1
|
Yuan X, Pan L, Zhang C, Zhu Q, Huang Z, Qin Y, Zhang G, Feng Z, Yang C, Hou N. Empagliflozin improves pressure-overload-induced cardiac hypertrophy by inhibiting the canonical Wnt/β-catenin signaling pathway. Front Pharmacol 2024; 15:1499542. [PMID: 39664517 PMCID: PMC11631586 DOI: 10.3389/fphar.2024.1499542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/30/2024] [Indexed: 12/13/2024] Open
Abstract
Background Empagliflozin (EMPA) is an SGLT-2 inhibitor that can control hyperglycemia. Clinical trials have indicated its cardio-protective effects against cardiac remodeling in diabetes or non-diabetes patients. However, the underlying molecular mechanisms of EMPA's cardio-protective effects remain elusive. Methods We evaluated whether the EMPA attenuated the pressure-overload-induced cardiac hypertrophy by inhibiting the Wnt/β-catenin pathway. Furthermore, the effects of the EMPA on a mouse model of transverse aortic constriction (TAC) induced cardiac hypertrophy was also evaluated. Mice were administrated with 0.5% CMC-Na as a vehicle or EMPA (10 mg/kg/day, daily, throughout the study) by intragastric gavage. Results The in vivo echocardiography and histologic morphological analyses revealed that EMPA attenuated TAC-induced cardiac hypertrophy. Moreover, it also ameliorated TAC-induced cardiac fibrosis and decreased the cell size of the cardiomyocytes in isolated adult cardiomyocytes. Molecular mechanism analysis revealed that the EMPA reduced the TAC-induced enhanced expression of the Wnt/β-catenin pathway in vivo. For in vitro assessments, isolated neonatal rat cardiomyocytes (NRCMs) were treated with Angiotensin II (AngII) and EMPA; the results showed that in the absence of EMPA, the expression of the Wnt/β-catenin pathway was enhanced. In the trans-genetic heterozygous β-catenin deletion mice, EMPA attenuated TAC-induced cardiac remodeling by reducing the Wnt/β-catenin pathway. In addition, molecular docking analysis indicated that EMPA interacts with FZD4 to inhibit the TAC and AngII induced Wnt/β-catenin pathway in cardiomyocytes. Conclusion Our study illustrated that EMPA might directly interact with FZD4 to inhibit the TAC and AngII-induced activation of the Wnt/β-catenin pathway to attenuate the adverse cardiac remodeling.
Collapse
Affiliation(s)
- Xun Yuan
- The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, Guangzhou Medical University, Guangzhou, China
| | - Li Pan
- Department of Physiology, School of Basic Medicine Sciences, Guangzhou Health Science College, Guangzhou, China
| | - Chi Zhang
- School of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Qiulian Zhu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, Guangzhou Medical University, Guangzhou, China
| | - Zexin Huang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, Guangzhou Medical University, Guangzhou, China
| | - Yuan Qin
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, Guangzhou Medical University, Guangzhou, China
| | - Guiping Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, Guangzhou Medical University, Guangzhou, China
| | - Zhimei Feng
- The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, China
| | - Caixian Yang
- The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, China
| | - Ning Hou
- The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Pan R, He Y, Melisandre W, Zhang Y, Su W, Feng J, Jia C, Li S, Liu B. Bibliometric and visual analysis of SGLT2 inhibitors in cardiovascular diseases. Front Pharmacol 2024; 15:1437760. [PMID: 39539627 PMCID: PMC11557488 DOI: 10.3389/fphar.2024.1437760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background Cardiovascular diseases (CVD) pose a significant threat to human health due to their high mortality and morbidity rates. Despite advances in treatments, the prevalence and impact of cardiovascular disease continue to increase. Sodium-glucose transporter 2 inhibitors (SGLT2i), initially approved for the treatment of type 2 diabetes, have important research value and promising applications in reducing CVD risk, especially in heart failure (HF) and atherosclerosis patients with cardiovascular disease (ASCVD). This study aims to comprehensively review the latest progress, research trends, cutting-edge hot spots, and future development directions of SGLT2i in the field of CVD through bibliometric analysis. Methods Articles related to MSCs in cardiovascular diseases were sourced from the Web of Science. The bibliometric analysis was conducted using CiteSpace and VOSviewer, and a knowledge map was created based on the data obtained from the retrieved articles. Results In this article, we screened 3,476 relevant studies, including 2,293 articles and 1,183 reviews. The analysis found that the number of papers related to the application of SGLT2i in CVD has generally increased, peaking in 2022. The United States and China contributed the largest number of papers, with the United States accounting for 36.97% of the total and also ranking first in terms of the number of citations. However, China's high-quality papers are slightly lacking and need further improvement. Keyword analysis showed that empagliflozin, dapagliflozin, diabetes, and heart failure were the most common terms, reflecting the main research interests in currently published papers in this field. Conclusion Bibliometric analysis showed a robust and growing interest in the application of SGLT2i for treating CVD. By summarizing the latest progress of SGLT2i in the field of CVD, exploring research hotspots, and looking forward to future research development trends, this article provides valuable insights for thinking about research prospects.
