDE score of 0.27 versus 0.14 in the low-score group, with p = 0.003. The median tumor mutation burden was 9.1 mutations/Mb in the high-score group versus 6.4 mutations/Mb in the low-score group, with p = 0.011. The predictive model worked very well, with area under the curve values of 0.82, 0.79, and 0.76 for 1-, 3-, and 5-year survival, respectively. Liquid-liquid phase separation has been validated as an effective prognostic biomarker and drug sensitivity predictor. SIGNIFICANCE Liquid-liquid phase separation is potentially implicated in esophageal adenocarcinoma and works as a prognostic biomarker assessment of vulnerability to LLPS, which could help develop individualized therapies by showing how one is situated about various medications where responses vary across the body.
Collapse
Affiliation(s)
- Bo Tao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Feng Wang
- Department of Radiotherapy, Shanghai Fourth Peoples Hospital, School of Medicine, Tongji University, No. 1878, Sichuan North Road, Shanghai, 200081, China
| | - Lei Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China.
| |
Collapse
|
3
|
Zhao C, Jin H, Lei Y, Li Q, Zhang Y, Lu Q. The dual effects of Benzo(a)pyrene/Benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide on DNA Methylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175042. [PMID: 39084379 DOI: 10.1016/j.scitotenv.2024.175042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Benzo(a)pyrene (BaP) is one of the most thoroughly studied polycyclic aromatic hydrocarbons(PAHs) and a widespread organic pollutant in various areas of human life. Its teratogenic, immunotoxic and carcinogenic effects on organisms are well documented and widely recognized by researchers. In the body, BaP is enzymatically converted to form a more active benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE). BaP/BPDE has the potential to trigger gene mutations, influence epigenetic modifications and cause damage to cellular structures, ultimately contributing to disease onset and progression. However, there are different points of view when studying epigenetics using BaP/BPDE. On the one hand, it is claimed in cancer research that BaP/BPDE contributes to gene hypermethylation and, in particular, induces the hypermethylation of tumor's suppressor gene promoters, leading to gene silencing and subsequent cancer development. Conversely, studies in human and animal populations suggest that exposure to BaP results in genome-wide DNA hypomethylation, potentially leading to adverse outcomes in inflammatory diseases. This apparent contradiction has not been summarized in research for almost four decades. This article presents a comprehensive review of the current literature on the influence of BaP/BPDE on DNA methylation regulation. It demonstrates that BaP/BPDE exerts a dual-phase regulatory effect on methylation, which is influenced by factors such as the concentration and duration of BaP/BPDE exposure, experimental models and detection methods used in various studies. Acute/high concentration exposure to BaP/BPDE often results in global demethylation of DNA, which is associated with inhibition of DNA methyltransferase 1 (DNMT1) after exposure. At certain specific gene loci (e.g., RAR-β), BPDE can form DNA adducts, recruiting DNMT3 and leading to hypermethylation at specific sites. By integrating these different mechanisms, our goal is to unravel the patterns and regulations of BaP/BPDE-induced DNA methylation changes and provide insights into future precision therapies targeting epigenetics.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Jin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
| | - Yu Lei
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qilin Li
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
| |
Collapse
|
4
|
Ebrahimnezhad M, Asl SH, Rezaie M, Molavand M, Yousefi B, Majidinia M. lncRNAs: New players of cancer drug resistance via targeting ABC transporters. IUBMB Life 2024; 76:883-921. [PMID: 39091106 DOI: 10.1002/iub.2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/30/2024] [Indexed: 08/04/2024]
Abstract
Cancer drug resistance poses a significant obstacle to successful chemotherapy, primarily driven by the activity of ATP-binding cassette (ABC) transporters, which actively efflux chemotherapeutic agents from cancer cells, reducing their intracellular concentrations and therapeutic efficacy. Recent studies have highlighted the pivotal role of long noncoding RNAs (lncRNAs) in regulating this resistance, positioning them as crucial modulators of ABC transporter function. lncRNAs, once considered transcriptional noise, are now recognized for their complex regulatory capabilities at various cellular levels, including chromatin modification, transcription, and post-transcriptional processing. This review synthesizes current research demonstrating how lncRNAs influence cancer drug resistance by modulating the expression and activity of ABC transporters. lncRNAs can act as molecular sponges, sequestering microRNAs that would otherwise downregulate ABC transporter genes. Additionally, they can alter the epigenetic landscape of these genes, affecting their transcriptional activity. Mechanistic insights reveal that lncRNAs contribute to the activity of ABC transporters, thereby altering the efflux of chemotherapeutic drugs and promoting drug resistance. Understanding these interactions provides a new perspective on the molecular basis of chemoresistance, emphasizing the regulatory network of lncRNAs and ABC transporters. This knowledge not only deepens our understanding of the biological mechanisms underlying drug resistance but also suggests novel therapeutic strategies. In conclusion, the intricate interplay between lncRNAs and ABC transporters is crucial for developing innovative solutions to combat cancer drug resistance, underscoring the importance of continued research in this field.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hassanzadeh Asl
- Student Research Committee, Faculty of Medicine, Tabriz Azad University of Medical Sciences, Tabriz, Iran
| | - Maede Rezaie
- Immunology research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Molavand
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Mahmudiono T, Fakhri Y, Marvdashti LM, Hoseinvandtabar S, Mehri F, Mohamadi S, Mousavi Khaneghah A. The concentration of pesticides in onion samples from Iran: a non-carcinogenic health risk assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3820-3835. [PMID: 38487940 DOI: 10.1080/09603123.2024.2327522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/04/2024] [Indexed: 10/19/2024]
Abstract
Pesticide residues were extracted using the QuEChERS method, followed by detection by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The non-carcinogenic health risk in adult and child consumers was calculated by target hazard quotient (THQ) and total target hazard quotient (TTHQ) in the Monte Carlo Simulation (MCS) method. The rank order of pesticides detected by UHPLC-MS/MS based on median concentration in onion was tebuconazole (0.004551 mg/kg) > imidacloprid (0.00233 mg/kg) > boscalid (0.00211 mg/kg) > diazinon (0.00079 mg/kg) > thiabendazole (0.00075 mg/kg) > acetamiprid (0.00052 mg/kg) > thiophanate-methyl (0.00052 mg/kg) > dichlorvos (0.000349 mg/kg) > fenitrothion (0.000132 mg/kg) > penconazole (0.00005 mg/kg). The median of TTHQ in adults and children's consumers were 4.00E-3 and 2.00E-2, respectively. TTHQ in adults and children's consumers was lower than 1 value. Hence, consumers were in the acceptable range (TTHQ <1). Consequently, onion consumption cannot endanger consumers' health status due to the pesticide residues.
Collapse
Affiliation(s)
- Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Somayeh Hoseinvandtabar
- Student Research Committee, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Mohamadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahre-kord University, Shahre-Kord, Iran
| | - Amin Mousavi Khaneghah
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Faculty of Biotechnologies (BioTech), ITMO University, Saint Petersburg, Russia
| |
Collapse
|
6
|
Cai Z, Zhai X, Xu J, Hong T, Yang K, Min S, Du J, Cai Z, Wang Z, Shen M, Wang D, Shen Y. ELAVL1 regulates PD-L1 mRNA stability to disrupt the infiltration of CD4-positive T cells in prostate cancer. Neoplasia 2024; 57:101049. [PMID: 39265220 PMCID: PMC11416606 DOI: 10.1016/j.neo.2024.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024]
Abstract
Prostate cancer (PCa) currently ranks second in male tumor mortality. Targeting immune checkpoint in tumor as immunotherapy is a new direction for tumor treatment. However, targeting PD-1/PD-L1 and CTLA4 to treat PCa has poor immunotherapeutic efficacy because PCa is known as a cold tumor. Understanding the mechanism of immunosuppression in PCa can promote the use of immunotherapy to treat PCa. ELAVL1 is highly expressed in many tumors, participates in almost all tumor biological activities and is an oncogene. ELAVL1 is also involved in the development and differentiation of T and B lymphocytes. However, the relationship between ELAVL1 and tumor immunity has not yet been reported. In recent years, ELAVL1 has been shown to regulate downstream targets in an m6A -dependent manner. PD-L1 has been shown to have m6A sites in multiple tumors that are regulated by m6A. In this study, ELAVL1 was highly expressed in PCa, and PCa with high ELAVL1 expression is immunosuppressive. Knocking down ELAVL1 reduced PD-L1 expression in PCa. Moreover, PD-L1 was shown to have an m6A site, and its m6A level was upregulated in PCa. ELAVL1 interacts with PD-L1 mRNA and promotes PD-L1 RNA stability via m6A, ultimately inhibiting the infiltration of CD4-positive T cells. In addition, androgen receptor (AR) was shown to be regulated with ELAVL1, and knocking down AR could also affect the expression of PD-L1. Therefore, ELAVL1 can directly or indirectly regulate the expression of PD-L1, thereby affecting the infiltration of CD4-positive T cells in PCa and ultimately leading to immune suppression.
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China; Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiuxia Zhai
- School of Nursing, Peking University, Beijing, China; Health Service Department of the Guard Bureau of the General Office of the Central Committee of the Communist Party of China, Beijing, China
| | - Jidong Xu
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Tianyu Hong
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Kuo Yang
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Shasha Min
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Jianuo Du
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Zhikang Cai
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China.
| | - Zhong Wang
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China.
| | - Ming Shen
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.
| | - Di Wang
- Center for bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yanting Shen
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China.
| |
Collapse
|
7
|
Shah Hosseini R, Nouri SM, Bansal P, Hjazi A, Kaur H, Hussein Kareem A, Kumar A, Al Zuhairi RAH, Al-Shaheri NA, Mahdavi P. The p53/miRNA Axis in Breast Cancer. DNA Cell Biol 2024; 43:549-558. [PMID: 39423159 DOI: 10.1089/dna.2024.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024] Open
Abstract
One of the main health issues in the modern world is cancer, with breast cancer (BC) as one of the most common types of malignancies. Different environmental and genetic risk factors are involved in the development of BC. One of the primary genes implicated in cancer development is the p53 gene, which is also known as the "gatekeeper" gene. p53 is involved in cancer development by interacting with numerous pathways and signaling factors, including microRNAs (miRNAs). miRNAs are small noncoding RNA molecules that regulate gene expression by binding to the 3' untranslated region of target mRNAs, resulting in their translational inhibition or degradation. If the p53 gene is mutated or degraded, it can contribute to the risk of BC by disrupting the expression of miRNAs. Similarly, the disruption of miRNAs causes the negative regulation of p53. Therefore, the p53/miRNA axis is a crucial pathway in the progression or prevention of BC, and understanding the regulation and function of this pathway may contribute to the development of new therapeutic strategies to help treat BC.
Collapse
Affiliation(s)
| | | | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | | | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, Russia
| | | | | | - Parya Mahdavi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Joghataie P, Ardakani MB, Sabernia N, Salary A, Khorram S, Sohbatzadeh T, Goodarzi V, Amiri BS. The Role of Circular RNA in the Pathogenesis of Chemotherapy-Induced Cardiotoxicity in Cancer Patients: Focus on the Pathogenesis and Future Perspective. Cardiovasc Toxicol 2024; 24:1151-1167. [PMID: 39158829 DOI: 10.1007/s12012-024-09914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Cardiotoxicity is a serious challenge cancer patients face today. Various factors are involved in cardiotoxicity. Circular RNAs (circRNAs) are one of the effective factors in the occurrence and prevention of cardiotoxicity. circRNAs can lead to increased proliferation, apoptosis, and regeneration of cardiomyocytes by regulating the molecular pathways, as well as increasing or decreasing gene expression; some circRNAs have a dual role in cardiomyocyte regeneration or death. Identifying each of the pathways related to these processes can be effective on managing patients and preventing cardiotoxicity. In this study, an overview of the molecular pathways involved in cardiotoxicity by circRNAs and their effects on the downstream factors have been discussed.
