1
|
Liu K, Hong J, Li Y, Wang Q, Dong R, Liu T, Guo X, Chen L, Li Z. A novel postoperative delayed neurocognitive recovery model established based on preoperative rapid eye movement sleep deprivation in adult mice. Int Immunopharmacol 2025; 153:114508. [PMID: 40147264 DOI: 10.1016/j.intimp.2025.114508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/05/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUNDS Postoperative delayed neurocognitive recovery (dNCR) usually occurs in older patients, however, the extremely high cost of older animals has hindered postoperative dNCR research to some extent. Preoperative sleep disturbance increases the risk of postoperative dNCR in patients. Therefore, this study aimed to construct a dNCR model in adult mice based on preoperative sleep disturbance. METHODS A modified multiple platform method was used to induce rapid eye movement sleep deprivation (REM-SD), and the surgical model was established by laparotomy in 3-month-old C57BL/6 J mice. The Morris water maze and fear conditioning test were used to assess the cognitive function of mice. Immunofluorescence was used to detect microglia and astrocyte activation, and quantitative real-time PCR was used to measure the mRNA levels of inflammatory cytokines. RESULTS Neither laparotomy nor 12 h of REM-SD caused cognitive impairment in mice, but the combination of the two methods induced hippocampus-dependent cognitive dysfunction. Furthermore, hippocampal microglia of mice with 12 h of preoperative REM-SD were polarized to the M1-type, accompanied by increased interleukin-6 and decreased interleukin-10 at the mRNA level. CONCLUSIONS We successfully established an adult mouse model of postoperative dNCR based on preoperative REM-SD, which provides an alternative model to explore the pathogenesis and therapeutic measures of dNCR.
Collapse
Affiliation(s)
- Kaixi Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Jingshu Hong
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Yitong Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Qian Wang
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Rui Dong
- Department of Anesthesiology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Lei Chen
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China.
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
2
|
Huang WWY, Fan S, Li WY, Thangavelu V, Saripella A, Englesakis M, Yan E, Chung F. Prevalence of postoperative neurocognitive disorders in older non-cardiac surgical patients: A systematic review and meta-analysis. J Clin Anesth 2025; 103:111830. [PMID: 40199029 DOI: 10.1016/j.jclinane.2025.111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/22/2025] [Accepted: 03/30/2025] [Indexed: 04/10/2025]
Abstract
STUDY OBJECTIVE The growing number of older persons undergoing surgery are at a higher risk of neurocognitive disorder due to multimorbidity and age-related changes. Previous reviews estimated postoperative neurocognitive disorder or cognitive dysfunction (POCD) prevalence without accounting for the sample size or study quality. The prevalence of POCD in this population requires further investigation. This systematic review and meta-analysis applies systematic weighting to estimate the pooled prevalence of POCD in older non-cardiac surgical patients. DESIGN Systematic review and meta-analysis. SETTING MEDLINE, MEDLINE ePub, Embase, Cochrane Central Register of Controlled Trials and Cochrane Database of Systematic Reviews for relevant articles. PATIENTS Non-cardiac surgical patients aged ≥60 years old. INTERVENTIONS Perioperative cognitive assessments. MEASUREMENT The primary outcome was the prevalence of POCD. MAIN RESULTS Thirty-nine studies (n = 12,921) were included with mean age of 70.0 ± 8.9 years and 44.3 % women. The overall prevalence of POCD was 23 % (95 % CI: 20 %, 27 %) at day 7, 16 % (95 % CI: 7 %, 25 %) at 1 month, 10 % (95 % CI: 8 %, 13 %) at 3 months and 3 % (95 % CI: 2 %, 4 %) at 1 year. Our meta-regression showed a higher prevalence of POCD in abdominal surgeries at day 7 (β = 0.13, 95 % CI: 0.03-0.22, P = 0.01) and 3 months (β = 0.49, 95 % CI: 0.40-0.58, P < 0.001), versus orthopedic surgeries. CONCLUSIONS The overall prevalence of POCD in older non-cardiac surgical populations was 23 %, 16 %, 10 %, and 3 % at day 7, 1 month, 3 months, and 1 year, respectively. Abdominal surgery had a higher prevalence of POCD than orthopedic surgery. The substantial risk of POCD calls for cognitive screening, risk mitigation and interventions to improve surgical outcomes. Through routine preoperative cognitive screening and addressing modifiable risk factors, the incidence and impact of POCD can be markedly reduced, enhancing patient outcomes and recovery.
Collapse
Affiliation(s)
- Wendy W Y Huang
- School of Medicine, University of Limerick, Limerick, Ireland
| | - Shirley Fan
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Wei-Ya Li
- Department of Anesthesia and Pain Management, Toronto Western Hospital, University Health Network, University of Toronto, ON, Canada
| | - Vetri Thangavelu
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, ON, Canada
| | - Aparna Saripella
- Department of Anesthesia and Pain Management, Toronto Western Hospital, University Health Network, University of Toronto, ON, Canada
| | - Marina Englesakis
- Library & Information Services, University Health Network, Toronto, ON, Canada
| | - Ellene Yan
- Department of Anesthesia and Pain Management, Toronto Western Hospital, University Health Network, University of Toronto, ON, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, ON, Canada
| | - Frances Chung
- Department of Anesthesia and Pain Management, Toronto Western Hospital, University Health Network, University of Toronto, ON, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, ON, Canada.
| |
Collapse
|
3
|
Qiu LQ, Song JL, Zhang LC, Fan B, Li Q, Lu B, Chen GY. Association between hyperlipidemia and postoperative delirium risk: a systematic review and meta-analysis. Front Aging Neurosci 2025; 17:1544838. [PMID: 40171385 PMCID: PMC11959067 DOI: 10.3389/fnagi.2025.1544838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Introduction The association between hyperlipidemia and its potential role as a risk factor for postoperative delirium (POD) remains unclear. Methods We systematically searched PubMed, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov to identify studies meeting the inclusion criteria. Outcomes of interest included comparisons of blood lipid levels between POD and non-POD (NPOD) patients, the association between hyperlipidemia and POD risk, and the predictive value of hyperlipidemia for POD. Results A total of nine studies involving 4,686 patients were included in the meta-analysis. Pooled analysis revealed that hyperlipidemia was significantly associated with an increased risk of POD (OR = 1.47; 95% CI 1.13-1.91; P = 0.004;) compared to patients without hyperlipidemia. Patients with POD exhibited significantly higher levels of total cholesterol (TC) (weighted mean difference [WMD] = 0.31; 95% CI 0.03-0.59; P = 0.030), triglycerides (TG) (WMD = 0.37; 95% CI 0.03-0.71; P = 0.033), and low-density lipoprotein cholesterol (LDL-C) (WMD = 0.09; 95% CI 0.01-0.17; P = 0.023) compared to NPOD patients. In contrast, high-density lipoprotein cholesterol (HDL-C) levels were significantly lower in POD patients (WMD = -0.07; 95% CI -0.12 to -0.01; P = 0.026). Insufficient evidence was available to summarize the area under the curve (AUC) results. Conclusions Blood lipid levels were significantly elevated in POD patients compared to NPOD patients. Hyperlipidemia was significantly associated with an increased risk of POD, highlighting its potential role as a risk factor.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guan-yu Chen
- Department of Anesthesiology, Zigong Fourth People's Hospital, Zigong, Sichuan, China
| |
Collapse
|
4
|
Xie ZF, Wang SY, Gao Y, Zhang YD, Han YN, Huang J, Gao MN, Wang CG. Vagus nerve stimulation (VNS) preventing postoperative cognitive dysfunction (POCD): two potential mechanisms in cognitive function. Mol Cell Biochem 2025; 480:1343-1357. [PMID: 39138750 DOI: 10.1007/s11010-024-05091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Postoperative cognitive dysfunction (POCD) impacts a significant number of patients annually, frequently impairing their cognitive abilities and resulting in unfavorable clinical outcomes. Aimed at addressing cognitive impairment, vagus nerve stimulation (VNS) is a therapeutic approach, which was used in many mental disordered diseases, through the modulation of vagus nerve activity. In POCD model, the enhancement of cognition function provided by VNS was shown, demonstrating VNS effect on cognition in POCD. In the present study, we primarily concentrates on elucidating the role of the VNS improving the cognitive function in POCD, via two potential mechanisms: the inflammatory microenvironment and epigenetics. This study provided a theoretical support for the feasibility that VNS can be a potential method to enhance cognition function in POCD.