Collapse
Affiliation(s)
- Runfang Pan
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing He
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wan Melisandre
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunyi Zhang
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenyuan Su
- Sport Medicine and Rehabilitation Center, Shanghai University of Sport, Shanghai, China
| | - Jiaming Feng
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengyao Jia
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Shaoling Li
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Baonian Liu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Fath AR, Aglan M, Aglan A, Chilton RJ, Trakhtenbroit A, Al-Shammary OA, Oppong-Nkrumah O, Lenihan DJ, Dent SF, Otchere P. Cardioprotective Potential of Sodium-Glucose Cotransporter-2 Inhibitors in Patients With Cancer Treated With Anthracyclines: An Observational Study. Am J Cardiol 2024; 222:175-182. [PMID: 38692401 DOI: 10.1016/j.amjcard.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/20/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Anthracyclines are pivotal in cancer treatment, yet their clinical utility is hindered by the risk of cardiotoxicity. Preclinical studies highlight the effectiveness of sodium-glucose cotransporter-2 inhibitors (SGLT2i) in mitigating anthracycline-induced cardiotoxicity. Nonetheless, the translation of these findings to clinical practice remains uncertain. This study aims to evaluate the safety and potential of SGLT2i for preventing cardiotoxicity in patients with cancer, without preexisting heart failure (HF), receiving anthracyclines therapy. Using the TriNetX Global Research Network, patients with cancer, without previous HF diagnosis, receiving anthracycline therapy were identified and classified into 2 groups based on SGLT2i usage. A 1:1 propensity score matching was used to control for baseline characteristics between the 2 groups. Patients were followed for 2 years. The primary end point was new-onset HF, and the secondary end points were HF exacerbation, new-onset arrhythmia, myocardial infarction, all-cause mortality, and all-cause hospitalization. Safety outcomes included acute renal failure and creatinine levels. A total of 79,074 patients were identified, and 1,412 were included post-matching (706 in each group). They comprised 53% females, 62% White, with a mean age of 62.5 ± 11.4 years. Over the 2-year follow-up period, patients on SGLT2i had lower rates of new-onset HF (hazard ratio 0.147, 95% confidence interval 0.073 to 0.294) and arrhythmia (hazard ratio 0.397, 95% confidence interval 0.227 to 0.692) compared with those not on SGLT2i. The incidence of all-cause mortality, myocardial infarction, all-cause hospitalization, and safety outcomes were similar between both groups. In conclusion, among patients with cancer receiving anthracycline therapy without preexisting HF, SGLT2i use demonstrates both safety and effectiveness in reducing anthracycline-induced cardiotoxicity, with a decreased incidence of new-onset HF, HF exacerbation, and arrhythmias.
Collapse
Affiliation(s)
- Ayman R Fath
- Cardiology Department, University of Texas Health Science Center, San Antonio, Texas.
| | - Mostafa Aglan
- Internal Medicine Department, Lahey Hospital and Medical Center, Burlington Massachusetts
| | - Amro Aglan
- Internal Medicine Department, Lahey Hospital and Medical Center, Burlington Massachusetts
| | - Robert J Chilton
- Cardiology Department, University of Texas Health Science Center, San Antonio, Texas
| | - Anatole Trakhtenbroit
- Cardiology Department, University of Texas Health Science Center, San Antonio, Texas
| | - Odaye A Al-Shammary
- Cardiology Department, University of Texas Health Science Center, San Antonio, Texas
| | - Oduro Oppong-Nkrumah
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Daniel J Lenihan
- Cardiology Department, Saint Francis Healthcare System, Cape Girardeau, Missouri
| | - Susan F Dent
- Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Prince Otchere
- Cardiology Department, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
4
|
Camilli M, Viscovo M, Maggio L, Bonanni A, Torre I, Pellegrino C, Lamendola P, Tinti L, Teofili L, Hohaus S, Lanza GA, Ferdinandy P, Varga Z, Crea F, Lombardo A, Minotti G. Sodium-glucose cotransporter 2 inhibitors and the cancer patient: from diabetes to cardioprotection and beyond. Basic Res Cardiol 2024:10.1007/s00395-024-01059-9. [PMID: 38935171 DOI: 10.1007/s00395-024-01059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a new drug class initially designed and approved for treatment of diabetes mellitus, have been shown to exert pleiotropic metabolic and direct cardioprotective and nephroprotective effects that extend beyond their glucose-lowering action. These properties prompted their use in two frequently intertwined conditions, heart failure and chronic kidney disease. Their unique mechanism of action makes SGLT2i an attractive option also to lower the rate of cardiac events and improve overall survival of oncological patients with preexisting cardiovascular risk and/or candidate to receive cardiotoxic therapies. This review will cover biological foundations and clinical evidence for SGLT2i modulating myocardial function and metabolism, with a focus on their possible use as cardioprotective agents in the cardio-oncology settings. Furthermore, we will explore recently emerged SGLT2i effects on hematopoiesis and immune system, carrying the potential of attenuating tumor growth and chemotherapy-induced cytopenias.