Collapse
Affiliation(s)
- Pegah Joghataie
- Department of Cardiology, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Neda Sabernia
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Tooba Sohbatzadeh
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | - Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Bahareh Shateri Amiri
- Assistant Professor of Internal Medicine, Department of Internal Medicine, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Chatterji T, Khanna N, Alghamdi S, Bhagat T, Gupta N, Alkurbi MO, Sen M, Alghamdi SM, Bamagous GA, Sahoo DK, Patel A, Kumar P, Yadav VK. A Recent Advance in the Diagnosis, Treatment, and Vaccine Development for Human Schistosomiasis. Trop Med Infect Dis 2024; 9:243. [PMID: 39453270 PMCID: PMC11511416 DOI: 10.3390/tropicalmed9100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Schistosomiasis, which affects a large number of people worldwide, is among the most overlooked parasitic diseases. The disease is mainly prevalent in sub-Saharan Africa, southeast Asian countries, and South America due to the lack of adequate sanitation. The disease is mainly associated with poor hygiene, sanitation, and contaminated water, so it is also known as a disease of poverty. Three Schistosoma species (S. mansoni, S. japonicum, and S. haematobium) cause significant human infections. Co-infections with Schistosoma and other parasites are widely common. All these parasites may cause intestinal or urogenital schistosomiasis, where the disease may be categorized into the acute, sensitized, and chronic phases. The disease is more prevalent among school children, which may cause anemia and reduce development. Chronic infections frequently cause significant liver, intestinal, and bladder damage. Women exposed to contaminated water while performing normal duties like washing clothes might acquire urogenital schistosomiasis (UGS), which can cause tissue damage and raise the risk of blood-borne disease transmission, including human immunodeficiency virus (HIV) transmission. Praziquantel (PZQ) is the World Health Organization (WHO)-prescribed treatment for individuals who are known to be infected, but it does not prevent further re-infections with larval worms. Vaccine development and new molecular-based diagnosis techniques have promised to be a reliable approach to the diagnosis and prevention of schistosomiasis. The current review emphasizes the recent advancement in the diagnosis of schistosomiasis by molecular techniques and the treatment of schistosomiasis by combined and alternative regimes of drugs. Moreover, this review has also focused on the recent outbreak of schistosomiasis, the development of vaccines, and their clinical trials.
Collapse
Affiliation(s)
- Tanushri Chatterji
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Adhyatmik Nagar, NH-09, Ghaziabad 201015, Uttar Pradesh, India;
| | - Namrata Khanna
- Department of Biochemistry, M A Rangoonwala College of Dental Sciences and Research Centre, 2390-B, K.B. Hidayatullah Road, Azam Campus, Camp, Pune 411001, Maharashtra, India;
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (S.A.); (M.O.A.)
| | - Tanya Bhagat
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Adhyatmik Nagar, NH-09, Ghaziabad 201015, Uttar Pradesh, India;
| | - Nishant Gupta
- Engineering Department, River Engineering Pvt Ltd., Toy City, Ecotech–III, Greater Noida 201306, Uttar Pradesh, India;
| | - Mohammad Othman Alkurbi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (S.A.); (M.O.A.)
| | - Manodeep Sen
- Department of Microbiology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Vibhuti Khand, Gomti Nagar, Lucknow 226010, Uttar Pradesh, India;
| | - Saeed Mardy Alghamdi
- Respiratory Care Program, Clinical Technology Department, Faculty of Applied Medical Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Ghazi A. Bamagous
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India;
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, Gujarat, India;
| | - Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot 360003, Gujarat, India
| |
Collapse
|
10
|
Wang W, Liu Y, Wu J. The roles of lncRNAs in the development of drug resistance of oral cancers. Biomed Pharmacother 2024; 180:117458. [PMID: 39413618 DOI: 10.1016/j.biopha.2024.117458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024] Open
Abstract
Oral cancers are a significant global health concern, with a high incidence of treatment failure primarily due to the development of drug resistance. Long non-coding RNAs (lncRNAs) have emerged as critical regulators of gene expression, playing pivotal roles in various cellular processes, including tumor progression and response to therapy. This review explores the multifaceted roles of lncRNAs in the development of drug resistance in oral cancers. We highlight the mechanisms by which lncRNAs modulate drug efflux, apoptosis, epithelial-mesenchymal transition (EMT), and other pathways associated with chemoresistance. Key lncRNAs implicated in resistance to commonly used chemotherapeutic agents in oral cancers are discussed, along with their potential as therapeutic targets. Understanding the involvement of lncRNAs in drug resistance mechanisms offers promising avenues for overcoming treatment barriers and improving patient outcomes. This review underscores the need for further research to elucidate the precise roles of lncRNAs in oral cancer resistance and their translation into clinical interventions.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 43400, China
| | - Yi Liu
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 43400, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei 434000, China.
| |
Collapse
|
11
|
Moritz RKC, Ebelt N, Rattay T, Ehrenreich J, Sunderkötter C, Gerloff D. The Expression of miR-211-5p in Sentinel Lymph Node Metastases of Malignant Melanoma Is a Potential Marker for Poor Prognosis. Int J Mol Sci 2024; 25:10859. [PMID: 39409187 PMCID: PMC11477290 DOI: 10.3390/ijms251910859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Metastatic primary cutaneous melanoma is a frequently fatal disease despite recent therapeutic advances. Biomarkers to stratify patients' prognosis are lacking. MicroRNAs (miRNAs) are small, non-coding RNAs. We aimed to determine the expression of miR-211-5p in primary tumors and metastases of malignant melanoma and its potential use as a prognostic biomarker. We performed in situ hybridization for miRNA-211-5p on 109 FFPE melanoma samples from 76 patients, including 31 paired primary tumor/metastasis samples. For validation, we performed in silico analyses of TCGA skin cutaneous melanoma (SKCM) cohort. High miR-211-5p expression was more frequent in primary tumors (70.8%) compared to metastases (39.3%). In metastases, it was associated with a significantly worse overall survival. Data from TCGA SKCM cohort confirmed that high miR-211-5p expression in melanoma metastases, but not primary tumors, is associated with worse overall survival. MiR-211-5p expression in metastases is associated with a shorter survival, emphasizing the potential of miR-211-5p as a risk predictor for a less favorable clinical outcome in metastatic disease. In situ hybridization could be implemented in a routine laboratory workflow and can be performed on diagnostic tissue.
Collapse
Affiliation(s)
- Rose Kathrin Caroline Moritz
- Department of Dermatology and Venereology, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (R.K.C.M.); (N.E.); (T.R.); (J.E.); (C.S.)
- Department of Dermatology, Venereology and Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, 10117 Berlin, Germany
| | - Nicole Ebelt
- Department of Dermatology and Venereology, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (R.K.C.M.); (N.E.); (T.R.); (J.E.); (C.S.)
| | - Tina Rattay
- Department of Dermatology and Venereology, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (R.K.C.M.); (N.E.); (T.R.); (J.E.); (C.S.)
| | - Jovine Ehrenreich
- Department of Dermatology and Venereology, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (R.K.C.M.); (N.E.); (T.R.); (J.E.); (C.S.)
| | - Cord Sunderkötter
- Department of Dermatology and Venereology, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (R.K.C.M.); (N.E.); (T.R.); (J.E.); (C.S.)
| | - Dennis Gerloff
- Department of Dermatology and Venereology, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (R.K.C.M.); (N.E.); (T.R.); (J.E.); (C.S.)
| |
Collapse
|
12
|
Molavand M, Ebrahimnezhade N, Kiani A, Yousefi B, Nazari A, Majidinia M. Regulation of autophagy by non-coding RNAs in human glioblastoma. Med Oncol 2024; 41:260. [PMID: 39375229 DOI: 10.1007/s12032-024-02513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
Glioblastoma, a lethal form of brain cancer, poses substantial challenges in treatment due to its aggressive nature and resistance to standard therapies like radiation and chemotherapy. Autophagy has a crucial role in glioblastoma progression by supporting cellular homeostasis and promoting survival under stressful conditions. Non-coding RNAs (ncRNAs) play diverse biological roles including, gene regulation, chromatin remodeling, and the maintenance of cellular homeostasis. Emerging evidence reveals the intricate regulatory mechanisms of autophagy orchestrated by non-coding RNAs (ncRNAs) in glioblastoma. The diverse roles of these ncRNAs in regulating crucial autophagy-related pathways, including AMPK/mTOR signaling, the PI3K/AKT pathway, Beclin1, and other autophagy-triggering system regulation, sheds light on ncRNAs biological mechanisms in the proliferation, invasion, and therapy response of glioblastoma cells. Furthermore, the clinical implications of targeting ncRNA-regulated autophagy as a promising therapeutic strategy for glioblastoma treatment are in the spotlight of ongoing studies. In this review, we delve into our current understanding of how ncRNAs regulate autophagy in glioblastoma, with a specific focus on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), and their intricate interplay with therapy response.
Collapse
Affiliation(s)
- Mehran Molavand
- Student Research Commitee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Ebrahimnezhade
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Arash Kiani
- Student Research Commite, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
- Molecular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Nazari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
- Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
13
|
He BZ, Wang L. Functional and therapeutic significant of heat-shock protein 90 (HSP90) in reproductive cancers. Clin Transl Oncol 2024:10.1007/s12094-024-03743-7. [PMID: 39369360 DOI: 10.1007/s12094-024-03743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/21/2024] [Indexed: 10/07/2024]
Abstract
Reproductive cancers, such as ovarian, cervical, and endometrial carcinomas, have a poor prognosis in metastatic stages. Researchers are continuously seeking improved and safer methods to target cancer-related oncoproteins, addressing the limitations of current treatments, including their limited effectiveness, drug resistance, and off-target effects. Recent advancements in understanding the molecular mechanisms involved in the progress of reproductive cancers have provided valuable insights into potential targeted therapies. By engaging with oncoproteins and co-chaperones, heat-shock protein 90 (HSP90) regulates signaling networks and fixes protein folding errors in cancer cells. The potential of HSP90 inhibition as cancer-targeted treatments is underscored by the continuous discovery and testing of novel HSP90-targeted molecules for their antitumor properties in preclinical and clinical settings. Therefore, this study aims to shed light on the mechanism and recent research breakthroughs of HSP90, as well as provide an in-depth review of their therapeutic potential in reproductive cancers.
Collapse
Affiliation(s)
- Ben-Zhen He
- Department of Radiology, The Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, Zhejiang, People's Republic of China.
| | - Liang Wang
- Department of Radiology, The Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, Zhejiang, People's Republic of China
| |
Collapse
|
14
|
Thangavelu L, Imran M, Alsharari SH, Abdulaziz AM, Alawlaqi AM, Kamal M, Rekha MM, Kaur M, Soothwal P, Arora I, Kumar MR, Chauhan AS. Exploring hypoxia-induced ncRNAs as biomarkers and therapeutic targets in lung cancer. Pathol Res Pract 2024; 263:155613. [PMID: 39383737 DOI: 10.1016/j.prp.2024.155613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024]
Abstract
Lung cancer is a deadly disease, causing nearly 20 % of all cancer deaths globally. A key factor in lung cancer's development and resistance to treatment is hypoxia, a condition where tumor cells experience low oxygen levels. In this low-oxygen environment, special molecules called non-coding RNAs (ncRNAs) become critical players. NcRNAs, including lncRNAs, miRNAs, circRNAs, and siRNAs, control how genes function and how cells behave. Some ncRNAs, like HIF1A-AS2 and HOTAIR, are linked to the aggressive spread of lung cancer, making them potential targets for therapy. Others, like certain miRNAs, show promise as early detection tools due to their influence on tumor blood vessel formation and metabolism. This complex interplay between hypoxia and ncRNAs is crucial for understanding lung cancer. For example, circRNAs can control the activity of miRNAs, impacting how tumors respond to low oxygen. Additionally, siRNAs offer a potential strategy to overcome treatment resistance caused by hypoxia. By studying the intricate relationship between hypoxia and ncRNAs, scientists hope to uncover new biomarkers for lung cancer. This knowledge will pave the way for developing more effective and targeted treatments for this devastating disease.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | | | - Akrm M Abdulaziz
- Department of Clinical Pharmacy, King Khalid Hospital, Najran 66262, Saudi Arabia
| | | | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mandeep Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Pradeep Soothwal
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Isha Arora
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, India.