Collapse
Affiliation(s)
- Zi-Feng Xie
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Sheng-Yu Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Chengde Medical College, Chengde, 067000, Hebei, China
| | - Yuan Gao
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Yi-Dan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Ya-Nan Han
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jin Huang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Mei-Na Gao
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
| | - Chun-Guang Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China.
| |
Collapse
|
5
|
Chen Y, Ho CT, Zhang X. The regulatory mechanism of intermittent fasting and probiotics on cognitive function by the microbiota-gut-brain axis. J Food Sci 2025; 90:e70132. [PMID: 40091756 DOI: 10.1111/1750-3841.70132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Intermittent fasting (IF) is an eating pattern that promotes health and cognitive improvement through periodic fasting and eating. It has been shown to enhance neuroplasticity and reduce oxidative stress and inflammation. Recent studies have demonstrated that probiotic supplementation enhances cognitive performance by modulating gut microbiota composition and increasing short-chain fatty acid production, which in turn promotes neurogenesis and synaptic plasticity. The microbiota-gut-brain axis (MGBA) is the communication bridge between gut microbiota and the brain, influencing cognitive function through the immune, endocrine, and nervous systems. The combination of probiotics and IF may exert complementary effects on cognitive function, with IF enhancing gut microbial diversity and metabolic efficiency, while probiotics further modulate gut barrier integrity and neurotransmitter synthesis. This review critically examines the interplay between probiotics and IF on cognitive function via the MGBA, identifying key mechanisms and potential therapeutic strategies that remain underexplored in current research.
Collapse
Affiliation(s)
- Yili Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Department of Food Science and Engineering, Ningbo University, Ningbo, P. R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Xin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Department of Food Science and Engineering, Ningbo University, Ningbo, P. R. China
| |
Collapse
|
6
|
Cui Y, Zheng Z, Zhou Q, Han X, Liu S, Xia T, Gu X, Zhang Y. The role of clock control of DRP1 activity involved in postoperative cognitive dysfunction. Exp Neurol 2025; 385:115140. [PMID: 39788309 DOI: 10.1016/j.expneurol.2025.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/08/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Postoperative cognitive dysfunction (POCD) is a prevalent clinical issue following anesthesia and surgery. The onset of POCD, which is closely linked to circadian rhythm disturbance in previous studies, yet the underlying mechanism remains elusive. There is increasing evidence showed that mitochondrial architecture is coordinated by the circadian clock which DRP1 playing a crucial role. Nonetheless, how DRP1's mediation of mitochondrial dynamics influences POCD through circadian rhythm disruption is still unclear. To investigate this, mice were subjected to 6 h of 1.5 % isoflurane anesthesia from Zeitgeber Time ZT 14 to ZT20 to induce POCD. HT-22 cells underwent prolonged exposure to isoflurane in vitro. Cognitive function was assessed using the Y-maze and fear conditioning tests. Q-PCR and Western blot analyses were performed to measure relative protein expression. Mice's gross movement rhythms were continuously monitored using Mini-Mitter. Mitochondrial morphology was examined via Mito-Tracker imaging. ATP and ROS level were measured to evaluate mitochondrial function. Isoflurane anesthesia compromised the clock control of DRP1 activity in the hippocampus. This disruption of DRP1 phosphorylation rhythm impaired circadian ATP production, affected mitochondrial morphology and function, exacerbated circadian rhythm disturbances, and ultimately led to cognitive deficits in mice. Pretreatment with Mdivi-1, a specific DRP1 inhibitor, managed to reconstruct mitochondrial morphology and function, restore circadian ATP production and rhythm, thereby alleviating the cognitive impairment induced by isoflurane anesthesia. This study suggests that circadian DRP1 activity's regulation of mitochondrial energy metabolism in the hippocampus may play a significant role in the pathogenesis of POCD in mice.
Collapse
Affiliation(s)
- Yin Cui
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhiying Zheng
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Qingyun Zhou
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xue Han
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Shuai Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Tianjiao Xia
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China.
| | - Xiaopin Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Yun Zhang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
7
|
Wu Q, Jia XY, Zhang SH, Wu YZ, Xu LS, Han JG, Yu W, Zhou QH. Metformin activates the PI3K/AKT/BDNF axis to attenuate postoperative cognitive dysfunction. Neuropharmacology 2025; 265:110262. [PMID: 39662703 DOI: 10.1016/j.neuropharm.2024.110262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a prevalent neurocognitive complication of anesthesia and surgery. Metformin, a widely used antidiabetic drug, has neuroprotective properties and improves cognitive impairment and memory deficits. However, the mechanisms underlying its action in improving cognitive dysfunction after anesthesia and surgery remain unclear. This study aimed to explore the effects of metformin on POCD and the underlying mechanisms at play. We established an in vivo POCD model using isoflurane inhalation anesthesia with exploratory laparotomy. We found that pretreatment with metformin significantly improved cognitive function and anxiety-like behaviors in mice. Additionally, metformin attenuated the impairment of synaptic plasticity induced by POCD and restored levels of synaptic proteins and dendritic density in the hippocampus. Furthermore, metformin attenuated neuroinflammation by downregulating the expression of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α, and reducing neuronal apoptosis. It also activates the PI3K/AKT signaling pathway, resulting in increased expression of brain-derived neurotrophic factor (BDNF). Finally, the PI3K inhibitor, LY294002, reversed the effects of metformin on the levels of PI3K, AKT phosphorylation, and BDNF in vitro cultured HT-22 cells. Additionally, in an in vivo model of POCD, it was observed that cognitive function in mice was significantly suppressed by treatment with the PI3K inhibitor LY294002. These results reveal that metformin may alleviate POCD by modulating the PI3K/AKT/BDNF axis. Our study may provide a novel strategy for preventing and treating POCD with this medication.
Collapse
Affiliation(s)
- Qing Wu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China; Department of Anesthesiology and Pain Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Xiao-Yu Jia
- Department of Anesthesiology and Pain Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Shi-Hua Zhang
- Department of Anesthesiology and Pain Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Yun-Zhe Wu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China; Department of Anesthesiology and Pain Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Long-Sheng Xu
- Department of Anesthesiology and Pain Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Jun-Gang Han
- Department of Anesthesiology and Pain Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Wei Yu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| | - Qing-He Zhou
- Department of Anesthesiology and Pain Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China.
| |
Collapse
|
8
|
Yang Y, Wang B, Jiang Y, Fu W. Tanshinone IIA mitigates postoperative cognitive dysfunction in aged rats by inhibiting hippocampal inflammation and ferroptosis: Role of Nrf2/SLC7A11/GPX4 axis activation. Neurotoxicology 2025; 107:62-73. [PMID: 39965709 DOI: 10.1016/j.neuro.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
OBJECTIVE Postoperative cognitive dysfunction (POCD) is a common and debilitating complication in elderly patients following surgery, leading to increased morbidity and reduced quality of life. This study aims to investigate the neuroprotective effects of Tanshinone IIA, a lipophilic compound derived from Salvia miltiorrhiza, in an aged rat model of POCD, and explore its underlying molecular mechanisms. METHODS POCD model was established by a modified abdominal exploratory laparotomy. Rats were then intraperitoneally administered with Tanshinone IIA (10 mg/kg, 20 mg/kg, or 40 mg/kg) for 30 days. Cognitive functions were assessed using the morris water maze, novel object recognition test, and Y-maze test. Synaptic structures in the hippocampal CA1 region were examined by electron microscopy. Inflammatory and ferroptosis pathways were evaluated by measuring inflammatory cytokines (TNF-α, IL-6, IL-1β, IL-4), nitric oxide synthase (iNOS) activity, lipid peroxidation products (malondialdehyde [MDA]; 4-hydroxy-2-nonenal [4-HNE]), Fe2 + levels, and antioxidant enzymes (superoxide dismutase [SOD], glutathione [GSH]) using ELISA and commercial kits. mRNA and proteins levels were quantified by real-time quantitative polymerase chain reaction and western blot analysis. RESULTS Tanshinone IIA significantly ameliorated cognitive deficits in aged POCD rats according to behavioral tests. It also restored synaptic ultrastructure in the hippocampal CA1 region and upregulated the expressions of synaptic proteins, including synapsin-1 and PSD-95. In addition, Tanshinone IIA effectively suppressed the hippocampal inflammatory pathway, as evidenced by the decreased levels of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β), an increased level of the anti-inflammatory cytokine IL-4, and the upregulation of the iNOS/NO pathway in the hippocampus. Furthermore, Tanshinone IIA mitigated ferroptosis by reducing MDA and 4-HNE contents, lowering Fe2+ level, and enhancing SOD activity and GSH level. Notably, Tanshinone IIA activated the Nrf2/SLC7A11/GPX4 axis in the hippocampus of aged POCD rats. CONCLUSION These findings suggest that Tanshinone IIA exerts neuroprotective effects in an aged rat model of POCD by attenuating hippocampal inflammation and ferroptosis, primarily through the activation of the Nrf2/SLC7A11/GPX4 axis.