Collapse
Affiliation(s)
- Massimiliano Camilli
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy.
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy.
| | - Marcello Viscovo
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Maggio
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Alice Bonanni
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Ilaria Torre
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Claudio Pellegrino
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Priscilla Lamendola
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Lorenzo Tinti
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Luciana Teofili
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Stefan Hohaus
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gaetano Antonio Lanza
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltan Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Filippo Crea
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Center of Excellence of Cardiovascular Sciences, Ospedale Isola Tiberina - Gemelli Isola, Rome, Italy
| | - Antonella Lombardo
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | | |
Collapse
|
5
|
Higashikuni Y, Liu W, Sata M. Nocturnal blood pressure and left ventricular hypertrophy in patients with diabetes mellitus. Hypertens Res 2024; 47:819-822. [PMID: 38148349 DOI: 10.1038/s41440-023-01562-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 12/28/2023]
Affiliation(s)
- Yasutomi Higashikuni
- Department of Cardiovascular Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Wenhao Liu
- Department of Cardiovascular Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima-shi, Tokushima, 770-8503, Japan
| |
Collapse
|
6
|
Elian V, Popovici V, Karampelas O, Pircalabioru GG, Radulian G, Musat M. Risks and Benefits of SGLT-2 Inhibitors for Type 1 Diabetes Patients Using Automated Insulin Delivery Systems-A Literature Review. Int J Mol Sci 2024; 25:1972. [PMID: 38396657 PMCID: PMC10888162 DOI: 10.3390/ijms25041972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
The primary treatment for autoimmune Diabetes Mellitus (Type 1 Diabetes Mellitus-T1DM) is insulin therapy. Unfortunately, a multitude of clinical cases has demonstrated that the use of insulin as a sole therapeutic intervention fails to address all issues comprehensively. Therefore, non-insulin adjunct treatment has been investigated and shown successful results in clinical trials. Various hypoglycemia-inducing drugs such as Metformin, glucagon-like peptide 1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, amylin analogs, and Sodium-Glucose Cotransporters 2 (SGLT-2) inhibitors, developed good outcomes in patients with T1DM. Currently, SGLT-2 inhibitors have remarkably improved the treatment of patients with diabetes by preventing cardiovascular events, heart failure hospitalization, and progression of renal disease. However, their pharmacological potential has not been explored enough. Thus, the substantial interest in SGLT-2 inhibitors (SGLT-2is) underlines the present review. It begins with an overview of carrier-mediated cellular glucose uptake, evidencing the insulin-independent transport system contribution to glucose homeostasis and the essential roles of Sodium-Glucose Cotransporters 1 and 2. Then, the pharmacological properties of SGLT-2is are detailed, leading to potential applications in treating T1DM patients with automated insulin delivery (AID) systems. Results from several studies demonstrated improvements in glycemic control, an increase in Time in Range (TIR), a decrease in glycemic variability, reduced daily insulin requirements without increasing hyperglycemic events, and benefits in weight management. However, these advantages are counterbalanced by increased risks, particularly concerning Diabetic Ketoacidosis (DKA). Several clinical trials reported a higher incidence of DKA when patients with T1DM received SGLT-2 inhibitors such as Sotagliflozin and Empagliflozin. On the other hand, patients with T1DM and a body mass index (BMI) of ≥27 kg/m2 treated with Dapagliflozin showed similar reduction in hyperglycemia and body weight and insignificantly increased DKA incidence compared to the overall trial population. Additional multicenter and randomized studies are required to establish safer and more effective long-term strategies based on patient selection, education, and continuous ketone body monitoring for optimal integration of SGLT-2 inhibitors into T1DM therapeutic protocol.
Collapse
Affiliation(s)
- Viviana Elian
- Department of Diabetes, Nutrition and Metabolic Diseases, “Carol Davila” University of Medicine and Pharmacy, 5-7 Ion Movila Street, 020475 Bucharest, Romania; (V.E.); (G.R.)