| |
Collapse
|
15
|
Khan FA, Nsengimana B, Awan UA, Ji XY, Ji S, Dong J. Regulatory roles of N6-methyladenosine (m 6A) methylation in RNA processing and non-communicable diseases. Cancer Gene Ther 2024; 31:1439-1453. [PMID: 38839892 DOI: 10.1038/s41417-024-00789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Post-transcriptional RNA modification is an emerging epigenetic control mechanism in cells that is important in many different cellular and organismal processes. N6-methyladenosine (m6A) is one of the most prevalent, prolific, and ubiquitous internal transcriptional alterations in eukaryotic mRNAs, making it an important topic in the field of Epigenetics. m6A methylation acts as a dynamical regulatory process that regulates the activity of genes and participates in multiple physiological processes, by supporting multiple aspects of essential mRNA metabolic processes, including pre-mRNA splicing, nuclear export, translation, miRNA synthesis, and stability. Extensive research has linked aberrations in m6A modification and m6A-associated proteins to a wide range of human diseases. However, the impact of m6A on mRNA metabolism and its pathological connection between m6A and other non-communicable diseases, including cardiovascular disease, neurodegenerative disorders, liver diseases, and cancer remains in fragmentation. Here, we review the existing understanding of the overall role of mechanisms by which m6A exerts its activities and address new discoveries that highlight m6A's diverse involvement in gene expression regulation. We discuss m6A deposition on mRNA and its consequences on degradation, translation, and transcription, as well as m6A methylation of non-coding chromosomal-associated RNA species. This study could give new information about the molecular process, early detection, tailored treatment, and predictive evaluation of human non-communicable diseases like cancer. We also explore more about new data that suggests targeting m6A regulators in diseases may have therapeutic advantages.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Integrative Medicine, Fudan University, Shanghai, China.
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan.
| | - Bernard Nsengimana
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Usman Ayub Awan
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xin-Ying Ji
- Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China.
| | - Shaoping Ji
- Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Maqbool M, Hussain MS, Bisht AS, Kumari A, Kamran A, Sultana A, Kumar R, Khan Y, Gupta G. Connecting the dots: LncRNAs in the KRAS pathway and cancer. Pathol Res Pract 2024; 262:155570. [PMID: 39226802 DOI: 10.1016/j.prp.2024.155570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Long non-coding RNAs (lncRNAs) have been identified as important participants in several biological functions, particularly their complex interactions with the KRAS pathway, which provide insights into the significant roles lncRNAs play in cancer development. The KRAS pathway, a central signaling cascade crucial for cell proliferation, survival, and differentiation, stands out as a key therapeutic target due to its aberrant activation in many human cancers. Recent investigations have unveiled a myriad of lncRNAs, such as H19, ANRIL, and MEG3, intricately modulating the KRAS pathway, influencing both its activation and repression through various mechanisms, including epigenetic modifications, transcriptional regulation, and post-transcriptional control. These lncRNAs function as fine-tuners, delicately orchestrating the balance required for normal cellular function. Their dysregulation has been linked to the development and progression of multiple malignancies, including lung, pancreatic, and colorectal carcinomas, which frequently harbor KRAS mutations. This scrutiny delves into the functional diversity of specific lncRNAs within the KRAS pathway, elucidating their molecular mechanisms and downstream effects on cancer phenotypes. Additionally, it underscores the diagnostic and prognostic potential of these lncRNAs as indicators for cancer detection and assessment. The complex regulatory network that lncRNAs construct within the context of the KRAS pathway offers important insights for the creation of focused therapeutic approaches, opening new possibilities for precision medicine in oncology. However, challenges such as the dual roles of lncRNAs in different cancer types and the difficulty in therapeutically targeting these molecules highlight the ongoing debates and need for further research. As ongoing studies unveil the complexities of lncRNA-mediated KRAS pathway modulation, the potential for innovative cancer interventions becomes increasingly promising.
Collapse
Affiliation(s)
- Mudasir Maqbool
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand 248007, India.
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001, India
| | - Alka Kumari
- University institute of pharmacy, Chandigarh University, Gharaun, Punjab 140413, India
| | - Almaz Kamran
- HIMT College of Pharmacy, Plot No. 08, Knowledge Park - 1, Greater Noida, Uttar Pradesh 201310, India
| | - Ayesha Sultana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya University, Deralakatte, Mangalore, Karnataka, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Yumna Khan
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
17
|
Abida, Eltaib L, Alhazmi BH, Alzahrani AR, Asdaq SMB, Ali A, Aldhafiri FJ, Alruwaili WT, Al-Hajeili M, Abdulkhaliq AA, Rabaan AA, Imran M. Long non-coding RNA HOTAIR: A biomarker and therapeutic target in urological tumors. Pathol Res Pract 2024; 262:155549. [PMID: 39173467 DOI: 10.1016/j.prp.2024.155549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Long non-coding RNAs (lncRNAs) significantly influence gene regulation across epigenetic, transcriptional, and post-transcriptional levels through their interactions with DNA, RNA, and proteins. There is growing evidence of lncRNAs' critical roles in the emergence and progression of various diseases, including urological tumors (UTs), such as cancers of the kidney, bladder, and prostate. Research increasingly links lncRNA dysregulation to diverse cellular processes like invasion, metastasis, apoptosis, and chromatin remodeling. Among these, HOTAIR stands out for its pivotal role in oncogenesis, impacting treatment resistance, cell migration, proliferation, survival, and genomic integrity. This review provides an overview of HOTAIR's functions, its identification, and its biological significance. Furthermore, it delves into HOTAIR's involvement in UTs, underlining its potential as a therapeutic target and biomarker for innovative approaches to treating these cancers.
Collapse
Affiliation(s)
- Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Lina Eltaib
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Bshayer Hmdan Alhazmi
- Department of Pharmacy, Northern Area Armed Forces Hospital, Hafer Al-batin 39745, Saudi Arabia
| | - Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | | | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | | - Wafaa T Alruwaili
- College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Marwan Al-Hajeili
- Department of Medicine, King Abdulaziz University, Jeddah 23624, Saudi Arabia
| | - Altaf A Abdulkhaliq
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| |
Collapse
|
18
|
Syed RU, Banu H, Alshammrani A, Alshammari MD, G SK, Kadimpati KK, Khalifa AAS, Aboshouk NAM, Almarir AM, Hussain A, Alahmed FK. MicroRNA-21 (miR-21) in breast cancer: From apoptosis dysregulation to therapeutic opportunities. Pathol Res Pract 2024; 262:155572. [PMID: 39226804 DOI: 10.1016/j.prp.2024.155572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Breast cancer, a pervasive and complex disease, continues to pose significant challenges in the field of oncology. Its heterogeneous nature and diverse molecular profiles necessitate a nuanced understanding of the underlying mechanisms driving tumorigenesis and progression. MicroRNA-21 (miR-21) has emerged as a crucial player in breast cancer development and progression by modulating apoptosis, a programmed cell death mechanism that eliminates aberrant cells. MiR-21 overexpression is a hallmark of breast cancer, and it is associated with poor prognosis and resistance to conventional therapies. This miRNA exerts its oncogenic effects by targeting various pro-apoptotic genes, including Fas ligand (FasL), programmed cell death protein 4 (PDCD4), and phosphatase and tensin homolog (PTEN). By suppressing these genes, miR-21 promotes breast cancer cell survival, proliferation, invasion, and metastasis. The identification of miR-21 as a critical regulator of apoptosis in breast cancer has opened new avenues for therapeutic intervention. This review investigates the intricate mechanisms through which miR-21 influences apoptosis, offering insights into the molecular pathways and signaling cascades involved. The dysregulation of apoptosis is a hallmark of cancer, and understanding the role of miR-21 in this context holds immense therapeutic potential. Additionally, the review highlights the clinical significance of miR-21 as a diagnostic and prognostic biomarker in breast cancer, underscoring its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia.
| | - Humera Banu
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia.
| | - Alia Alshammrani
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| | - Maali D Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Satheesh Kumar G
- Department of Pharmaceutical Chemistry, College of Pharmacy, Seven Hills College of Pharmacy, Venkataramapuram, Tirupati, India
| | - Kishore Kumar Kadimpati
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Poland
| | - Amna Abakar Suleiman Khalifa
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | | | - Arshad Hussain
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| | - Farah Khaled Alahmed
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| |
Collapse
|
19
|
Rana JN, Mumtaz S, Han I, Choi EH. Harnessing the synergy of nanosecond high-power microwave pulses and cisplatin to increase the induction of apoptosis in cancer cells through the activation of ATR/ATM and intrinsic pathways. Free Radic Biol Med 2024; 225:221-235. [PMID: 39362289 DOI: 10.1016/j.freeradbiomed.2024.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/17/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The therapeutic application and dose of cisplatin are limited due to its toxicity to normal cells. Therefore, combination treatments might be the solution with a low dose of cisplatin. The combination effect of nanosecond pulsed high-power microwave (HPM) with cisplatin has not been investigated before. In this work, we aimed to investigate and assess the potential synergistic effects and most likely underlying mechanisms resulting from the combination of nanosecond pulsed HPM and cisplatin. Three cancer (SKOV3, H460, and MDA-MB231) and two normal (MRC5 and HGF) cell lines underwent separate treatments with HPM and cisplatin, as well as a combined treatment. A higher reduction of viability was observed in cancer cells using combination treatments following 24-h incubation. Cell death, membrane permeability, and intracellular reactive oxygen species (ROS) levels exhibit a noteworthy increase in response to combined 60 pulses of HPM (HPM60) and cisplatin (0.5 μM) treatments compared to control and individual treatments. Elevated γ-H2AX levels indicate DNA double-strand breaks in combined treatments. Additionally, upregulation of ATR/ATM, Chk1/Chk2, P53, and caspase 3/8, Bax, PARP, and Bcl2 confirms DNA damage and mitochondrial dysfunction, leading to apoptosis. Remarkably, half maximal inhibitory concentration (IC50) results showed that HPM60 and cisplatin (0.5 μM) resulted in 16 times higher cell death in SKOV3 and H460 cells compared to cisplatin alone. Moreover, the efficacy of this combined treatment led to an over 50 % decrease in the viability of cancer cells. On the other hand, normal cells (MRC5 and HGF) exhibited only a minor 3-5 % decrease in viability under the same treatment conditions. The obtained results elucidate the cellular mechanisms driving cell apoptosis/death, offering insights for potential advancements in cancer therapy through the combined application of nanosecond pulses of HPM and cisplatin. This serves as a first step for future investigations in this domain.
Collapse
Affiliation(s)
- Juie Nahushkumar Rana
- Department of Plasma Bio Display, Kwangwoon University, Seoul, South Korea; Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul, South Korea
| | - Sohail Mumtaz
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul, South Korea; Department of Electrical and Biological Physics, Kwangwoon University, Seoul, South Korea
| | - Ihn Han
- Department of Plasma Bio Display, Kwangwoon University, Seoul, South Korea; Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul, South Korea
| | - Eun Ha Choi
- Department of Plasma Bio Display, Kwangwoon University, Seoul, South Korea; Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul, South Korea; Department of Electrical and Biological Physics, Kwangwoon University, Seoul, South Korea.
| |
Collapse
|
20
|
Zhang Y, Xie J. Targeting non-coding RNAs as a promising biomarker in peritoneal metastasis: Background, mechanism, and therapeutic approach. Biomed Pharmacother 2024; 179:117294. [PMID: 39226726 DOI: 10.1016/j.biopha.2024.117294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
Peritoneal metastasis (PM) pathophysiology is complex and not fully understood. PM, originating from gastrointestinal (GI) cancer, is a condition that significantly worsens patient prognosis due to its complex nature and limited treatment options. The non-coding RNAs (ncRNAs) have been shown to play pivotal roles in cancer biology, influencing tumorigenesis, progression, metastasis, and therapeutic resistance. Increasing evidence has demonstrated the regulatory functions of different classes of ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in PM. Identifying biomarkers for early detection of PM is a crucial step towards improving patient outcomes, and how ncRNA profiles correlate with survival rates, response to therapy, and recurrence risks have raised much attention in recent years. Additionally, exploring innovative therapeutic approaches utilizing ncRNAs, such as targeted therapy and gene silencing, may offer new horizons in treating this dire condition. Recent advances in systemic treatments and the development of novel loco-regional therapies have opened doors to multimodal treatment approaches. Radical surgeries combined with hyperthermic intraperitoneal chemotherapy (HIPEC) have shown promising results, leading to extended patient survival. Current research is focused on the molecular characterization of PM, which is crucial for early detection and developing future therapeutic strategies. By summarizing the latest findings, this study underscores the transformative potential of ncRNAs in enhancing the diagnosis, prognosis, and treatment of PM in GI cancer, paving the way for more personalized and effective clinical strategies.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan University, Shanghai 200438, China; Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai 201501, China.