Collapse
Affiliation(s)
- Yan Yang
- The First Affiliated Hospital, Institute of Anesthesiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Bo Wang
- The First Affiliated Hospital, Institute of Anesthesiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yichen Jiang
- The First Affiliated Hospital, Institute of Anesthesiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Wan Fu
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
9
|
Cao Y, Lin X, Gao D, Yang J, Miao H, Li T. Inhibition of STAT3 phosphorylation attenuates perioperative neurocognitive disorders in mice with D-galactose-induced aging by regulating pro-inflammatory reactive astrocytes. Int Immunopharmacol 2025; 148:114095. [PMID: 39827670 DOI: 10.1016/j.intimp.2025.114095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Perioperative Neurocognitive Disorders (PND) are associated withanesthesia and surgery, especially in the elderly. Astrocyte activation in old mice correlates with PND development. These cells can switch to a pro-inflammatory or an anti-inflammatory phenotype, regulated by the STAT3 pathway. It remains unclear whether STAT3 can alleviate PND symptoms in elderly mice by modulating the transitions between these astrocyte phenotypes. METHODS Senescence was induced in eight-week-old male C57BL/6J mice with D-galactose, followed by tibial fracture surgery under anesthesia to model PND. On the third postoperative day, cognitive function was assessed using fear conditioning, synaptic plasticity using Golgi/ electrophysiology, and astrocyte phenotype /STAT3/pSTAT3(phosphorylated STAT3) using Western blot/immunofluorescence. The content of neurotrophic factors, including brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF), was also measured. Primary astrocytes were stimulated with the conditioned medium referred to as ACM to induce pro-inflammatory reactive astrocytes. Stattic, an inhibitor of STAT3 phosphorylation, was used to investigate its effects on astrocyte phenotypic transformation and hippocampus-dependent learning and memory in aging mice, both in vitro and in vivo. RESULTS On the third postoperative day, pSTAT3 levels and pro-inflammatory astrocytes increased in the hippocampal CA1 region, with no change in total STAT3 or anti-inflammatory astrocytes, accompanied by a decrease in GDNF and BDNF.ACM treatment of primary astrocytes promoted pro-inflammatory phenotype conversion, which was inhibited by stattic without affecting anti-inflammatory phenotype. Intraperitoneal injection of stattic in mice reduced the accumulation of pro-inflammatory astrocytes, increased the levels of BDNF and GDNF, enhanced synaptic plasticity, and improved hippocampus-dependent learning and memory functions in anesthesia-induced senescent mice, without altering anti-inflammatory astrocytes. CONCLUSIONS Inhibiting STAT3 phosphorylation may improve synaptic plasticity in the CA1 region of the hippocampus by modulating pro-inflammatory astrocytes, thereby alleviating perioperative neurocognitive dysfunction in D-galactose-induced aging mice.
Collapse
Affiliation(s)
- Ying Cao
- Department of Anesthesiology Beijing Shijitan Hospital Capital Medical University Beijing China
| | - Xiaowan Lin
- Department of Anesthesiology Beijing Tiantan Hospital Capital Medical University Beijing China
| | - Danyang Gao
- Department of Anesthesiology Beijing Shijitan Hospital Capital Medical University Beijing China
| | - Jiaojiao Yang
- Department of Anesthesiology Beijing Shijitan Hospital Capital Medical University Beijing China
| | - Huihui Miao
- Department of Anesthesiology Beijing Shijitan Hospital Capital Medical University Beijing China.
| | - Tianzuo Li
- Department of Anesthesiology Beijing Shijitan Hospital Capital Medical University Beijing China.
| |
Collapse
|
10
|
Koh HJ, Joo J. The Role of Cytokines in Perioperative Neurocognitive Disorders: A Review in the Context of Anesthetic Care. Biomedicines 2025; 13:506. [PMID: 40002918 PMCID: PMC11853096 DOI: 10.3390/biomedicines13020506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Perioperative neurocognitive disorders (PNDs), including postoperative delirium, delayed neurocognitive recovery, and long-term postoperative neurocognitive disorders, present significant challenges for older patients undergoing surgery. Inflammation is a protective mechanism triggered in response to external pathogens or cellular damage. Historically, the central nervous system (CNS) was considered immunoprivileged due to the presence of the blood-brain barrier (BBB), which serves as a physical barrier preventing systemic inflammatory changes from influencing the CNS. However, aseptic surgical trauma is now recognized to induce localized inflammation at the surgical site, further exacerbated by the release of peripheral pro-inflammatory cytokines, which can compromise BBB integrity. This breakdown of the BBB facilitates the activation of microglia, initiating a cascade of neuroinflammatory responses that may contribute to the onset of PNDs. This review explores the mechanisms underlying neuroinflammation, with a particular focus on the pivotal role of cytokines in the pathogenesis of PNDs.
Collapse
Affiliation(s)
| | - Jin Joo
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
11
|
Xue R, Li Y, Zhan M, Yang L, Sun D. Improved early postoperative cognition in elderly gastrointestinal patients: a randomized controlled trial on the role of ultrasound-guided stellate ganglion block. Front Aging Neurosci 2025; 17:1503314. [PMID: 40007697 PMCID: PMC11850532 DOI: 10.3389/fnagi.2025.1503314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background This study evaluates the impact of ultrasound-guided stellate ganglion block (SGB) on early postoperative cognitive dysfunction (POCD) in elderly patients who underwent laparoscopic gastrointestinal (GI) surgery, as well as its potential effect on oxidative stress and inflammatory responses. Methods In this randomized controlled trial, 104 elderly patients scheduled for elective laparoscopic GI surgery were randomized to receive ultrasound-guided SGB before general anesthesia (SGB group) or general anesthesia alone (control group). A total of 98 patients completed the study. Cognitive function was assessed using the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) preoperatively, and on postoperative days one and three. The perioperative recordings included mean arterial pressure, heart rate, and the bispectral index. Blood samples were analyzed for interleukin-6 (IL-6), superoxide dismutase (SOD), and malondialdehyde (MDA). Results The SGB group had a significantly lower incidence of POCD on postoperative day one (p < 0.05). IL-6 and MDA levels were significantly lower, while SOD levels were higher in the SGB group, when compared to the control group (p < 0.05). MDA levels were notably lower on postoperative day three in the SGB group (p < 0.05). Both groups showed significant changes in IL-6, SOD and MDA levels, when compared to preoperative values. The hemodynamic indicators showed a slight reduction in intraoperative blood pressure and decreased numerical rating scale scores on the first postoperative day without significant differences in other indicators. Conclusion Preoperative SGB reduces early POCD in elderly patients who undergo laparoscopic GI surgery, possibly through the inhibition of oxidative stress and inflammatory responses.
Collapse
Affiliation(s)
| | | | | | - Lin Yang
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Defeng Sun
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Chen Y, Man-Tak Chu J, Liu JX, Duan YJ, Liang ZK, Zou X, Wei M, Xin WJ, Xu T, Tin-Chun Wong G, Feng X. Double negative T cells promote surgery-induced neuroinflammation, microglial engulfment and cognitive dysfunction via the IL-17/CEBPβ/C3 pathway in adult mice. Brain Behav Immun 2025; 123:965-981. [PMID: 39491565 DOI: 10.1016/j.bbi.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/11/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024] Open
Abstract
CD3(+) CD4(-) CD8(-) double negative T cells (DNTs) manifest themselves in autoimmune diseases and associated inflammation. In the central nervous system, the increased presence of DNTs is associated with the progression of neurological conditions and brain injury. Active DNTs that produce IL-17 have been regarded as a pro-inflammatory phenotype. The IL-17 signaling pathway mediates neuroinflammatory responses by inducing glial activation and producing inflammatory factors. Neuroinflammation is considered integral to the pathogenesis of perioperative neurocognitive disorders (PNDs), commonly developed after surgery in susceptible patients. We and others have demonstrated a significant role for complement C3 in surgery-induced neuroinflammation and cognitive impairment but the regulatory mechanisms for this remain unexplored. We hypothesized that surgery induces DNT infiltration into the CNS that in turn upregulates complement C3 expression and this causes changes that contribute to cognitive impairment. Using an adult murine abdominal surgery model, we investigated perioperative changes in cognitive performance, quantifying the presence of T cell subsets and phenotype, IL-17 signaling pathway activation, glial cell activation and C3 expression in the brain. Postoperative IL-17 specific inhibitor GSK2981278 administration or preoperatively conditional CEBPβ knock-down by AAV9 viral vector were then applied to evaluate the effect of inhibiting IL-17 signaling pathway on postoperative C3 expression and cognitive performance. The results showed an increased hippocampus infiltration of DNTs with augmented IL-17 production, along with C3 upregulation and cognitive impairment. Both inhibition of IL-17 or knock-down of CEBPβ significantly suppressed C3 expression, synaptic engulfment by microglia and attenuated cognitive impairment. These findings indicate that DNTs promote postoperative neuroinflammation and cognitive impairment via the IL-17/CEBPβ/C3 pathway and targeting this IL-17 axis could be a potential therapeutic strategy to ameliorate postoperative neuroinflammation and cognitive impairment.