- Department of Diabetes, Nutrition and Metabolic Diseases, “N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020475 Bucharest, Romania
| | - Violeta Popovici
- “Costin C. Kiriţescu” National Institute of Economic Research—Center for Mountain Economics (INCE-CEMONT) of Romanian Academy, 725700 Vatra-Dornei, Romania
| | - Oana Karampelas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania;
| | - Gratiela Gradisteanu Pircalabioru
- eBio-Hub Research Centre, National University of Science and Technology Politehnica Bucharest, 061344 Bucharest, Romania;
- Research Institute, University of Bucharest, 061344 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Gabriela Radulian
- Department of Diabetes, Nutrition and Metabolic Diseases, “Carol Davila” University of Medicine and Pharmacy, 5-7 Ion Movila Street, 020475 Bucharest, Romania; (V.E.); (G.R.)
- Department of Diabetes, Nutrition and Metabolic Diseases, “N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020475 Bucharest, Romania
| | - Madalina Musat
- eBio-Hub Research Centre, National University of Science and Technology Politehnica Bucharest, 061344 Bucharest, Romania;
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 030167 Bucharest, Romania
- Department of Endocrinology IV, “C. I. Parhon” National Institute of Endocrinology, 011863 Bucharest, Romania
| |
Collapse
|
7
|
Cumhur Cure M, Cure E. Why have SGLT2 Inhibitors Failed to Achieve the Desired Success in COVID-19? Curr Pharm Des 2024; 30:1149-1156. [PMID: 38566383 DOI: 10.2174/0113816128300162240322075423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
The SARS-CoV-2 virus emerged towards the end of 2019 and caused a major worldwide pandemic lasting at least 2 years, causing a disease called COVID-19. SARS-CoV-2 caused a severe infection with direct cellular toxicity, stimulation of cytokine release, increased oxidative stress, disruption of endothelial structure, and thromboinflammation, as well as angiotensin-converting enzyme 2 (ACE2) down-regulation-mediated renin-angiotensin system (RAS) activation. In addition to glucosuria and natriuresis, sodium-glucose transport protein 2 (SGLT2) inhibitors (SGLT2i) cause weight loss, a decrease in glucose levels with an insulin-independent mechanism, an increase in erythropoietin levels and erythropoiesis, an increase in autophagy and lysosomal degradation, Na+/H+-changer inhibition, prevention of ischemia/reperfusion injury, oxidative stress and they have many positive effects such as reducing inflammation and improving vascular function. There was great anticipation for SGLT2i in treating patients with diabetes with COVID-19, but current data suggest they are not very effective. Moreover, there has been great confusion in the literature about the effects of SGLT2i on COVID-19 patients with diabetes . Various factors, including increased SGLT1 activity, lack of angiotensin receptor blocker co-administration, the potential for ketoacidosis, kidney injury, and disruptions in fluid and electrolyte levels, may have hindered SGLT2i's effectiveness against COVID-19. In addition, the duration of use of SGLT2i and their impact on erythropoiesis, blood viscosity, cholesterol levels, and vitamin D levels may also have played a role in their failure to treat the virus. This article aims to uncover the reasons for the confusion in the literature and to unravel why SGLT2i failed to succeed in COVID-19 based on some solid evidence as well as speculative and personal perspectives.
Collapse
Affiliation(s)
- Medine Cumhur Cure
- Medilab Laboratory and Imaging Center, Department of Biochemistry, Sisli, Istanbul, Turkey
| | - Erkan Cure
- Department of Internal Medicine, Beylikdüzü Medilife Hospital, Yakuplu Mh, Beylikduzu, Istanbul, Turkey
| |
Collapse
|
8
|
Bettag J, Goldenberg D, Carter J, Morfin S, Borsotti A, Fox J, ReVeal M, Natrop D, Gosser D, Kolli S, Jain AK. Gut Microbiota to Microglia: Microbiome Influences Neurodevelopment in the CNS. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1767. [PMID: 38002858 PMCID: PMC10670365 DOI: 10.3390/children10111767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023]
Abstract
The brain is traditionally viewed as an immunologically privileged site; however, there are known to be multiple resident immune cells that influence the CNS environment and are reactive to extra-CNS signaling. Microglia are an important component of this system, which influences early neurodevelopment in addition to modulating inflammation and regenerative responses to injury and infection. Microglia are influenced by gut microbiome-derived metabolites, both as part of their normal function and potentially in pathological patterns that may induce neurodevelopmental disabilities or behavioral changes. This review aims to summarize the mounting evidence indicating that, not only is the Gut-Brain axis mediated by metabolites and microglia throughout an organism's lifetime, but it is also influenced prenatally by maternal microbiome and diet, which holds implications for both early neuropathology and neurodevelopment.
Collapse
Affiliation(s)
- Jeffery Bettag
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Daniel Goldenberg
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Jasmine Carter
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Sylvia Morfin
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Alison Borsotti
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - James Fox
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Matthew ReVeal
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Dylan Natrop
- Medical College of Wisconsin-Green Bay, De Pere, WI 54115, USA;
| | - David Gosser
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Sree Kolli
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Ajay K. Jain
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| |
Collapse
|