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai 200438, China; Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai 201501, China.
| |
Collapse
|
21
|
Thangavelu L, Goyal A, Afzal M, Moglad E, Rawat S, Kazmi I, Alzarea SI, Almalki WH, Rani R, Madhubabu P, Rajput P, Bansal P. Pyroptosis in lung cancer: The emerging role of non-coding RNAs. Pathol Res Pract 2024; 263:155619. [PMID: 39357188 DOI: 10.1016/j.prp.2024.155619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Lung cancer remains an intractable malignancy worldwide, prompting novel therapeutic modalities. Pyroptosis, a lethal form of programmed cell death featured by inflammation, has been involved in cancer progression and treatment response. Simultaneously, non-coding RNA has been shown to have important roles in coordinating pattern formation and oncogenic pathways, including long non-coding RNA (lncRNAs), microRNA (miRNAs), circular RNA (circRNAs), and small interfering RNA (siRNAs). Recent studies have revealed that ncRNAs can promote or inhibit pyroptosis by interacting with key molecular players such as NLRP3, GSDMD, and various transcription factors. This dual role of ncRNAs offers a unique therapeutic potential to manipulate pyroptosis pathways, providing opportunities for innovative cancer treatments. In this review, we integrate current research findings to propose novel strategies for leveraging ncRNA-mediated pyroptosis as a therapeutic intervention in lung cancer. We explore the potential of ncRNAs as biomarkers for predicting patient response to treatment and as targets for overcoming resistance to conventional therapies.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Sushama Rawat
- Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Richa Rani
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab 140413, India
| | | | - Pranchal Rajput
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, India
| | - Pooja Bansal
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali 140307, Punjab, India
| |
Collapse
|
22
|
Imran M, Abida, Kamal M, Al Fares MA, Hazazi A, Sabour AA, Alshiekheid MA, Sulaiman T, Abdulkhaliq AA, Al Kaabi NA, Alfaresi M, Rabaan AA. Non-coding RNAs in meningitis: Key regulators of immune response and inflammation. Pathol Res Pract 2024; 263:155626. [PMID: 39353323 DOI: 10.1016/j.prp.2024.155626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Non-coding RNAs (ncRNAs) contain circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and micro-ribonucleic acids (miRNAs). These RNAs receive good functionality in modulation of gene expressions & cellular roles. Recent research is shedding light on their pivotal roles in the pathophysiology of inflammatory meningitis, such as viral, fungal, or bacterial infections. This review addresses the intricate roles of non-coding RNAs (ncRNAs) that transcribe code-independent mRNA and other biological elements that control inflammation and immunological events extant during meningitis. ncRNAs, acting on a myriad of immune cell development, cytokine production, pathogen recognition, and so forth, finely orchestrate the host's immune response. Although lncRNAs and circRNAs are associated with gene networks regulating immune responses, miRNAs can precisely modulate the expression of pro- and anti-inflammatory cytokines. Moreover, ncRNAs have unique expression patterns in disease states and are stable in bio-fluids; therefore, they can serve as specific molecular biomarkers for meningitis concerning the diagnosis and prognosis. It might also be helpful to target ncRNAs as a therapeutic strategy to impact immune regulation and inflammation. Here, we review the current knowledge of how ncRNAs function in meningitis and discuss adopted approaches and perspectives and their implications for therapeutic strategies.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Amal A Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maha A Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Altaf A Abdulkhaliq
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
| | - Nawal A Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Mubarak Alfaresi
- Department of Microbiology, National Reference Laboratory, Cleveland Clinic Abu Dhabi, Abu Dhabi 92323, United Arab Emirates; Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Ali A Rabaan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| |
Collapse
|
23
|
Bhat AA, Afzal M, Moglad E, Thapa R, Ali H, Almalki WH, Kazmi I, Alzarea SI, Gupta G, Subramaniyan V. lncRNAs as prognostic markers and therapeutic targets in cuproptosis-mediated cancer. Clin Exp Med 2024; 24:226. [PMID: 39325172 PMCID: PMC11427524 DOI: 10.1007/s10238-024-01491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in various cellular processes, including cancer progression and stress response. Recent studies have demonstrated that copper accumulation induces a unique form of cell death known as cuproptosis, with lncRNAs playing a key role in regulating cuproptosis-associated pathways. These lncRNAs may trigger cell-specific responses to copper stress, presenting new opportunities as prognostic markers and therapeutic targets. This paper delves into the role of lncRNAs in cuproptosis-mediated cancer, underscoring their potential as biomarkers and targets for innovative therapeutic strategies. A thorough review of scientific literature was conducted, utilizing databases such as PubMed, Google Scholar, and ScienceDirect, with search terms like 'lncRNAs,' 'cuproptosis,' and 'cancer.' Studies were selected based on their relevance to lncRNA regulation of cuproptosis pathways and their implications for cancer prognosis and treatment. The review highlights the significant contribution of lncRNAs in regulating cuproptosis-related genes and pathways, impacting copper metabolism, mitochondrial stress responses, and apoptotic signaling. Specific lncRNAs are potential prognostic markers in breast, lung, liver, ovarian, pancreatic, and gastric cancers. The objective of this article is to explore the role of lncRNAs as potential prognostic markers and therapeutic targets in cancers mediated by cuproptosis.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
24
|
Ren T, Huang Y. Recent advancements in improving the efficacy and safety of chimeric antigen receptor (CAR)-T cell therapy for hepatocellular carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03443-7. [PMID: 39316087 DOI: 10.1007/s00210-024-03443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
The liver is one of the most frequent sites of primary malignancies in humans. Hepatocellular carcinoma (HCC) is one of the most prevalent solid tumors with poor prognosis. Current treatments showed limited efficacy in some patients, and, therefore, alternative strategies, such as immunotherapy, cancer vaccines, adoptive cell therapy (ACT), and recently chimeric antigen receptors (CAR)-T cells, are developed to offer better efficacy and safety profile in patients with HCC. Unlike other ACTs like tumor-infiltrating lymphocytes (TILs), CAR-T cells are equipped with engineered CAR receptors that effectively identify tumor antigens and eliminate cancer cells without major histocompatibility complex (MHC) restriction. This process induces intracellular signaling, leading to T lymphocyte recruitment and subsequent activation of other effector cells in the tumor microenvironment (TME). Until today, novel approaches have been used to develop more potent CAR-T cells with robust persistence, specificity, trafficking, and safety. However, the clinical application of CAR-T cells in solid tumors is still challenging. Therefore, this study aims to review the advancement, prospects, and possible avenues of CAR-T cell application in HCC following an outline of the CAR structure and function.
Collapse
Affiliation(s)
- Tuo Ren
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongsahn 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Yonghui Huang
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongsahn 2nd Road, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
25
|
Li W, Jiang Z, Yan Z, Chen Z, Li L, Wang D, Wang J, Li L, Yang H, Deng J, Lin J. Hydrogel based on M1 macrophage lysate and alginate loading with oxaliplatin for effective immunomodulation to inhibit melanoma progression, recurrence and metastasis. Int J Biol Macromol 2024; 280:135542. [PMID: 39276890 DOI: 10.1016/j.ijbiomac.2024.135542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Despite the monumental success of immunotherapy in treating melanoma clinically, it still confronts significant challenges, chiefly that singular immunomodulatory tactics are insufficient to suppress the recurrence and metastasis of melanoma. Herein, these challenges are addressed by a hydrogel based on M1 macrophage lysate and alginate (M1LMHA) loaded with oxaliplatin (OXA), named M1LMHA@OXA.The results obtained from scanning electron microscopy and confocal microscopy indicate that the structure and morphology of M1LMHA@OXA remain unchanged. Flow cytometry results reveal that M1LMHA@OXA significantly promotes the maturation of dendritic cells (DCs) and enhances the proliferation of T lymphocytes. In a subcutaneous melanoma transplant model, M1LMHA@OXA effectively suppressed tumor growth in comparison to OXA alone and M1LMHA alone. Flow cytometry demonstrated that M1LMHA@OXA markedly increased the number of mature DCs and CD8+ T cells at the tumor site, while significantly reducing the quantity of M2-like tumor-associated macrophages (TAM) and enhancing the presence of M1 macrophages. Enzyme-linked immunosorbent assay (ELISA) results indicated that following treatment with M1LMHA@OXA, the levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in the bloodstream of mice were significantly elevated, whereas interleukin-10 (IL-10) exhibited no significant difference. This outcome further corroborates the ability of M1LMHA@OXA to substantially bolster the immune capability of mice. Similar results have also been observed in a melanoma subcutaneous transplantation recurrence model, and optical imaging of the lungs of mice revealed that M1LMHA@OXA inhibited tumor metastasis to the lungs. Notably, M1LMHA@OXA exhibits an exceptional therapeutic effect on the growth, post-surgical recurrence, and metastasis of the B16F10 melanoma. Therefore, this study provides a straightforward strategy that leverages the cooperative regulation of multiple immune cells to thwart the proliferation, recurrence, and spread of melanoma.
Collapse
Affiliation(s)
- Wanyu Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Zhonghao Jiang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Zhuo Yan
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Zhihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Lianhai Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Dan Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jilong Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Huiling Yang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Junjie Deng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| | - Jiantao Lin
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
26
|
Min L, Li X, Liang L, Ruan Z, Yu S. Targeting HSP90 in Gynecologic Cancer: Molecular Mechanisms and Therapeutic Approaches. Cell Biochem Biophys 2024:10.1007/s12013-024-01502-7. [PMID: 39249180 DOI: 10.1007/s12013-024-01502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 09/10/2024]
Abstract
One of the leading causes of mortality for women is gynecologic cancer (GC). Numerous molecules (tumor suppressor genes or oncogenes) are involved in this form of cancer's invasion, metastasis, tumorigenic process, and therapy resistance. Currently, there is a shortage of efficient methods to eliminate these diseases, hence it is crucial to carry out more extensive studies on GCs. Novel pharmaceuticals are required to surmount this predicament. Highly conserved molecular chaperon, heat shock protein (HSP) 90, is essential for the maturation of recently produced polypeptides and offers a refuge for misfolding or denatured proteins to be turned around. In cancer, the client proteins of HSP90 play a role in the entire process of oncogenesis, which is linked to all the characteristic features of cancer. In this study, we explore the various functions of HSPs in GC progression. We also discuss their potential as promising targets for pharmacological therapy.