Collapse
Affiliation(s)
- Ying Chen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - John Man-Tak Chu
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, 4Th Floor, Block K, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Jia-Xin Liu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yu-Juan Duan
- Neuroscience Program, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zheng-Kai Liang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xin Zou
- Neuroscience Program, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ming Wei
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen-Jun Xin
- Neuroscience Program, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ting Xu
- Neuroscience Program, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Gordon Tin-Chun Wong
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, 4Th Floor, Block K, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China.
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
13
|
Wen J, Long F, Bi X, Wang X. circHOMER1 Alleviates Sevoflurane-Induced Hippocampal Neuronal Injury via Targeted Negative Regulation of miR-217. J Biochem Mol Toxicol 2025; 39:e70127. [PMID: 39776010 DOI: 10.1002/jbt.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/11/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025]
Abstract
Sevoflurane (Sev) is a widely applied anesthetic in clinical practice; however, it could induce neurotoxicity and lead to postoperative cognitive dysfunction (POCD). This study aimed to investigate the role and underlying mechanism of circHOMER1 in Sev-induced neurotoxicity and POCD. Sev treated mouse hippocampal neuronal HT22 cells and SD rats. RT-qPCR was used to detect the levels of circHOMER1 and miR-217. ELISA was employed to measure the levels of inflammatory factors IL-6, IL-1β, and TNF-α. Commercially available kits assessed the concentration of MDA and measured the activities LDH and SOD. The CCK-8 assay assessed cell viability. Flow cytometry analyzed cell apoptosis. The Morris water maze test evaluated the learning and cognitive abilities of the rats. Dual luciferase reporter assays and RIP experiments validated the targeted binding of circHOMER1 to miR-217. Sev treatment significantly reduces cell viability, increases apoptosis, stimulates inflammatory responses and oxidative stress, and induces learning and memory impairments in SD rats. Following exposure to Sev, the expression of circHOMER1 is markedly decreased, while overexpression of circHOMER1 can alleviate Sev-induced neuroinflammation, oxidative stress, and learning and memory deficits in rats. CircHOMER1 targets miR-217, and transfection of miR-217 antagonizes the neuroprotective effects of circHOMER1. This study demonstrated that circHOMER1 negatively regulated miR-217, thereby inhibiting Sev-induced neurotoxicity and learning and memory disorders.
Collapse
Affiliation(s)
- Jipeng Wen
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Feiyu Long
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaobo Bi
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoying Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
14
|
Li M, Cheng J, He R, Chen K, Zhang J, Liu X, Hu J, Lu Y. Red light-induced localized release of carbon monoxide for alleviating postoperative cognitive dysfunction. Biomaterials 2025; 312:122744. [PMID: 39106820 DOI: 10.1016/j.biomaterials.2024.122744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
Inflammation within the central nervous system (CNS), which may be triggered by surgical trauma, has been implicated as a significant factor contributing to postoperative cognitive dysfunction (POCD). The relationship between mitigating inflammation at peripheral surgical sites and its potential to attenuate the CNS inflammatory response, thereby easing POCD symptoms, remains uncertain. Notably, carbon monoxide (CO), a gasotransmitter, exhibits pronounced anti-inflammatory effects. Herein, we have developed carbon monoxide-releasing micelles (CORMs), a nanoparticle that safely and locally liberates CO upon exposure to 650 nm light irradiation. In a POCD mouse model, treatment with CORMs activated by light (CORMs + hv) markedly reduced the concentrations of interleukin (IL)-6, IL-1β, and tumor necrosis factor-alpha (TNF-α) in both the peripheral blood and the hippocampus, alongside a decrease in ionized calcium-binding adapter molecule 1 in the hippocampal CA1 region. Furthermore, CORMs + hv treatment diminished Evans blue extravasation, augmented the expression of tight junction proteins zonula occludens-1 and occludin, enhanced neurocognitive functions, and fostered fracture healing. Bioinformatics analysis and experimental validation has identified Htr1b and Trhr as potential key regulators in the neuroactive ligand-receptor interaction signaling pathway implicated in POCD. This work offers new perspectives on the mechanisms driving POCD and avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Mingde Li
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230022, China
| | - Jian Cheng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ruilin He
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230022, China
| | - Ke Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230022, China
| | - Jiqian Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230022, China
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230022, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Yao Lu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230022, China; Ambulatory Surgery Center, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
15
|
Sun J, Du X, Chen Y. Current Progress on Postoperative Cognitive Dysfunction: An Update. J Integr Neurosci 2024; 23:224. [PMID: 39735960 DOI: 10.31083/j.jin2312224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/14/2024] [Accepted: 08/14/2024] [Indexed: 12/31/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) represents a significant clinical concern, particularly among elderly surgical patients. It is characterized by a decline in cognitive performance, affecting memory, attention, coordination, orientation, verbal fluency, and executive function. This decline in cognitive abilities leads to longer hospital stays and increased mortality. This review provides a comprehensive overview of the current progress in understanding the relevant pathogenic factors, possible pathogenic mechanisms, diagnosing, prevention and treatment of POCD, as well as suggesting future research directions. It discusses neuronal damage, susceptible genes, central cholinergic system, central nervous system (CNS) inflammation, stress response and glucocorticoids, and oxidative stress in the development of POCD, aiming to uncover the pathological mechanism and develop effective treatment strategies for POCD.
Collapse
Affiliation(s)
- Jing Sun
- Department of Anesthesia and Perioperative Medicine, The Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Xiaohong Du
- Department of Anesthesia and Perioperative Medicine, The Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Yong Chen
- Department of Anesthesia and Perioperative Medicine, The Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
- Jiangxi Province Key of Laboratory of Anesthesiology, 330006 Nanchang, Jiangxi, China
- Department of Anesthesia and Perioperative Care, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
| |
Collapse
|
16
|
Yao Y, Hu L, Li D, Wang Y, Pan J, Fan D. Perioperative enriched environment attenuates postoperative cognitive dysfunction by upregulating microglia TREM2 via PI3K/Akt pathway in mouse model of ischemic stroke. Front Neurosci 2024; 18:1520710. [PMID: 39758888 PMCID: PMC11695310 DOI: 10.3389/fnins.2024.1520710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a prevalent complication that significantly affects the quality of life. Notably, patients who have experienced ischemic stroke are at an increased risk of developing POCD. Exploring the underlying mechanisms of POCD is crucial for its management. Numerous studies have established neuroinflammation as an independent risk factor in POCD pathogenesis, with TREM2 emerging as a key neuroprotective factor that modulates neuroinflammatory responses through the PI3K/Akt signaling pathway. In this study, we aimed to investigate the effect of TREM2 on POCD in a mouse model of ischemic stroke, with a focus on the mechanisms involving TREM2 and the PI3K/Akt signaling pathway. Our findings indicated that mice with ischemic stroke exhibited severe cognitive impairment after surgical trauma. However, we observed that an enriched environment (EE) could ameliorate this cognitive impairment by upregulating microglia TREM2 expression in the hippocampus and suppressing neuroinflammation. Additionally, the PI3K/AKT signaling pathway was activated in the hippocampal tissue of the mice housed in EE. Importantly, the beneficial neuroprotective and anti-inflammatory effects of EE were abolished when TREM2 was knocked down, underscoring the essential role of TREM2 in mediating the effects of EE on neuroinflammation and cognitive function after ischemic stroke and surgical trauma. In general, our study has confirmed a potential molecular mechanism that led to the occurrence of POCD in individuals with ischemic stroke and provided new strategies to treat POCD.
