1
|
Öz P, Kamalı O, Saka HB, Gör C, Uzbay İT. Baseline prepulse inhibition dependency of orexin A and REM sleep deprivation. Psychopharmacology (Berl) 2024; 241:1213-1225. [PMID: 38427059 PMCID: PMC11106105 DOI: 10.1007/s00213-024-06555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
RATIONALE Prepulse inhibition (PPI) impairment reflects sensorimotor gating problems, i.e. in schizophrenia. This study aims to enlighten the role of orexinergic regulation on PPI in a psychosis-like model. OBJECTIVES In order to understand the impact of orexinergic innervation on PPI and how it is modulated by age and baseline PPI (bPPI), chronic orexin A (OXA) injections was carried on non-sleep-deprived and sleep-deprived rats that are grouped by their bPPI. METHODS bPPI measurements were carried on male Wistar rats on P45 or P90 followed by grouping into low-PPI and high-PPI rats. The rats were injected with OXA twice per day for four consecutive days starting on P49 or P94, while the control groups received saline injections. 72 h REMSD was carried on via modified multiple platform technique on P94 and either OXA or saline was injected during REMSD. PPI tests were carried out 30 min. after the last injection. RESULTS Our previous study with acute OXA injection after REMSD without bPPI grouping revealed that low OXA doses might improve REMSD-induced PPI impairment. Our current results present three important conclusions: (1) The effect of OXA on PPI is bPPI-dependent and age-dependent. (2) The effect of REMSD is bPPI-dependent. (3) The effect of OXA on PPI after REMSD also depends on bPPI. CONCLUSION Orexinergic regulation of PPI response with and without REMSD can be predicted by bPPI levels. Our findings provide potential insights into the regulation of sensorimotor gating by sleep/wakefulness systems and present potential therapeutic targets for the disorders, where PPI is disturbed.
Collapse
Affiliation(s)
- Pınar Öz
- Department of Molecular Biology and Genetics, Üsküdar University, Istanbul, Turkey.
- Faculty of Engineering and Natural Sciences, Üsküdar University Central Campus Block A, Altunizade Mah. Haluk Türksoy Sk. No : 14 34362, Üsküdar, Istanbul, Turkey.
- Department of Neuroscience, Üsküdar University, Istanbul, Turkey.
| | - Osman Kamalı
- Department of Neuroscience, Üsküdar University, Istanbul, Turkey
| | - Hacer Begüm Saka
- Department of Neuroscience, Üsküdar University, Istanbul, Turkey
- Department of Neuroscience, Koç University, Istanbul, Turkey
| | - Ceren Gör
- Department of Neuroscience, Üsküdar University, Istanbul, Turkey
| | | |
Collapse
|
2
|
Jiang Y, Li J, Li D, Ma Y, Zhou S, Wang Y, Zhang D. Bio-based hyperbranched epoxy resins: synthesis and recycling. Chem Soc Rev 2024; 53:624-655. [PMID: 38109059 DOI: 10.1039/d3cs00713h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Epoxy resins (EPs), accounting for about 70% of the thermosetting resin market, have been recognized as the most widely used thermosetting resins in the world. Nowadays, 90% of the world's EPs are obtained from the bisphenol A (BPA)-based epoxide prepolymer. However, certain limitations severely impede further applications of this advanced material, such as limited fossil-based resources, skyrocketing oil prices, nondegradability, and a "seesaw" between toughness and strength. In recent years, more and more research has been devoted to the preparation of novel epoxy materials to overcome the compromise between toughness and strength and solve plastic waste problems. Among them, the development of bio-based hyperbranched epoxy resins (HERs) is unique and attractive. Bio-based HERs synthesized from bio-derived monomers can be used as a matrix resin or a toughener resulting in partially or fully bio-based epoxy thermosets. The introduction of a hyperbranched structure can balance the strength and toughness of epoxy thermosets. Here, we especially focused on the recent progress in the development of bio-based HERs, including the monomer design, synthesis approaches, mechanical properties, degradation, and recycling strategies. In addition, we advance the challenges and perspectives to engineering application of bio-based HERs in the future. Overall, this review presents an up-to-date overview of bio-based HERs and guidance for emerging research on the sustainable development of EPs in versatile high-tech fields.
Collapse
Affiliation(s)
- Yu Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, People's Republic of China
| | - Jiang Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Dan Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Yunke Ma
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Shucun Zhou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Yu Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Daohong Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| |
Collapse
|
3
|
Faesel N, Koch M, Fendt M. Orexin deficiency modulates the dipsogenic effects of angiotensin II in a sex-dependent manner. Peptides 2024; 171:171127. [PMID: 38043589 DOI: 10.1016/j.peptides.2023.171127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The orexin (hypocretin) neuropeptide system is an important regulator of ingestive behaviors, i.e., it promotes food and water intake. Here, we investigated the role of orexin in drinking induced by the potent dipsogen angiotensin II (ANG II). Specifically, male and female orexin-deficient mice received intracerebroventricular (ICV) injections of ANG II, followed by measuring their water intake within 15 min. We found that lower doses of ANG II (100 ng) significantly stimulated drinking in males but not in females, indicating a general sex-dependent effect that was not affected by orexin deficiency. However, higher doses of ANG II (500 ng) were sufficient to induce drinking in female wild-type mice, while female orexin-deficient mice still did not respond to the dipsogenic properties of ANG II. In conclusion, these results suggest sex-dependent effects in ANG II-induced drinking and further support the sexual dimorphism of orexin system functions.