Collapse
Affiliation(s)
- Lu Min
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China
| | - Xuewei Li
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China
| | - Lily Liang
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China
| | - Zheng Ruan
- Department of Traditional Chinese Medicine, 964th Hospital, Changchun, 130000, China
| | - Shaohui Yu
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China.
| |
Collapse
|
27
|
Kamble OS, Chatterjee R, Abishek KG, Chandra J, Alsayari A, Wahab S, Sahebkar A, Kesharwani P, Dandela R. Small molecules targeting mitochondria as an innovative approach to cancer therapy. Cell Signal 2024; 124:111396. [PMID: 39251050 DOI: 10.1016/j.cellsig.2024.111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Cellular death evasion is a defining characteristic of human malignancies and a significant contributor to therapeutic inefficacy. As a result of oncogenic inhibition of cell death mechanisms, established therapeutic regimens seems to be ineffective. Mitochondria serve as the cellular powerhouses, but they also function as repositories of self-destructive weaponry. Changes in the structure and activities of mitochondria have been consistently documented in cancer cells. In recent years, there has been an increasing focus on using mitochondria as a targeted approach for treating cancer. Considerable attention has been devoted to the development of delivery systems that selectively aim to deliver small molecules called "mitocans" to mitochondria, with the ultimate goal of modulating the physiology of cancer cells. This review summarizes the rationale and mechanism of mitochondrial targeting with small molecules in the treatment of cancer, and their impact on the mitochondria. This paper provides a concise overview of the reasoning and mechanism behind directing treatment towards mitochondria in cancer therapy, with a particular focus on targeting using small molecules. This review also examines diverse small molecule types within each category as potential therapeutic agents for cancer.
Collapse
Affiliation(s)
- Omkar S Kamble
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - Rana Chatterjee
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - K G Abishek
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India.
| |
Collapse
|
28
|
Joshi K, Yuan M, Katsushima K, Saulnier O, Ray A, Amankwah E, Stapleton S, Jallo G, Taylor MD, Eberhart CG, Perera RJ. Systematic transcriptomic analysis of childhood medulloblastoma identifies N6- methyladenosine-dependent lncRNA signatures associated with molecular subtype, immune cell in filtration, and prognosis. RESEARCH SQUARE 2024:rs.3.rs-4810070. [PMID: 39281885 PMCID: PMC11398580 DOI: 10.21203/rs.3.rs-4810070/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Medulloblastoma, the most common malignant pediatric brain tumor, is classified into four main molecular subgroups, but group 3 and group 4 tumors are difficult to subclassify and have a poor prognosis. Rapid point-of-care diagnostic and prognostic assays are needed to improve medulloblastoma risk stratification and management. N6-methyladenosine (m6A) is a common RNA modification and long non-coding RNAs (lncRNAs) play a central role in tumor progression, but their impact on gene expression and associated clinical outcomes in medulloblastoma are unknown. Here we analyzed 469 medulloblastoma tumor transcriptomes to identify lncRNAs co-expressed with m6A regulators. Using LASSO-Cox analysis, we identified a five-gene m6A-associated lncRNA signature (M6LSig) significantly associated with overall survival, which was combined in a prognostic clinical nomogram. Using expression of the 67 m6A-associated lncRNAs, a subgroup classification model was generated using the XGBoost machine learning algorithm, which had a classification accuracy > 90%, including for group 3 and 4 samples. All M6LSig genes were significantly correlated with at least one immune cell type abundance in the tumor microenvironment, and the risk score was positively correlated with CD4+ naïve T cell abundance and negatively correlated with follicular helper T cells and eosinophils. Knockdown of key m6A writer genes METTL3 and METTL14 in a group 3 medulloblastoma cell line (D425-Med) decreased cell proliferation and upregulated many M6LSig genes identified in our in silico analysis, suggesting that the signature genes are functional in medulloblastoma. This study highlights a crucial role for m6A-dependent lncRNAs in medulloblastoma prognosis and immune responses and provides the foundation for practical clinical tools that can be rapidly deployed in clinical settings.
Collapse
|
29
|
Gupta G, Afzal M, Moglad E, Ali H, Singh TG, Kumbhar P, Disouza J, Almujri SS, Kazmi I, Alzarea SI, Hemalatha KP, Goh BH, Singh SK, Dua K. Non-coding RNAs as key regulators of Gasdermin-D mediated pyroptosis in cancer therapy. Pathol Res Pract 2024; 261:155490. [PMID: 39126977 DOI: 10.1016/j.prp.2024.155490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
Pyroptosis is an inflammatory programed cell death process that plays a crucial role in cancer therapeutic, while Gasdermin-D is a critical effector protein for pyroptosis execution. This review discusses the intricate interactions between Gasdermin-D and some non-coding RNAs (lncRNA, miRNA, siRNA) and their potential application in the regulation of pyroptosis as an anticancer therapy. Correspondingly, these ncRNAs significantly implicate in Gasdermin-D expression and function regarding the pyroptosis pathway. Functioning as competing endogenous RNAs (ceRNAs), these ncRNAs might regulate Gasdermin-D at the molecular level, underlying fatal cell death caused by cancer and tumor propagation. Therefore, these interactions appeal to therapeutics, offering new avenues for cancer treatment. It address this research gap by discussing the possible roles of ncRNAs as mediators of gasdermin-D regulation. It suggest therapeutic strategies based on the current research findings to ensure the interchange between the ideal pyroptosis and cancer cell death.
Collapse
Affiliation(s)
- Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | | | - Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala Dist, Kolhapur, Maharashtra 416113, India
| | - John Disouza
- Bombay Institute of Research and Pharmacy, Dombivli, Mumbai, Maharashtra 421203, India
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Aseer 61421, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - K P Hemalatha
- Sree Siddaganga College of Pharmacy, Tumkur, Karnataka, India
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
30
|
Jagadeesan D, Sathasivam KV, Fuloria NK, Balakrishnan V, Khor GH, Ravichandran M, Solyappan M, Fuloria S, Gupta G, Ahlawat A, Yadav G, Kaur P, Husseen B. Comprehensive insights into oral squamous cell carcinoma: Diagnosis, pathogenesis, and therapeutic advances. Pathol Res Pract 2024; 261:155489. [PMID: 39111016 DOI: 10.1016/j.prp.2024.155489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/18/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is considered the most common type of head and neck squamous cell carcinoma (HNSCC) as it holds 90 % of HNSCC cases that arise from multiple locations in the oral cavity. The last three decades witnessed little progress in the diagnosis and treatment of OSCC the aggressive tumor. However, in-depth knowledge about OSCC's pathogenesis, staging & grading, hallmarks, and causative factors is a prime requirement in advanced diagnosis and treatment for OSCC patients. Therefore present review was intended to comprehend the OSCCs' prevalence, staging & grading, molecular pathogenesis including premalignant stages, various hallmarks, etiology, diagnostic methods, treatment (including FDA-approved drugs with the mechanism of action and side effects), and theranostic agents. The current review updates that for a better understanding of OSCC progress tumor-promoting inflammation, sustained proliferative signaling, and growth-suppressive signals/apoptosis capacity evasion are the three most important hallmarks to be considered. This review suggests that among all the etiology factors the consumption of tobacco is the major contributor to the high incidence rate of OSCC. In OSCC diagnosis biopsy is considered the gold standard, however, toluidine blue staining is the easiest and non-invasive method with high accuracy. Although there are various therapeutic agents available for cancer treatment, however, a few only are approved by the FDA specifically for OSCC treatment. The present review recommends that among all available OSCC treatments, the antibody-based CAR-NK is a promising therapeutic approach for future cancer treatment. Presently review also suggests that theranostics have boosted the advancement of cancer diagnosis and treatment, however, additional work is required to refine the role of theranostics in combination with different modalities in cancer treatment.
Collapse
Affiliation(s)
- Dharshini Jagadeesan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | - Kathiresan V Sathasivam
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | | | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia,11800 USM, Pulau Pinang, Malaysia
| | - Goot Heah Khor
- Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, SungaiBuloh, Selangor 47000, Malaysia; Oral and Maxillofacial Cancer Research Group, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Selangor 47000, Malaysia
| | - Manickam Ravichandran
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | - Maheswaran Solyappan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | | | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Abhilasha Ahlawat
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Geeta Yadav
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - Pandeep Kaur
- National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
31
|
Gao J, You T, Liu J, Yang L, Liu Y, Wang Y. TIPRL, a Potential Double-edge Molecule to be Targeted and Re-targeted Toward Cancer. Cell Biochem Biophys 2024; 82:1681-1691. [PMID: 38888871 DOI: 10.1007/s12013-024-01334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/20/2024]
Abstract
The target of rapamycin (TOR) proteins exhibits phylogenetic conservation across various species, ranging from yeast to humans, and are classified as members of the phosphatidylinositol kinase (PIK)-related kinase family. Multiple serine/threonine (Ser/Thr) protein phosphatases (PP)2A, PP4, and PP6, have been recognized as constituents of the TOR signaling pathway in mammalian cells. The protein known as TOR signaling pathway regulator-like (TIPRL) functions as a regulatory agent by impeding the activity of the catalytic subunits of PP2A. Various cellular contexts have been postulated for TIPRL, encompassing the regulation of mechanistic target of rapamycin (mTOR) signaling, inhibition of apoptosis and biogenesis, and recycling of PP2A. According to reports, there has been an observed increase in TIPRL levels in several types of carcinomas, such as non-small-cell lung carcinoma (NSCLC) and hepatocellular carcinomas (HCC). This review aims to comprehensively examine the significance of the Tor pathway in regulating apoptosis and proliferation of cancer cells, with a specific focus on the role of TOR signaling and TIPRL in cancer.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pharmacy, Zibo Central Hospital, Zibo, 255036, China
| | - Tiantian You
- Department of Pharmacy, Zibo Central Hospital, Zibo, 255036, China
| | - Jiao Liu
- Department of Pharmacy, Zibo Central Hospital, Zibo, 255036, China
| | - Lili Yang
- Department of Pharmacy, Zibo Central Hospital, Zibo, 255036, China
| | - Yan Liu
- Department of Pharmacy, Zibo Central Hospital, Zibo, 255036, China
| | - Yanyan Wang
- Department of Pharmacy, Zibo Central Hospital, Zibo, 255036, China.
| |
Collapse
|
32
|
Chen X, Zhou H, Lv J. The Importance of Hypoxia-Related to Hemoglobin Concentration in Breast Cancer. Cell Biochem Biophys 2024; 82:1893-1906. [PMID: 38955926 DOI: 10.1007/s12013-024-01386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
The importance of hemoglobin (Hgb) as a novel prognostic biomarker in predicting clinical features of cancers has been the subject of intense interest. Anemia is common in various types of cancer including breast cancer (BC) and is considered to be attributed to tumoral hypoxia. Cancer microenvironments are hypoxic compared with normal tissues, and this hypoxia is associated with Hgb concentration. Recent preclinical documents propose a direct or indirect correlation of intratumoral hypoxia, specifically along with acidity, with Hgb concentration and anemia. Analysis of the prognostic value of Hgb in BC patients has demonstrated increased hypoxia in the intratumoral environment. A great number of studies demonstrated that lower concentrations of Hgb before or during common cancer treatments, such as radiation and chemotherapy, is an essential risk factor for poor prognostic and survival, as well as low quality of life in BC patients. This data suggests a potential correlation between anemia and hypoxia in BC. While low Hgb levels are detrimental to BC invasion and survival, identification of a distinct and exact threshold for low Hgb concentration is challenging and inaccurate. The optimal thresholds for Hgb and partial pressure of oxygen (pO2) vary based on different factors including age, gender, therapeutic approaches, and tumor types. While necessitating further investigations, understanding the correlation of Hgb levels with tumoral hypoxia and oxygenation could improve exploring strategies to overcome radio-chemotherapy related anemia in BC patients. This review highlights the collective association of Hgb concentration and hypoxia condition in BC progression.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Hematology and Oncology, Yongkang First People's Hospital Affiliated to Hangzhou Medical College, Yongkang, 321300, China.
| | - Hongmei Zhou
- Department of Hematology and Oncology, Yongkang First People's Hospital Affiliated to Hangzhou Medical College, Yongkang, 321300, China
| | - Jiaoli Lv
- Department of Hematology and Oncology, Yongkang First People's Hospital Affiliated to Hangzhou Medical College, Yongkang, 321300, China
| |
Collapse
|
33
|
Mao Z, Wang X, Zhao Y, Yang F, Qin Q, Jiang R. The Role of MiR-375 in Migration and Invasion of H.pylori-induced Gastric Cancer Cell Model. Cell Biochem Biophys 2024:10.1007/s12013-024-01473-9. [PMID: 39212822 DOI: 10.1007/s12013-024-01473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
This article aimed to investigate the mechanism of miR-375 in Hp-induced gastric cancer cells (GCCs) model. Human normal gastric mucosal epithelial cell (GMEC) line GES-1 and human GCCs strain MKN45 were used as research objects. The expression of miR-375 was detected after H.pylori (Hp) infection of GCCs. The cell activity was detected by, 53-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, and the cell multiplication was determined by cell counting kit-8 (CCK-8) method. Transwell assay was used to detect the effect of cell invasion and migration ability. The expression levels of JAK1 and STAT3 proteins were determined by Western blot (WB). MiR-375 was increased in GCCs after Hp infection, and JAK1, STAT3, p-JAK1, and p-STAT3 in GCCs after Hp infection were visibly increased. In addition, the overexpressed miR-375 promoted the multiplication activity, migration, and invasion ability of GCCs. MiR-375 promotes Hp-induced migration and invasion of GCCs by targeting JAK1/STAT3. This article reveals the important role of miR-375 in Hp-induced GC, which provides new clues for further study of its mechanism and therapeutic targets.