Collapse
Affiliation(s)
- Yuchen Yao
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liru Hu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Danni Li
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuhao Wang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dan Fan
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
17
|
Yang D, Su J, Chen Y, Chen G. The NF-κB pathway: Key players in neurocognitive functions and related disorders. Eur J Pharmacol 2024; 984:177038. [PMID: 39369877 DOI: 10.1016/j.ejphar.2024.177038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Perioperative neurocognitive disorder (PND) is a common complication of surgical anesthesia, yet its precise etiology remains unclear. Neuroinflammation is a key feature of PND, influenced by both patient -related and surgical variables. The nuclear factor-κB (NF-κB) transcription factor family plays a critical role in regulating the body's immunological proinflammatory response, which is pivotal in the development of PND. Surgery and anesthesia trigger the activation of the NF-κB signaling pathway, leading to the initiation of inflammatory cascades, disruption of the blood-brain barrier, and neuronal injury. Immune cells and glial cells are central to these pathological processes in PND. Furthermore, this study explores the interactions between NF-κB and various signaling molecules, including Tlr4, P2X, α7-nAChR, ROS, HIF-1α, PI3K/Ak, MicroRNA, Circular RNA, and histone deacetylases, within the context of PND. Targeting NF-κB as a therapeutic approach for PND shows promise as a potential treatment strategy.
Collapse
Affiliation(s)
- Danfeng Yang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junwei Su
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
18
|
Zhang Y, Liu M, Yu D, Wang J, Li J. 17β-Estradiol Ameliorates Postoperative Cognitive Dysfunction in Aged Mice via miR-138-5p/SIRT1/HMGB1 Pathway. Int J Neuropsychopharmacol 2024; 27:pyae054. [PMID: 39520138 PMCID: PMC11631145 DOI: 10.1093/ijnp/pyae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a common neurological complication in older patients and correlated with adverse outcomes. 17β-estradiol treatment was reported to provide neuroprotective protection in various neurologic disorders, but whether it attenuated POCD was unknown. The purpose of this study was to explore the effects of 17β-estradiol treatment on POCD and its mechanisms. METHODS We generated a POCD model in 15-month-old mice via laparotomy, followed by subcutaneous injection of 17β-estradiol, intraperitoneal injection of EX527 (a Sirtuin 1 [SIRT1] inhibitor), or bilateral hippocampal injection of miR-138-5p-agomir. Morris water maze test and open field test were applied to evaluate the cognitive function. The neuronal apoptosis in the hippocampus was detected using the terminal transferase dUTP nick end labeling assay. Meanwhile, the levels of interleukin-1β (IL-1β) and microglia activation were measured by enzymelinked immunosorbent assay and immunofluorescence, respectively. Western blot was utilized to assess the expression of SIRT1 and high mobility group box 1 (HMGB1) protein, and gene expression of miR-138-5p was determined through quantitative real-time polymerase chain reaction. RESULTS Behavioral tests showed that 17β-estradiol treatment improved cognitive function in aged POCD mice. In addition, 17β-estradiol attenuated neuronal apoptosis and microglia activation as well as IL-1β expression in the hippocampus. Nonetheless, injection with EX527 abolished the beneficial impacts of 17β-estradiol against POCD. Furthermore, miR-138-5p was verified to bind with SIRT1, which regulated the expression of HMGB1. After treatment with 17β-estradiol, miR-138-5p expression was reduced in the hippocampus, and the neuroprotective influence of 17β-estradiol on aged POCD mice was reversed after administration of miR-138-5p-agomir. CONCLUSIONS 17β-estradiol treatment exerted neuroprotection effects on POCD in aged mice, which might be relevant to alleviating neuroinflammation via miR-138-5p/SIRT1/HMGB1 pathway.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Anesthesiology, Graduate Faculty, North China University of Science and Technology, Tangshan, Hebei Province, China
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Meinv Liu
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Dongdong Yu
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Jing Wang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Jianli Li
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| |
Collapse
|
19
|
Bu X, Guo H, Gao W, Zhang L, Hou J, Li B, Xia Z, Wang W. Neuroprotection of celastrol against postoperative cognitive dysfunction through dampening cGAS-STING signaling. Exp Neurol 2024; 382:114987. [PMID: 39369806 DOI: 10.1016/j.expneurol.2024.114987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Neuroinflammation is a central player in postoperative cognitive dysfunction (POCD), an intractable and highly confounding neurological complication with finite therapeutic options. Celastrol, a quinone methide triterpenoid, is a bioactive ingredient extracted from Tripterygium wilfordii with talented anti-inflammatory capacity. However, it is unclear whether celastrol can prevent anesthesia/surgery-evoked cognitive deficits in an inflammation-specific manner. The STING agonist 5,6-dimethylxanthenone-4-acetic acid (DMXAA) was used to determine whether celastrol possesses neuroprotection dependent on the STING pathway in vivo and in vitro. Isoflurane and laparotomy triggered cGAS-STING activation, caspase-3/GSDME-dependent pyroptosis, and enhanced Iba-1 immunoreactivity. Celastrol improved cognitive performance and decreased the levels of cGAS, 2'3'-cGAMP, STING, NF-κB phosphorylation, Iba-1, TNF-α, IL-6, and IFN-β. Downregulation of cleaved caspase-3 and N-GSDME was observed in the hippocampus of POCD mice and HT22 cells after celastrol administration, accompanied by limited secretion of pyroptosis-pertinent pro-inflammatory cytokines IL-1β and IL-18. DMXAA neutralized the favorable influences of celastrol on cognitive function, as confirmed by the activation of the STING/caspase-3/GSDME axis. These findings implicate celastrol as a therapeutic agent for POCD through anti-inflammation and anti-pyroptosis.
Collapse
Affiliation(s)
- Xueshan Bu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Hui Guo
- Department of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, Hubei Province 430070, China
| | - Wenwei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Lei Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Bixi Li
- Department of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, Hubei Province 430070, China.
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China.
| | - Wei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
20
|
Zhang Z, Yang W, Wang L, Zhu C, Cui S, Wang T, Gu X, Liu Y, Qiu P. Unraveling the role and mechanism of mitochondria in postoperative cognitive dysfunction: a narrative review. J Neuroinflammation 2024; 21:293. [PMID: 39533332 PMCID: PMC11559051 DOI: 10.1186/s12974-024-03285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a frequent neurological complication encountered during the perioperative period with unclear mechanisms and no effective treatments. Recent research into the pathogenesis of POCD has primarily focused on neuroinflammation, oxidative stress, changes in neural synaptic plasticity and neurotransmitter imbalances. Given the high-energy metabolism of neurons and their critical dependency on mitochondria, mitochondrial dysfunction directly affects neuronal function. Additionally, as the primary organelles generating reactive oxygen species, mitochondria are closely linked to the pathological processes of neuroinflammation. Surgery and anesthesia can induce mitochondrial dysfunction, increase mitochondrial oxidative stress, and disrupt mitochondrial quality-control mechanisms via various pathways, hence serving as key initiators of the POCD pathological process. We conducted a review on the role and potential mechanisms of mitochondria in postoperative cognitive dysfunction by consulting relevant literature from the PubMed and EMBASE databases spanning the past 25 years. Our findings indicate that surgery and anesthesia can inhibit mitochondrial respiration, thereby reducing ATP production, decreasing mitochondrial membrane potential, promoting mitochondrial fission, inducing mitochondrial calcium buffering abnormalities and iron accumulation, inhibiting mitophagy, and increasing mitochondrial oxidative stress. Mitochondrial dysfunction and damage can ultimately lead to impaired neuronal function, abnormal synaptic transmission, impaired synthesis and release of neurotransmitters, and even neuronal death, resulting in cognitive dysfunction. Targeted mitochondrial therapies have shown positive outcomes, holding promise as a novel treatment for POCD.