Collapse
Affiliation(s)
- Zhichao Mao
- Department of Gastroenterology, Yiling People's Hospital, Yichang, Hubei Province, China
| | - Xinyu Wang
- Department of Gastroenterology, Yiling People's Hospital, Yichang, Hubei Province, China
| | - Yongtang Zhao
- Department of Gastroenterology, Yiling People's Hospital, Yichang, Hubei Province, China
| | - Fei Yang
- Department of Gastroenterology, Yiling People's Hospital, Yichang, Hubei Province, China
| | - Qin Qin
- Department of Gastroenterology, Yiling People's Hospital, Yichang, Hubei Province, China
| | - Ruilian Jiang
- Department of Cardiovascular, Yiling People's Hospital, Yichang, Hubei Province, China.
| |
Collapse
|
34
|
Ali AA, Belali TM, Abu-Alghayth MH, Alyahyawi Y, Abalkhail A, Hazazi A, Nassar SA, Khan FR, Shmrany HA, Syed SM. Non-coding RNAs and estrogen receptor signaling in breast cancer: Nanotechnology-based therapeutic approaches. Pathol Res Pract 2024; 263:155568. [PMID: 39288475 DOI: 10.1016/j.prp.2024.155568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
This review investigates the regulatory role of non-coding RNAs (ncRNAs) in estrogen receptor (ER) signaling pathways, particularly in the context of breast cancer therapy, with an emphasis on the emerging potential of nanotechnology for drug delivery. The information was obtained from reputable databases, including PubMed, Elsevier, Springer, Wiley, Taylor, and Francis, which contain past and present research. Breast cancer remains the most prevalent cancer among women worldwide, and ER signaling mechanisms heavily influence its progression. Treatment options have traditionally encompassed surgery, chemotherapy, radiation therapy, targeted therapy, and hormone therapy. In recent decades, nanomedicine has emerged as a promising approach to breast cancer treatment. By passively targeting tumor cells and reducing toxicity, nanodrugs can overcome the challenges of conventional chemotherapy. Additionally, nanocarriers can stimulate tumor cells, enhancing treatment efficacy. Recent advancements in nanomedicine offer promising approaches for targeted cancer therapy, potentially overcoming the limitations of conventional treatments. This review explores the interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) with ER pathways, their impact on breast cancer progression, and how these interactions can be leveraged to enhance therapeutic efficacy through nanotechnology-based drug delivery systems.
Collapse
Affiliation(s)
- Amer Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia
| | - Tareg M Belali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia
| | - Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia
| | - Yara Alyahyawi
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Adil Abalkhail
- Department Public Health, College of Applied Medical Sciences, Qassim University, Buraydah 51452, P.O. Box 6666, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Somia A Nassar
- Department of Laboratory Medical Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Saudi Arabia; Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Farhan R Khan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Humood Al Shmrany
- Department of Laboratory Medical Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Saudi Arabia.
| | - Shoaeb Mohammad Syed
- Department of Pharmaceutics, Dayanand College of Pharmacy, Barshi Road, Latur, MS, 413531, India.
| |
Collapse
|
35
|
Joshi K, Yuan M, Katsushima K, Saulnier O, Ray A, Amankwah E, Stapleton S, Jallo G, Taylor MD, Eberhart CG, Perera RJ. Systematic transcriptomic analysis of childhood medulloblastoma identifies N6-methyladenosine-dependent lncRNA signatures associated with molecular subtype, immune cell infiltration, and prognosis. Acta Neuropathol Commun 2024; 12:138. [PMID: 39198884 PMCID: PMC11351195 DOI: 10.1186/s40478-024-01848-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Medulloblastoma, the most common malignant pediatric brain tumor, is classified into four main molecular subgroups, but group 3 and group 4 tumors are difficult to subclassify and have a poor prognosis. Rapid point-of-care diagnostic and prognostic assays are needed to improve medulloblastoma risk stratification and management. N6-methyladenosine (m6A) is a common RNA modification and long non-coding RNAs (lncRNAs) play a central role in tumor progression, but their impact on gene expression and associated clinical outcomes in medulloblastoma are unknown. Here we analyzed 469 medulloblastoma tumor transcriptomes to identify lncRNAs co-expressed with m6A regulators. Using LASSO-Cox analysis, we identified a five-gene m6A-associated lncRNA signature (M6LSig) significantly associated with overall survival, which was combined in a prognostic clinical nomogram. Using expression of the 67 m6A-associated lncRNAs, a subgroup classification model was generated using the XGBoost machine learning algorithm, which had a classification accuracy > 90%, including for group 3 and 4 samples. All M6LSig genes were significantly correlated with at least one immune cell type abundance in the tumor microenvironment, and the risk score was positively correlated with CD4+ naïve T cell abundance and negatively correlated with follicular helper T cells and eosinophils. Knockdown of key m6A writer genes METTL3 and METTL14 in a group 3 medulloblastoma cell line (D425-Med) decreased cell proliferation and upregulated many M6LSig genes identified in our in silico analysis, suggesting that the signature genes are functional in medulloblastoma. This study highlights a crucial role for m6A-dependent lncRNAs in medulloblastoma prognosis and immune responses and provides the foundation for practical clinical tools that can be rapidly deployed in clinical settings.
Collapse
Affiliation(s)
- Kandarp Joshi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St, Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Menglang Yuan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St, Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Keisuke Katsushima
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St, Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Olivier Saulnier
- Genomics and Development of Childhood Cancers, Institut Curie, PSL University, Paris, 75005, France
- Cancer Heterogeneity Instability and Plasticity, Inserm U830, Institut Curie, PSL University, Paris, 75005, France
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, 75005, France
| | | | - Ernest Amankwah
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Stacie Stapleton
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - George Jallo
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Michael D Taylor
- Hematology-Oncology Section, Texas Children's Cancer Center, Houston, TX, 77004, USA
- Department of Pediatrics - Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, TX, 77004, USA
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross Bldg 558, Baltimore, MD, 21205, USA
| | - Ranjan J Perera
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St, Baltimore, MD, 21231, USA.
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA.
| |
Collapse
|
36
|
Afsar S, Syed RU, Khojali WMA, Masood N, Osman ME, Jyothi JS, Hadi MA, Khalifa AAS, Aboshouk NAM, Alsaikhan HA, Alafnan AS, Alrashidi BA. Non-coding RNAs in BRAF-mutant melanoma: targets, indicators, and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03366-3. [PMID: 39167168 DOI: 10.1007/s00210-024-03366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Melanoma, a highly aggressive skin cancer, is often driven by BRAF mutations, such as the V600E mutation, which promotes cancer growth through the MAPK pathway and contributes to treatment resistance. Understanding the role of non-coding RNAs (ncRNAs) in these processes is crucial for developing new therapeutic strategies. This review aims to elucidate the relationship between ncRNAs and BRAF mutations in melanoma, focusing on their regulatory roles and impact on treatment resistance. We comprehensively reviewed current literature to synthesize evidence on ncRNA-mediated regulation of BRAF-mutant melanoma and their influence on therapeutic responses. Key ncRNAs, including microRNAs and long ncRNAs, were identified as significant regulators of melanoma development and therapy resistance. MicroRNAs such as miR-15/16 and miR-200 families modulate critical pathways like Wnt signaling and melanogenesis. Long ncRNAs like ANRIL and SAMMSON play roles in cell growth, invasion, and drug susceptibility. Specific ncRNAs, such as BANCR and RMEL3, intersect with the MAPK pathway, highlighting their potential as therapeutic targets or biomarkers in BRAF-mutant melanoma. Additionally, ncRNAs involved in drug resistance, such as miR-579-3p and miR-1246, target processes like autophagy and immune checkpoint regulation. This review highlights the pivotal roles of ncRNAs in regulating BRAF-mutant melanoma and their contribution to drug resistance. These findings underscore the potential of ncRNAs as biomarkers and therapeutic targets, paving the way for innovative treatments to improve outcomes for melanoma patients.
Collapse
Affiliation(s)
- S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh, 517502, India.
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, 81442, Hail, Saudi Arabia.
| | - Weam M A Khojali
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman, 14415, Sudan
| | - Najat Masood
- Chemistry Department, Faculty of Science, University of Ha'il, P.O. Box 2440, 81451, Ha'il,, Saudi Arabia
| | - Mhdia Elhadi Osman
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - J Siva Jyothi
- Department of Pharmaceutics, Hindu College of Pharmacy, Andhra Pradesh, India
| | - Mohd Abdul Hadi
- Department of Pharmaceutics, Bhaskar Pharmacy College, Moinabad, R.R.District, Hyderabad, 500075, Telangana, India
| | - Amna Abakar Suleiman Khalifa
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 81442, Hail, Saudi Arabia
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 81442, Hail, Saudi Arabia
| | | | | | | |
Collapse
|
37
|
Feng Q, Xu X, Zhang S. cGAS-STING pathway in systemic lupus erythematosus: biological implications and therapeutic opportunities. Immunol Res 2024:10.1007/s12026-024-09525-1. [PMID: 39096420 DOI: 10.1007/s12026-024-09525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has been identified as a significant modulator of inflammation in various clinical contexts, including infection, cellular stress, and tissue injury. The extensive participation of the cGAS-STING pathway can be attributed to its ability to detect and control the cellular reaction to DNAs originating from both microorganisms and hosts. These DNAs are well recognized as molecules linked with potential risks. At physiological levels, the STING signaling system exhibits protective effects. However, prolonged stimulation of this pathway contributes to autoimmune disorder pathogenesis. The present paper provides an overview of the activation mechanism of the cGAS-STING signaling pathways and their associated significant functions, as well as therapeutic interventions in the context of systemic lupus erythematosus (SLE). The primary objective is to enhance our comprehension of SLE and facilitate more effective diagnosis and treatment strategies for this condition.
Collapse
Affiliation(s)
- Qun Feng
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Xiaolin Xu
- Cardiology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Shoulin Zhang
- Nephropathy Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
38
|
Moghadam Fard A, Goodarzi P, Mottahedi M, Garousi S, Zadabhari H, Kalantari Shahijan M, Esmaeili S, Nabi-Afjadi M, Yousefi B. Therapeutic applications of melatonin in disorders related to the gastrointestinal tract and control of appetite. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5335-5362. [PMID: 38358468 DOI: 10.1007/s00210-024-02972-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Most animals have large amounts of the special substance melatonin, which is controlled by the light/dark cycle in the suprachiasmatic nucleus. According to what is now understood, the gastrointestinal tract (GIT) and other areas of the body are sites of melatonin production. According to recent studies, the GIT and adjacent organs depend critically on a massive amount of melatonin. Not unexpectedly, melatonin's many biological properties, such as its antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-metastasis, and antiangiogenic properties, have drawn the attention of researchers more and more. Because melatonin is an antioxidant, it produces a lot of secretions in the GIT's mucus and saliva, which shields cells from damage and promotes the development of certain GIT-related disorders. Melatonin's ability to alter cellular behavior in the GIT and other associated organs, such as the liver and pancreas, is another way that it functions. This behavior alters the secretory and metabolic activities of these cells. In this review, we attempted to shed fresh light on the many roles that melatonin plays in the various regions of the gastrointestinal tract by focusing on its activities for the first time.