Collapse
Affiliation(s)
- Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Wei Yang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Lanbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Chengyao Zhu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Shuyan Cui
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Tian Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
21
|
Chai D, Jiang H, Liu H. The impact of maternal anti-inflammatory drugs on surgical anesthesia-induced neuroinflammation and cognitive impairment in offspring mice. Front Cell Neurosci 2024; 18:1481630. [PMID: 39440002 PMCID: PMC11493650 DOI: 10.3389/fncel.2024.1481630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Background The impact of maternal surgery combined with general anesthesia on neuroinflammation and the development of learning and memory impairment in offspring remains unclear. This study utilized a pathogen-free laparotomy model to investigate these changes during the second trimester, as well as their response to anti-inflammatory therapy. Methods C57BL/6 pregnant mice at the 14.5-day embryo stage (E 14.5) were either exposed to sevoflurane anesthesia alone or underwent laparotomy procedure. The neuroinflammatory response was evaluated at 7, 14, 21, and 28 days postnatal (P7, P14, P21, P28). Tau phosphorylation and cognitive ability were assessed at P28 and P30, respectively. The impact of perioperative administration of ibuprofen (60 mg/kg) on these aforementioned changes was subsequently evaluated. Results In the laparotomy group, levels of inflammatory factors (IL-4, IL-8, IL-17A, TGF-β, M-CSF, CCL2) in the brains of offspring mice, including the cerebral cortex and hippocampus, remained consistently elevated from P7 to P28. At P14, while the majority of inflammatory cytokine has no statistical difference, there was still a significant reactivation of inflammatory cytokines observed in the frontal cortex and hippocampus at P28. Furthermore, abnormal phosphorylation of tau and deficits in learning and memory were observed at P28 and P30. Administration of perioperative ibuprofen led to improvements in cognitive performance, reduction of systemic inflammation, and inhibiting abnormal phosphorylation of tau in the frontal cortex and hippocampus. Conclusion Our findings indicate that cognitive dysfunction is correlated with elevated levels of inflammatory cytokines and tau phosphorylation. Cognitive impairment and tau phosphorylation after laparotomy can persist at least until P28. Anti-inflammatory medications have been shown to enhance cognitive function by rapidly reducing inflammation in the brain, while also impacting neurological changes. This discovery may have implications for the development of treatment strategies aimed at managing cognitive impairment in post-operative patients.
Collapse
|
22
|
Zhang L, Qiu Y, Zhang ZF, Zhao YF, Ding YM. Current perspectives on postoperative cognitive dysfunction in geriatric patients: insights from clinical practice. Front Med (Lausanne) 2024; 11:1466681. [PMID: 39399113 PMCID: PMC11469750 DOI: 10.3389/fmed.2024.1466681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common and serious postoperative complication in elderly patients, affecting cognitive function and quality of life. Its pathophysiology is complex, involving age-related cognitive decline, surgical and anesthetic factors, systemic and neuroinflammation, as well as genetic and environmental contributors. Comprehensive preoperative assessment and optimization, the selection of appropriate anesthetic agents, minimally invasive surgical techniques, and early postoperative rehabilitation and cognitive training are effective strategies to reduce the incidence of POCD. Recent research suggests that anti-inflammatory drugs and neuroprotective agents may be promising in preventing POCD. Additionally, non-pharmacological interventions, including cognitive and physical training, have shown positive effects. Future research directions should include large-scale clinical trials and mechanistic studies to further understand and manage POCD, along with integrating new findings into clinical practice. Continuous education and training for healthcare professionals are essential to ensure the effective application of the latest research findings in patient care. Through multidisciplinary collaboration and ongoing improvements, these efforts can significantly enhance the cognitive function and quality of life of elderly surgical patients.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Anaesthesiology, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yi Qiu
- Department of Anaesthesiology, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhi-feng Zhang
- Department of Joint Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yi-fan Zhao
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
| | - Yu-mei Ding
- Department of Anaesthesiology, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
23
|
Qin J, Yuan H, An X, Liu R, Meng B. Macrophage-derived exosomes exacerbate postoperative cognitive dysfunction in mice through inflammation. J Neuroimmunol 2024; 394:578403. [PMID: 39047317 DOI: 10.1016/j.jneuroim.2024.578403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/22/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
This study investigated the impact of two-hit inflammation on postoperative cognitive dysfunction (POCD) in mice and the role of macrophage-derived exosomes in regulating this process. Mice models were used to mimic the state of two-hit inflammation, and cognitive function was assessed through behavioral experiments. Proinflammatory cytokine expression levels and blood-brain barrier (BBB)-associated functional proteins were measured using ELISA and Western blot, respectively. An in vitro macrophage inflammation two-hit model was created, and the role of exosomes was examined using the previously mentioned assays. Additionally, exosomes were injected into mice to further understand their impact in the two-hit inflammation model. Mice exposed to two-hit inflammation experienced impaired cognitive function, increased BBB permeability, and elevated levels of proinflammatory cytokines. Macrophages subjected to two-hit inflammation released higher levels of proinflammatory cytokines compared to the control group and other treatment groups. Treatment with an exosome inhibitor GW4869 effectively reduced the expression levels of proinflammatory cytokines in macrophages exposed to two-hit inflammation. Moreover, injection of macrophage-released exosomes into healthy mice induced inflammation, hippocampal damage, and cognitive disorders, which were mitigated by treatment with GW4869. In mice with two-hit inflammation, macrophage-released exosomes worsened cognitive disorders by promoting inflammation in the peripheral blood and central nervous system. However, treatment with GW4869 protected cognitive function by suppressing exosome release. These findings highlight the importance of two-hit inflammation in POCD and emphasize the critical role of exosomes as regulatory factors. This research provides valuable insights into the pathogenesis of POCD and potential intervention strategies.
Collapse
Affiliation(s)
- Jinling Qin
- Department of Anesthesiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Hui Yuan
- Department of Anesthesiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Xiujun An
- Department of Anesthesiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Rongjun Liu
- Department of Anesthesiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Bo Meng
- Department of Anesthesiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
24
|
Yao J, Gao Z, Qu W, Li J. Propofol total intravenous anesthesia vs. sevoflurane inhalation anesthesia: Effects on post‑operative cognitive dysfunction and inflammation in geriatric patients undergoing laparoscopic surgery. Exp Ther Med 2024; 28:343. [PMID: 39006459 PMCID: PMC11240872 DOI: 10.3892/etm.2024.12632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/05/2024] [Indexed: 07/16/2024] Open
Abstract
Propofol total intravenous anesthesia (TIVA) or sevoflurane inhalation anesthesia (IA) affects post-operative cognitive dysfunction in geriatric patients undergoing laparoscopic surgery; however, relevant real-world clinical evidence on the matter is limited. The present study aimed to compare the effects of propofol TIVA and sevoflurane IA on post-operative cognitive dysfunction in the aforementioned type of patients. The present prospective study enrolled 197 geriatric patients undergoing laparoscopic surgery. Patients were assigned to the propofol TIVA group (n=97) and sevoflurane IA group (n=100) according to the actual anesthesia regimens. The mini-mental state examination (MMSE) score was assessed before surgery and on day (D)1, D3 and D7 following surgery in both groups. The MMSE score on D1 was higher in the TIVA group compared with the IA group (P=0.006). The change in the MMSE scores from before surgery to D1 (P<0.001), D3 (P=0.011) and D7 (P=0.003) was smaller in the TIVA group vs. the IA group. Multivariate linear regression analyses suggested that the anesthesia method of TIVA (vs. IA) was independently related to the increased MMSE score on D1 (b=0.803; P=0.001) and D7 (b=0.472; P=0.025). The levels of interleukin (IL)-17A, IL-6 and tumor necrosis factor-α on D1, D3 and D7 exhibited a slightly decreasing trend in the TIVA group vs. the IA group, although the difference was not statistically significant (all P>0.05). Notably, the levels of IL-17A before surgery (P=0.015), on D3 (P=0.016) and D7 (P=0.002), as well as those of IL-6 on D1 (P=0.027), were negatively associated with the MMSE score at the corresponding time points. Overall, the present study demonstrates that propofol TIVA ameliorates post-operative cognitive dysfunction on D1 compared with sevoflurane IA and exerts a potentially suppressive effect on inflammation in geriatric patients undergoing laparoscopic surgery.