Collapse
Affiliation(s)
| | - Pardis Goodarzi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zadabhari
- Physiotherapy and Rehabilitation Faculty, Medipol University Health of Science, Istanbul, Turkey
| | | | - Saeedeh Esmaeili
- Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Bahman Yousefi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
39
|
Thangavelu L, Moglad E, Gupta G, Menon SV, Gaur A, Sharma S, Kaur M, Chahar M, Sivaprasad GV, Deorari M. GAS5 lncRNA: A biomarker and therapeutic target in breast cancer. Pathol Res Pract 2024; 260:155424. [PMID: 38909406 DOI: 10.1016/j.prp.2024.155424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Breast cancer is one of the most common causes of cancer-related mortality globally, and its aggressive phenotype results in poor treatment outcomes. Growth Arrest-Specific 5 long non-coding RNA has attracted considerable attention due to its pivotal function in apoptosis regulation and tumor aggressiveness in breast cancer. Gas5 enhances apoptosis by regulating apoptotic proteins, such as caspases and BCL2 family proteins, and the sensitivity of BCCs to chemotherapeutic agents. At the same time, low levels of GAS5 increased invasion, metastasis, and overall tumor aggressiveness. GAS5 also regulates EMT markers, critical for cancer metastasis, and influences tumor cell proliferation by regulating various signaling components. As a result, GAS5 can be restored to suppress tumor development as a possible therapeutic strategy, which might present promising prospects for a patient's treatment. Its activity levels might also be a crucial indicator and diagnostic parameter for prediction. This review highlights the significant role of GAS5 in modulating apoptosis and tumor aggressiveness in breast cancer, emphasizing its potential as a therapeutic target for breast cancer treatment and management.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Ashish Gaur
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | - Snehlata Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, Punjab 140307, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Mamata Chahar
- Department of Chemistry, NIMS University, Jaipur, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
40
|
Han D, Zhao F, Chen Y, Xue Y, Bao K, Chang Y, Lu J, Wang M, Liu T, Gao Q, Cui W, Xu Y. Distinct Characteristic Binding Modes of Benzofuran Core Inhibitors to Diverse Genotypes of Hepatitis C Virus NS5B Polymerase: A Molecular Simulation Study. Int J Mol Sci 2024; 25:8028. [PMID: 39125602 PMCID: PMC11311972 DOI: 10.3390/ijms25158028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The benzofuran core inhibitors HCV-796, BMS-929075, MK-8876, compound 2, and compound 9B exhibit good pan-genotypic activity against various genotypes of NS5B polymerase. To elucidate their mechanism of action, multiple molecular simulation methods were used to investigate the complex systems of these inhibitors binding to GT1a, 1b, 2a, and 2b NS5B polymerases. The calculation results indicated that these five inhibitors can not only interact with the residues in the palm II subdomain of NS5B polymerase, but also with the residues in the palm I subdomain or the palm I/III overlap region. Interestingly, the binding of inhibitors with longer substituents at the C5 position (BMS-929075, MK-8876, compound 2, and compound 9B) to the GT1a and 2b NS5B polymerases exhibits different binding patterns compared to the binding to the GT1b and 2a NS5B polymerases. The interactions between the para-fluorophenyl groups at the C2 positions of the inhibitors and the residues at the binding pockets, together with the interactions between the substituents at the C5 positions and the residues at the reverse β-fold (residues 441-456), play a key role in recognition and the induction of the binding. The relevant studies could provide valuable information for further research and development of novel anti-HCV benzofuran core pan-genotypic inhibitors.
Collapse
Affiliation(s)
- Di Han
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (F.Z.); (Y.C.); (Y.X.); (K.B.); (Y.C.); (J.L.); (M.W.); (T.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Fang Zhao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (F.Z.); (Y.C.); (Y.X.); (K.B.); (Y.C.); (J.L.); (M.W.); (T.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Yifan Chen
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (F.Z.); (Y.C.); (Y.X.); (K.B.); (Y.C.); (J.L.); (M.W.); (T.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Yiwei Xue
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (F.Z.); (Y.C.); (Y.X.); (K.B.); (Y.C.); (J.L.); (M.W.); (T.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Ke Bao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (F.Z.); (Y.C.); (Y.X.); (K.B.); (Y.C.); (J.L.); (M.W.); (T.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Yuxiao Chang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (F.Z.); (Y.C.); (Y.X.); (K.B.); (Y.C.); (J.L.); (M.W.); (T.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Jiarui Lu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (F.Z.); (Y.C.); (Y.X.); (K.B.); (Y.C.); (J.L.); (M.W.); (T.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Meiting Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (F.Z.); (Y.C.); (Y.X.); (K.B.); (Y.C.); (J.L.); (M.W.); (T.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Taigang Liu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (F.Z.); (Y.C.); (Y.X.); (K.B.); (Y.C.); (J.L.); (M.W.); (T.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China;
| | - Wei Cui
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China;
| | - Yongtao Xu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (F.Z.); (Y.C.); (Y.X.); (K.B.); (Y.C.); (J.L.); (M.W.); (T.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| |
Collapse
|
41
|
Ismail R, Ali S, Azeem M, Zahid MA. Double resolvability parameters of fosmidomycin anti-malaria drug and exchange property. Heliyon 2024; 10:e33211. [PMID: 39035488 PMCID: PMC11259831 DOI: 10.1016/j.heliyon.2024.e33211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
The practical and theoretical significance of the resolvability parameter makes it an important factor, particularly in the context of network analysis. Its significance is seen in various applications and consequences: Network security, efficient routing, social network analysis, facility location, and site selection. This article finds the double resolvability parameters of the fosmidomycin anti-malaria drug. Resolvability parameters like double metric, double edge metric, and double mixed metric dimensions of fosmidomycin anti-malaria drug also hold exchange properties in the molecular graph of fosmidomycin. We convert the molecular structures of fosmidomycin into molecular graphs and then find some resolvability parameters.
Collapse
Affiliation(s)
- Rashad Ismail
- Department of Mathematics, Faculty of Science and Arts, Mahayl Assir, King Khalid University, Abha, Saudi Arabia
| | - Sikander Ali
- Department of Mathematics, COMSATS University Islamabad, Sahiwal campus, Pakistan
| | - Muhammad Azeem
- Department of Mathematics, Riphah International University Lahore, Pakistan
| | - Manzoor Ahmad Zahid
- Department of Mathematics, COMSATS University Islamabad, Sahiwal campus, Pakistan
| |
Collapse
|
42
|
Zheng D, Chen W, Peng J, Huang X, Zhang S, Zhuang Y. Hsa_circ_0007590/PTBP1 complex reprograms glucose metabolism by reducing the stability of m 6A-modified PTEN mRNA in pancreatic ductal adenocarcinoma. Cancer Gene Ther 2024; 31:1090-1102. [PMID: 38802551 DOI: 10.1038/s41417-024-00786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
The role of circular RNAs (circRNAs) in glucose metabolism in pancreatic duct adenocarcinoma (PDAC) remains elusive. Through RNA sequencing of cells cultured under conditions of glucose deprivation, we identified hsa_circ_0007590. Sanger sequencing and RNase R and Act D treatments were performed to confirm the circular RNA features of hsa_circ_0007590. RNA in situ hybridization (RNA-ISH) and quantitative reverse transcription PCR (qRT-PCR) were used to estimate hsa_circ_0007590 expression in PDAC clinical specimens and cell lines. hsa_circ_0007590 expression was higher in PDAC patients and closely related to the clinicopathological characteristics of the disease. Cytoplasm‒nuclear fractionation and FISH assays demonstrated that hsa_circ_0007590 was located in the nucleus. Gain-of-function and loss-of-function assays were performed to assess the biological behaviors of PDAC cells. Seahorse XF assays were performed to validate the Warburg effect. hsa_circ_0007590 facilitated the proliferation, migration, and invasion of PDAC cells and promoted the Warburg effect. Mass spectrometry, RNA pulldown, RNA immunoprecipitation (RIP), RNA m6A quantification, m6A dot blot, MeRIP, and Western blotting were conducted to investigate the detailed mechanism through which hsa_circ_0007590 produces these effects. Mechanistically, hsa_circ_0007590 targeted PTBP1 and increased the expression of the m6A reader protein YTHDF2, leading to PTEN mRNA degradation and PI3K/AKT/mTOR pathway activation. Overall, hsa_circ_0007590, which targets PTBP1, reprograms glucose metabolism by attenuating the stability of m6A-modified PTEN mRNA and holds potential promise as a therapeutic target for PDAC.
Collapse
Affiliation(s)
- Dandan Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, People's Republic of China
- Doctor of Excellence Program (DEP), The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Wenying Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Juanfei Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Xianxian Huang
- Gastrointestinal Endoscopy Center, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518033, People's Republic of China
| | - Shineng Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, People's Republic of China.
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, People's Republic of China.
| | - Yanyan Zhuang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, People's Republic of China.
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, People's Republic of China.
| |
Collapse
|
43
|
Saleem M, Hussain A, Hanif M, Ahmad H, Khan SU, Haider S, Rafiq M, Paracha RN, Park SH. Synthesis, Invitro Cytotoxic Activity and Optical Analysis of Substituted Schiff Base Derivatives. J Fluoresc 2024:10.1007/s10895-024-03803-9. [PMID: 38913090 DOI: 10.1007/s10895-024-03803-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024]
Abstract
Fluorescent cytotoxic compounds with readout delivery are crucial in chemotherapy. The growing demands of these treatment strategies require the novel heterocyclic molecules with better selectivity alongside fluorescence marker potential. In this context, a series of nine isatin Schiff base derivatives 4a-i were synthesized, characterized and evaluated for UV-visible, fluorescence, thermal and bioanalysis in order to explore the effect of structure on their bioprofiles. The analogue 4d exhibited maximum cytotoxic activity on Hella cells with percentage inhibition of 83% at 50 µM and 100% at 150 µM concentrations while 4c showed minimum cytotoxic activity with the value of 19% at 50 µM and 22% at 150 µM concentrations. Meanwhile, 4g was found to exhibit maximum inhibition potential towards Vero Cells with the percentage inhibition values of 83 at 50 µM concentration. The overall SAR study showed that the para-fluoro-substituted isatin moieties exhibited the appreciable percentage inhibition while the least activity was delivered by the isatin derivatives with para-bromo substitution.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry, Thal University Bhakkar, Bhakkar, Pakistan.
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan.
| | - Abrar Hussain
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Muhammad Hanif
- Department of Chemistry, GC University Faisalabad, Sub Campus Layyah, -31200, Pakistan
| | - Hufsa Ahmad
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Salah Uddin Khan
- College of Engineering, King Saud University, P.O.Box 800, 11421, Riyadh, Saudi Arabia
| | - Sajjad Haider
- Chemical Engineering Department, College of Engineering, King Saud University, P.O.Box 800, 11421, Riyadh, Saudi Arabia
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, -6300, Pakistan
| | | | - Sang Hyun Park
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
- Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
44
|
Beheshtizadeh N, Amiri Z, Tabatabaei SZ, Seraji AA, Gharibshahian M, Nadi A, Saeinasab M, Sefat F, Kolahi Azar H. Boosting antitumor efficacy using docetaxel-loaded nanoplatforms: from cancer therapy to regenerative medicine approaches. J Transl Med 2024; 22:520. [PMID: 38816723 PMCID: PMC11137998 DOI: 10.1186/s12967-024-05347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024] Open
Abstract
The intersection of nanotechnology and pharmacology has revolutionized the delivery and efficacy of chemotherapeutic agents, notably docetaxel, a key drug in cancer treatment. Traditionally limited by poor solubility and significant side effects, docetaxel's therapeutic potential has been significantly enhanced through its incorporation into nanoplatforms, such as nanofibers and nanoparticles. This advancement offers targeted delivery, controlled release, and improved bioavailability, dramatically reducing systemic toxicity and enhancing patient outcomes. Nanofibers provide a versatile scaffold for the controlled release of docetaxel, utilizing techniques like electrospinning to tailor drug release profiles. Nanoparticles, on the other hand, enable precise drug delivery to tumor cells, minimizing damage to healthy tissues through sophisticated encapsulation methods such as nanoprecipitation and emulsion. These nanotechnologies not only improve the pharmacokinetic properties of docetaxel but also open new avenues in regenerative medicine by facilitating targeted therapy and cellular regeneration. This narrative review highlights the transformative impact of docetaxel-loaded nanoplatforms in oncology and beyond, showcasing the potential of nanotechnology to overcome the limitations of traditional chemotherapy and pave the way for future innovations in drug delivery and regenerative therapies. Through these advancements, nanotechnology promises a new era of precision medicine, enhancing the efficacy of cancer treatments while minimizing adverse effects.