Collapse
Affiliation(s)
- Jingping Yao
- Department of Anesthesiology, Daqing Oil Field General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Zhuoyue Gao
- Department of Anesthesiology, Daqing Oil Field General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Wa Qu
- Department of Anesthesiology, Daqing Oil Field General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Jingjing Li
- Department of Anesthesia, Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
25
|
Xiong Y, Pu YN, Li LY, Su Y, Niu JY, Xiao ZY. Gut microbiota-derived metabolite trimethylamine N-oxide aggravates cognitive dysfunction induced by femoral fracture operation in mice. Kaohsiung J Med Sci 2024; 40:732-743. [PMID: 38963317 DOI: 10.1002/kjm2.12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
An increasing number of elderly individuals are experiencing postoperative cognitive dysfunction (POCD) problems after undergoing hip replacement surgery, with gut microbiota metabolites playing a role in its pathogenesis. Among these, the specific effects of trimethylamine N-oxide (TMAO) on POCD are still unclear. This study aimed to explore the role of TMAO on cognitive dysfunction and underlying mechanisms in mice. The POCD model was created through femoral fracture surgery in elderly mice, followed by cognitive function assessments using the Morris Water Maze and Novel Object Recognition tests. The gut microbiota depletion and fecal microbiota transplantation were performed to examine the relationship between TMAO levels and cognitive outcomes. The effects of TMAO treatment on cognitive dysfunction, microglial activation, and inflammatory cytokine levels in the brain were also evaluated, with additional assessment of the role of microglial ablation in reducing TMAO-induced cognitive impairment. Elevated TMAO levels were found to be associated with cognitive decline in mice following femoral fracture surgery, with gut microbiota depletion mitigating both TMAO elevation and cognitive dysfunction. In contrast, fecal microbiota transplantation from postoperative mice resulted in accelerated cognitive dysfunction and TMAO accumulation in germ-free mice. Furthermore, TMAO treatment worsened cognitive deficits, neuroinflammation, and promoted microglial activation, which were reversed through the ablation of microglia. TMAO exacerbates cognitive dysfunction and neuroinflammation in POCD mice, with microglial activation playing a crucial role in this process. Our findings may provide new therapeutic strategies for managing TMAO-related POCD and improving the quality of life for elderly patients.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ya-Nan Pu
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Li-Ya Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yang Su
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jia-Yuan Niu
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhao-Yang Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
26
|
Wang S, Zhao J, Wang C, Yao Y, Song Z, Li L, Jiang J. miR-206-3p Targets Brain-Derived Neurotrophic Factor and Affects Postoperative Cognitive Function in Aged Mice. Neurochem Res 2024; 49:2005-2020. [PMID: 38814357 DOI: 10.1007/s11064-024-04174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Postoperative cognitive dysfunction (POCD) occurs after surgery and severely impairs patients' quality of life. Finding POCD-associated variables can aid in its diagnosis and prognostication. POCD is associated with noncoding RNAs, such as microRNAs (miRNAs), involved in metabolic function, immune response alteration, and cognitive ability impairment; however, the underlying mechanisms remain unclear. The aim of this study was to investigate hub miRNAs (i.e., miRNAs that have an important regulatory role in diseases) regulating postoperative cognitive function and the associated mechanisms. Hub miRNAs were identified by bioinformatics, and their expression in mouse hippocampus tissues was determined using real-time quantitative polymerase chain reaction. Hub miRNAs were overexpressed or knocked down in cell and animal models to test their effects on neuroinflammation and postoperative cognitive function. Six differentially expressed hub miRNAs were identified. miR-206-3p was the only broadly conserved miRNA, and it was used in follow-up studies and animal experiments. Its inhibitors reduced the release of proinflammatory cytokines in BV-2 microglia by regulating its target gene, brain-derived neurotrophic factor (BDNF), and the downstream signaling pathways. miR-206-3p inhibition suppressed microglial activation in the hippocampi of mice and improved learning and cognitive decline. Therefore, miR-206-3p significantly affects POCD, implying its potential as a therapeutic target.
Collapse
Affiliation(s)
- Shentong Wang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Jia Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Chengran Wang
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yuhan Yao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Zhiyao Song
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Longyun Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Jinlan Jiang
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
27
|
Qi Z, Peng J, Wang H, Wang L, Su Y, Ding L, Cao B, Zhao Y, Xing Q, Yang J. Modulating neuroinflammation and cognitive function in postoperative cognitive dysfunction via CCR5-GPCRs-Ras-MAPK pathway targeting with microglial EVs. CNS Neurosci Ther 2024; 30:e14924. [PMID: 39143678 PMCID: PMC11324532 DOI: 10.1111/cns.14924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
AIMS Postoperative cognitive dysfunction (POCD) is prevalent among the elderly, characterized primarily by cognitive decline after surgery. This study aims to explore how extracellular vesicles (EVs) derived from BV2 microglial cells, with and without the C-C chemokine receptor type 5 (CCR5), affect neuroinflammation, neuronal integrity, and cognitive function in a POCD mouse model. METHODS We collected EVs from LPS-stimulated BV2 cells expressing CCR5 (EVsM1) and from BV2 cells with CCR5 knockdown (EVsM1-CCR5). These were administered to POCD-induced mice. Protein interactions between CCR5, G-protein-coupled receptors (GPCRs), and Ras were analyzed using structure-based docking and co-immunoprecipitation (Co-IP). We assessed the phosphorylation of p38 and Erk, the expression of synaptic proteins PSD95 and MAP2, and conducted Morris Water Maze tests to evaluate cognitive function. RESULTS Structure-based docking and Co-IP confirmed interactions between CCR5, GPR, and Ras, suggesting a CCR5-GPCRs-Ras-MAPK pathway involvement in neuroinflammation. EVsM1 heightened neuroinflammation, reduced synaptic integrity, and impaired cognitive function in POCD mice. In contrast, EVsM1-CCR5 reduced neuroinflammatory markers, preserved synaptic proteins, enhanced dendritic spine structure, and improved cognitive outcomes. CONCLUSION EVsM1 induced neuroinflammation via the CCR5-GPCRs-Ras-MAPK pathway, with EVsM1-CCR5 showing protective effects on POCD progression, suggesting a new therapeutic strategy for POCD management via targeted modification of microglial EVs.
Collapse
Affiliation(s)
- Zheng Qi
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Junlin Peng
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Haitao Wang
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Li Wang
- Biobank of The First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yu Su
- Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Lan Ding
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Bin Cao
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yingying Zhao
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Qinghe Xing
- Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Jian‐jun Yang
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
28
|
Zhu X, Lin J, Yang P, Wu S, Lin H, He W, Lin D, Cao M. Surgery induces neurocognitive disorder via neuroinflammation and glymphatic dysfunction in middle-aged mice with brain lymphatic drainage impairment. Front Neurosci 2024; 18:1426718. [PMID: 38975244 PMCID: PMC11225229 DOI: 10.3389/fnins.2024.1426718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Background Brain lymphatic drainage impairment is a prevalent characteristic in both aging and neurodegeneration. Surgery is more likely to induce excessive neuroinflammation and postoperative neurocognitive disorder (PND) among patients with aging and neurodegeneration. We hypothesized that surgical trauma may aggravate PND through preexisting cerebral lymphatic drainage impairment. However, there remains limited understanding about the role of surgery in changes of neurocognitive function in the populations with preoperative brain lymphatic drainage impairment. This study aims to expand our insight into surgery-induced glymphatic dysfunction, neuroinflammation and PND in middle-aged mice with preoperative brain lymphatic drainage impairment. Materials and methods Deep cervical lymph nodes ligation (LdcLNs) was performed on middle-aged mice to establish preoperative brain lymphatic drainage impairment. A month later, laparotomy was performed on these mice with or without LdcLNs followed by analysis of brain neuroinflammation, glymphatic function, neuronal damage, and behavioral test. Results LdcLNs disrupted meningeal lymphatic drainage. In middle-aged mice with LdcLNs, surgery exacerbated more serious glymphatic dysfunction accompanied by aggravation of A1 astrocytes activation and AQP4 depolarization. Furthermore, surgery caused neuronal damage via reducing expression of neuronal nuclei (NeuN), post-synaptic density protein 95 (PSD95) and synaptophysin (SYP), as well as impairment in exploratory behavior and spatial working memory in middle-aged mice with LdcLNs. Additionally, surgery induced neuroinflammation with elevated microglia activation and increased the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, as well as activated more expression of HMGB1/TLR-4/NF-κB pathway in middle-aged mice with LdcLNs. Conclusion Surgery exacerbates neuroinflammation and glymphatic dysfunction, ultimately resulting in neuronal damage and neurocognitive disorder in middle-aged mice with preoperative brain lymphatic drainage impairment. These results suggest that brain lymphatic drainage impairment may be a deteriorating factor in the progression of PND, and restoring its function may serve as a potential strategy against PND.