Collapse
Affiliation(s)
- Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Zahra Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, 1458889694, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyedeh Zoha Tabatabaei
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Abbas Seraji
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Maliheh Gharibshahian
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Akram Nadi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Morvarid Saeinasab
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford, UK
| | - Hanieh Kolahi Azar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Hu X. The role of the BTLA-HVEM complex in the pathogenesis of breast cancer. Breast Cancer 2024; 31:358-370. [PMID: 38483699 DOI: 10.1007/s12282-024-01557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/17/2024] [Indexed: 04/26/2024]
Abstract
Breast cancer (BC) is widely recognized as a prevalent contributor to cancer mortality and ranks as the second most prevalent form of cancer among women across the globe. Hence, the development of innovative therapeutic strategies is imperative to effectively manage BC. The B- and T-lymphocyte attenuator (BTLA)-Herpesvirus entry mediator (HVEM) complex has garnered significant scientific interest as a crucial regulator in various immune contexts. The interaction between BTLA-HVEM ligand on the surface of T cells results in reduced cellular activation, cytokine synthesis, and proliferation. The BTLA-HVEM complex has been investigated in various cancers, yet its specific mechanisms in BC remain indeterminate. In this study, we aim to examine the function of BTLA-HVEM and provide a comprehensive overview of the existing evidence in relation to BC. The obstruction or augmentation of these pathways may potentially enhance the efficacy of BC treatment.
Collapse
Affiliation(s)
- Xue Hu
- College of Health Industry, Changchun University of Architecture and Civil Engineering, Changchun, 130000, China.
| |
Collapse
|
46
|
Lagzian A, Askari M, Haeri MS, Sheikhi N, Banihashemi S, Nabi-Afjadi M, Malekzadegan Y. Increased V-ATPase activity can lead to chemo-resistance in oral squamous cell carcinoma via autophagy induction: new insights. Med Oncol 2024; 41:108. [PMID: 38592406 DOI: 10.1007/s12032-024-02313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/23/2024] [Indexed: 04/10/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a cancer type with a high rate of recurrence and a poor prognosis. Tumor chemo-resistance remains an issue for OSCC patients despite the availability of multimodal therapy options, which causes an increase in tumor invasiveness. Vacuolar ATPase (V-ATPase), appears to be one of the most significant molecules implicated in MDR in tumors like OSCC. It is primarily responsible for controlling the acidity in the solid tumors' microenvironment, which interferes with the absorption of chemotherapeutic medications. However, the exact cellular and molecular mechanisms V-ATPase plays in OSCC chemo-resistance have not been understood. Uncovering these mechanisms can contribute to combating OSCC chemo-resistance and poor prognosis. Hence, in this review, we suggest that one of these underlying mechanisms is autophagy induced by V-ATPase which can potentially contribute to OSCC chemo-resistance. Finally, specialized autophagy and V-ATPase inhibitors may be beneficial as an approach to reduce drug resistance to anticancer therapies in addition to serving as coadjuvants in antitumor treatments. Also, V-ATPase could be a prognostic factor for OSCC patients. However, in the future, more investigations are required to demonstrate these suggestions and hypotheses.
Collapse
Affiliation(s)
- Ahmadreza Lagzian
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Marziye Askari
- Department of Immunology, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Melika Sadat Haeri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nastaran Sheikhi
- Biotechnology Department, Biological Sciences Faculty, Alzahra University, Tehran, Iran
| | - Sara Banihashemi
- Department of Bioscience, School of Science and Technology, Nottingham Trend University, Nottingham, UK
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Yalda Malekzadegan
- Department of Microbiology, Saveh University of Medical Sciences, Saveh, Iran.
| |
Collapse
|
47
|
Yousefi Rad A, Rastegari AA, Shahanipour K, Monajemi R. Moringa oleifera and Its Biochemical Compounds: Potential Multi-targeted Therapeutic Agents Against COVID-19 and Associated Cancer Progression. Biochem Genet 2024:10.1007/s10528-024-10758-w. [PMID: 38583096 DOI: 10.1007/s10528-024-10758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/23/2024] [Indexed: 04/08/2024]
Abstract
The Coronavirus disease-2019 (COVID-19) pandemic is a global concern, with updated pharmacological therapeutic strategies needed. Cancer patients have been found to be more susceptible to severe COVID-19 and death, and COVID-19 can also lead to cancer progression. Traditional medicinal plants have long been used as anti-infection and anti-inflammatory agents, and Moringa oleifera (M. oleifera) is one such plant containing natural products such as kaempferol, quercetin, and hesperetin, which can reduce inflammatory responses and complications associated with viral infections and multiple cancers. This review article explores the cellular and molecular mechanisms of action of M. oleifera as an anti-COVID-19 and anti-inflammatory agent, and its potential role in reducing the risk of cancer progression in cancer patients with COVID-19. The article discusses the ability of M. oleifera to modulate NF-κB, MAPK, mTOR, NLRP3 inflammasome, and other inflammatory pathways, as well as the polyphenols and flavonoids like quercetin and kaempferol, that contribute to its anti-inflammatory properties. Overall, this review highlights the potential therapeutic benefits of M. oleifera in addressing COVID-19 and associated cancer progression. However, further investigations are necessary to fully understand the cellular and molecular mechanisms of action of M. oleifera and its natural products as anti-inflammatory, anti-COVID-19, and anti-cancer strategies.
Collapse
Affiliation(s)
- Ali Yousefi Rad
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Esfahan, Iran
| | - Ali Asghar Rastegari
- Department of Molecular and Cell Biochemistry, Falavarjan Branch, Islamic Azad University, Esfahan, Iran.
| | - Kahin Shahanipour
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Esfahan, Iran
| | - Ramesh Monajemi
- Department of Biology, Falavarjan Branch, Islamic Azad University, Esfahan, Iran
| |
Collapse
|
48
|
Ke Z, Hu X, Liu Y, Shen D, Khan MI, Xiao J. Updated review on analysis of long non-coding RNAs as emerging diagnostic and therapeutic targets in prostate cancers. Crit Rev Oncol Hematol 2024; 196:104275. [PMID: 38302050 DOI: 10.1016/j.critrevonc.2024.104275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024] Open
Abstract
Despite advancements, prostate cancers (PCa) pose a significant global health challenge due to delayed diagnosis and therapeutic resistance. This review delves into the complex landscape of prostate cancer, with a focus on long-noncoding RNAs (lncRNAs). Also explores the influence of aberrant lncRNAs expression in progressive PCa stages, impacting traits like proliferation, invasion, metastasis and therapeutic resistance. The study elucidates how lncRNAs modulate crucial molecular effectors, including transcription factors and microRNAs, affecting signaling pathways such as androgen receptor signaling. Besides, this manuscript sheds light on novel concepts and mechanisms driving PCa progression through lncRNAs, providing a critical analysis of their impact on the disease's diverse characteristics. Besides, it discusses the potential of lncRNAs as diagnostics and therapeutic targets in PCa. Collectively, this work highlights state of art mechanistic comprehension and rigorous scientific approaches to advance our understanding of PCa and depict innovations in this evolving field of research.
Collapse
Affiliation(s)
- Zongpan Ke
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China; Wannan Medical College, No. 22 Wenchangxi Road, Yijiang District, Wuhu 241000, China
| | - Xuechun Hu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China
| | - Yixun Liu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China
| | - Deyun Shen
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China.
| | - Muhammad Imran Khan
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 China.
| | - Jun Xiao
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China.
| |
Collapse
|
49
|
Jia S, Yu L, Wang L, Peng L. The functional significance of circRNA/miRNA/mRNA interactions as a regulatory network in lung cancer biology. Int J Biochem Cell Biol 2024; 169:106548. [PMID: 38360264 DOI: 10.1016/j.biocel.2024.106548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Lung cancer, the leading cause of cancer-related deaths, presents significant challenges to patients due to its poor prognosis. Recent research has increasingly implicated circular RNAs in the development and progression of lung cancer. These circular RNAs have been found to impact various aspects of tumor behavior, including proliferation, metastasis, cell cycle regulation, apoptosis, cancer stem cells, therapy response, and the tumor microenvironment. One of the key mechanisms by which circular RNAs exert their influence is through their ability to act as miRNA sponges, sequestering microRNAs and preventing them from targeting other RNA molecules. Accumulating evidence suggests that circular RNAs can function as competing endogenous RNAs, affecting the expression of target mRNAs by sequestering microRNAs. Dysregulation of competing endogenous RNAs networks involving circular RNAs, microRNAs, and mRNAs leads to the aberrant expression of oncogenes and tumor suppressors involved in lung cancer pathogenesis. Understanding the dynamic interplay and molecular mechanisms among circular RNAs, microRNAs, and mRNAs holds great promise for advancing early diagnosis, personalized therapeutic interventions, and improved patient outcomes in lung cancer. Therefore, this study aims to provide an in-depth exploration of the executive roles of circular RNAs/microRNAs/ mRNAs interactions in lung cancer pathogenesis and their potential utility for diagnosing lung cancer, predicting patient prognosis, and guiding targeted therapies. By offering a comprehensive overview of the dysregulation of the axes as driving factors in lung cancer, we aim to pave the way for their translation into clinical practice in the future.
Collapse
Affiliation(s)
- Shengnan Jia
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130021, China; Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Ling Yu
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun 130041, China
| | - Lihui Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130021, China.
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130021, China.
| |
Collapse
|
50
|
Saadh MJ, Abdulsahib WK, Mustafa AN, Zabibah RS, Adhab ZH, Rakhimov N, Alsaikhan F. Recent advances in natural nanoclay for diagnosis and therapy of cancer: A review. Colloids Surf B Biointerfaces 2024; 235:113768. [PMID: 38325142 DOI: 10.1016/j.colsurfb.2024.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Cancer is still one of the deadliest diseases, and diagnosing and treating it effectively remains difficult. As a result, advancements in earlier detection and better therapies are urgently needed. Conventional chemotherapy induces chemoresistance, has non-specific toxicity, and has a meager efficacy. Natural materials like nanosized clay mineral formations of various shapes (platy, tubular, spherical, and fibrous) with tunable physicochemical, morphological, and structural features serve as potential templates for these. As multifunctional biocompatible nanocarriers with numerous applications in cancer research, diagnosis, and therapy, their submicron size, individual morphology, high specific surface area, enhanced adsorption ability, cation exchange capacity, and multilayered organization of 0.7-1 nm thick single sheets have attracted significant interest. Kaolinite, halloysite, montmorillonite, laponite, bentonite, sepiolite, palygorskite, and allophane are the most typical nanoclay minerals explored for cancer. These multilayered minerals can function as nanocarriers to effectively carry a variety of anticancer medications to the tumor site and improve their stability, dispersibility, sustained release, and transport. Proteins and DNA/RNA can be transported using nanoclays with positive and negative surfaces. The platform for phototherapeutic agents can be nanoclays. Clays with bio-functionality have been developed using various surface engineering techniques, which could help treat cancer. The promise of nanoclays as distinctive crystalline materials with applications in cancer research, diagnostics, and therapy are examined in this review.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Waleed K Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Nodir Rakhimov
- Department of Oncology, Samarkand State Medical University, Amir Temur street 18, Samarkand, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| |
Collapse
|