Collapse
Affiliation(s)
- Xiaoqiu Zhu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingrun Lin
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pengfeng Yang
- Department of Ultrasound Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shaotao Wu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huijun Lin
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen He
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Daowei Lin
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minghui Cao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Fu Y, Wei Q, Wang Z, Zhao Q, Shi W. Effects of dexmedetomidine on postoperative pain and early cognitive impairment in older male patients undergoing laparoscopic cholecystectomy. Exp Ther Med 2024; 27:189. [PMID: 38533435 PMCID: PMC10964730 DOI: 10.3892/etm.2024.12477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
The primary aim of the present study was to investigate the effect of dexmedetomidine (DEX) on postoperative pain and early cognitive impairment in old male patients, who underwent laparoscopic cholecystectomy (LC). A total of 97 old patients, subjected to LC at the 980 Hospital of the Joint Service Support Force of the People's Liberation Army of China, were randomly divided into two groups, namely the DEX and normal saline groups. Patients in the DEX group received an intravenous infusion of 0.8 µg/kg DEX within 10 min following general anesthesia, followed by a maintenance infusion of 0.5 µg/(kg/h). Furthermore, patients in the normal saline group were treated with an equivalent volume of normal saline. Cognitive function was assessed using the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA) tests at 6 h, 1, 2 and 3 days, postoperatively. The incidence of postoperative cognitive dysfunction (POCD) and postoperative adverse events were recorded for both groups. In addition, the Visual Analogue Scale (VAS) pain score was utilized to assess the pain level of all patients, while the Quality of Recovery-15 (QoR-15) scale was employed to analyze the postoperative recovery results. Therefore, the MoCA score was higher in the DEX group compared with the normal saline group at 6 h and day 1 postoperatively. Additionally, the MMSE score was higher at 6 h postoperatively in the DEX group compared with the normal saline group. Correspondingly, the incidence of POCD was lower in the DEX group compared with the normal saline group at 6 h and day 1, after LC (P<0.05). VAS score in resting state for patients in the DEX group was significantly lower compared with the normal-saline group (P<0.05). Furthermore, the QoR-15 scale score in patients in the DEX group was notably increased compared with the normal saline group on the first and second days after the operation (P<0.05). Overall, the present study verified that the continuous infusion of DEX at a rate of 0.5 µg/(kg/h) during LC could effectively reduce the incidence of early POCD and alleviate postoperative pain in old male patients, thus facilitating postoperative recovery.
Collapse
Affiliation(s)
- Yanlong Fu
- Department of Hepatobiliary Surgery, The 980 Hospital of The Joint Service Support Force of The People's Liberation Army of China, Shijiazhuang, Hebei 050000, P.R. China
| | - Qiang Wei
- Department of Hepatobiliary Surgery, The 980 Hospital of The Joint Service Support Force of The People's Liberation Army of China, Shijiazhuang, Hebei 050000, P.R. China
| | - Zhenliang Wang
- Department of Hepatobiliary Surgery, The 980 Hospital of The Joint Service Support Force of The People's Liberation Army of China, Shijiazhuang, Hebei 050000, P.R. China
| | - Qingtao Zhao
- Department of Hepatobiliary Surgery, The 980 Hospital of The Joint Service Support Force of The People's Liberation Army of China, Shijiazhuang, Hebei 050000, P.R. China
| | - Wenxin Shi
- Department of Hepatobiliary Surgery, The 980 Hospital of The Joint Service Support Force of The People's Liberation Army of China, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
30
|
Feng Y, Qin J, Lu Y, Wang M, Wang S, Luo F. Suberoylanilide hydroxamic acid attenuates cognitive impairment in offspring caused by maternal surgery during mid-pregnancy. PLoS One 2024; 19:e0295096. [PMID: 38551911 PMCID: PMC10980197 DOI: 10.1371/journal.pone.0295096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/13/2024] [Indexed: 04/01/2024] Open
Abstract
Some pregnant women have to experience non-obstetric surgery during pregnancy under general anesthesia. Our previous studies showed that maternal exposure to sevoflurane, isoflurane, propofol, and ketamine causes cognitive deficits in offspring. Histone acetylation has been implicated in synaptic plasticity. Propofol is commonly used in non-obstetric procedures on pregnant women. Previous studies in our laboratory showed that maternal propofol exposure in pregnancy impairs learning and memory in offspring by disturbing histone acetylation. The present study aims to investigate whether HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) could attenuate learning and memory deficits in offspring caused by maternal surgery under propofol anesthesia during mid-pregnancy. Maternal rats were exposed to propofol or underwent abdominal surgery under propofol anesthesia during middle pregnancy. The learning and memory abilities of the offspring rats were assessed using the Morris water maze (MWM) test. The protein levels of histone deacetylase 2 (HDAC2), phosphorylated cAMP response-element binding (p-CREB), brain-derived neurotrophic factor (BDNF), and phosphorylated tyrosine kinase B (p-TrkB) in the hippocampus of the offspring rats were evaluated by immunofluorescence staining and western blot. Hippocampal neuroapoptosis was detected by TUNEL staining. Our results showed that maternal propofol exposure during middle pregnancy impaired the water-maze learning and memory of the offspring rats, increased the protein level of HDAC2 and reduced the protein levels of p-CREB, BDNF and p-TrkB in the hippocampus of the offspring, and such effects were exacerbated by surgery. SAHA alleviated the cognitive dysfunction and rescued the changes in the protein levels of p-CREB, BDNF and p-TrkB induced by maternal propofol exposure alone or maternal propofol exposure plus surgery. Therefore, SAHA could be a potential and promising agent for treating the learning and memory deficits in offspring caused by maternal nonobstetric surgery under propofol anesthesia.
Collapse
Affiliation(s)
- Yunlin Feng
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jia Qin
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanfei Lu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Mengdie Wang
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shengqiang Wang
- Department of Anesthesiology, Yichun People’s Hospital, Yichun, China
| | - Foquan Luo
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
31
|
Xu Y, Jia B, Li J, Li Q, Luo C. The Interplay between Ferroptosis and Neuroinflammation in Central Neurological Disorders. Antioxidants (Basel) 2024; 13:395. [PMID: 38671843 PMCID: PMC11047682 DOI: 10.3390/antiox13040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Central neurological disorders are significant contributors to morbidity, mortality, and long-term disability globally in modern society. These encompass neurodegenerative diseases, ischemic brain diseases, traumatic brain injury, epilepsy, depression, and more. The involved pathogenesis is notably intricate and diverse. Ferroptosis and neuroinflammation play pivotal roles in elucidating the causes of cognitive impairment stemming from these diseases. Given the concurrent occurrence of ferroptosis and neuroinflammation due to metabolic shifts such as iron and ROS, as well as their critical roles in central nervous disorders, the investigation into the co-regulatory mechanism of ferroptosis and neuroinflammation has emerged as a prominent area of research. This paper delves into the mechanisms of ferroptosis and neuroinflammation in central nervous disorders, along with their interrelationship. It specifically emphasizes the core molecules within the shared pathways governing ferroptosis and neuroinflammation, including SIRT1, Nrf2, NF-κB, Cox-2, iNOS/NO·, and how different immune cells and structures contribute to cognitive dysfunction through these mechanisms. Researchers' findings suggest that ferroptosis and neuroinflammation mutually promote each other and may represent key factors in the progression of central neurological disorders. A deeper comprehension of the common pathway between cellular ferroptosis and neuroinflammation holds promise for improving symptoms and prognosis related to central neurological disorders.
Collapse
Affiliation(s)
- Yejia Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Bowen Jia
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Qianqian Li
- NHC Key Laboratory of Drug Addiction Medicine, Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
- School of Forensic Medicine, Wannan Medical College, Wuhu 241002, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- NHC Key Laboratory of Drug Addiction Medicine, Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
32
|
Zhao W, Zou W. Effects of electroacupuncture on postoperative cognitive dysfunction and its underlying mechanisms: a literature review of rodent studies. Front Aging Neurosci 2024; 16:1384075. [PMID: 38596595 PMCID: PMC11002135 DOI: 10.3389/fnagi.2024.1384075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
With the aging of the population, the health of the elderly has become increasingly important. Postoperative cognitive dysfunction (POCD) is a common neurological complication in elderly patients following general anesthesia or surgery. It is characterized by cognitive decline that may persist for weeks, months, or even longer. Electroacupuncture (EA), a novel therapy that combines physical nerve stimulation with acupuncture treatment from traditional Chinese medicine, holds potential as a therapeutic intervention for preventing and treating POCD, particularly in elderly patients. Although the beneficial effects of EA on POCD have been explored in preclinical and clinical studies, the reliability of EA is limited by methodological shortcomings, and the underlying mechanisms remain largely unexplored. Therefore, we have synthesized existing evidence and proposed potential biological mechanisms underlying the effects of EA on neuroinflammation, oxidative stress, autophagy, the microbiota-gut-brain axis, and epigenetic modification. This review summarizes recent advances in EA and POCD, provides a theoretical foundation, explores potential molecular mechanisms for the prevention and treatment of POCD, and offers a basis for conducting relevant clinical trials.
Collapse
Affiliation(s)
- Wenbo Zhao
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|