Collapse
Affiliation(s)
- Nadine Faesel
- Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany; Department of Neuropharmacology, Brain Research Institute, University of Bremen, Hochschulring 18, D-28359 Bremen, Germany.
| | - Michael Koch
- Department of Neuropharmacology, Brain Research Institute, University of Bremen, Hochschulring 18, D-28359 Bremen, Germany.
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| |
Collapse
|
4
|
Bouâouda H, Jha PK. Orexin and MCH neurons: regulators of sleep and metabolism. Front Neurosci 2023; 17:1230428. [PMID: 37674517 PMCID: PMC10478345 DOI: 10.3389/fnins.2023.1230428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Sleep-wake and fasting-feeding are tightly coupled behavioral states that require coordination between several brain regions. The mammalian lateral hypothalamus (LH) is a functionally and anatomically complex brain region harboring heterogeneous cell populations that regulate sleep, feeding, and energy metabolism. Significant attempts were made to understand the cellular and circuit bases of LH actions. Rapid advancements in genetic and electrophysiological manipulation help to understand the role of discrete LH cell populations. The opposing action of LH orexin/hypocretin and melanin-concentrating hormone (MCH) neurons on metabolic sensing and sleep-wake regulation make them the candidate to explore in detail. This review surveys the molecular, genetic, and neuronal components of orexin and MCH signaling in the regulation of sleep and metabolism.
Collapse
Affiliation(s)
- Hanan Bouâouda
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Pawan Kumar Jha
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Zhu M, Zhang H, Yang H, Zhao Z, Blair HT, Zhai M, Yu Q, Wu P, Fang C, Xie M. Polymorphisms and association of GRM1, GNAQ, and HCRTR1 genes with seasonal reproduction and litter size in three sheep breeds. Reprod Domest Anim 2022; 57:532-540. [PMID: 35104000 DOI: 10.1111/rda.14091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/28/2022] [Indexed: 11/27/2022]
Abstract
Litter size is one of the important economic traits of livestock. Seasonal estrus, ovulation, and lambing of sheep have severely restricted the development of sheep farming in Xinjiang China. The purpose of this study was to investigate the polymorphisms and genetic correlation between GRM1, GNAQ, and HCRTR1 genes and the seasonal reproduction and litter size in three sheep breeds. The DNA mixed pool sequencing and PCR-SSCP methods were used to detect single nucleotide polymorphisms (SNPs) of GRM1, GNAQ, and HCRTR1 genes in seasonal estrus (Kazakh and Chinese Merino [Xinjiang Junken type]) and perennial estrus (Hu) sheep breeds. The association between genetic polymorphism and litter size was also analyzed. The results showed that T945C in exon 2 of GRM1 gene, C589T in exon 2 of HCRTR1 gene and A191G in exon 2 of GNAQ gene were identified by Sanger sequencing, and three genotypes were existed in each SNP sites, which all belonged to the synonymous mutation. GRM1 (CC), GNAQ (GA) and HCRTR1 (TC) were the dominant genotypes of seasonal reproduction and litter size in Kazakh sheep and Chinese Merino sheep, respectively. While, in perennial estrus Hu sheep populations, the dominant genotypes were GRM1 (TC), GNAQ (GA) and HCRTR1 (TC) respectively, and association analysis was also confirmed the results. Above results implied that GRM1, GNAQ and HCRTR1 genes are significantly associated with lambing traits in Kazakh, Chinese Merino and Hu sheep. Among them, locus of GRM1 (T945C), GNAQ (A191G) and HCRTR1 (C589T) might be considered as a potential molecular marker which controls seasonal reproduction and litter size in sheep.
Collapse
Affiliation(s)
- Mengting Zhu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China.,College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Hongmei Zhang
- First Affiliated Hospital, School of Medical College, Shihezi University, Shihezi, Xinjiang, 832008, China
| | - Hua Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Zongsheng Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Hugh T Blair
- Institute Veterinary, Animal & Biomedical Sciences, Massey University, Auckland, Palmerston North, New Zealand
| | - Manjun Zhai
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Qian Yu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Pei Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Chenhui Fang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Mengting Xie
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
6
|
Hamit G, Ayca O, Omer B, Nevra O, Aynur O. Association of circadian locomotor output cycles kaput rs1801260 and hypocretin receptor 1 rs2271933 polymorphisms in patients with chronic migraine and sleep disorder. NEUROL SCI NEUROPHYS 2022. [DOI: 10.4103/nsn.nsn_195_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
7
|
|
8
|
Fronczek R, Schinkelshoek M, Shan L, Lammers GJ. The orexin/hypocretin system in neuropsychiatric disorders: Relation to signs and symptoms. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:343-358. [PMID: 34225940 DOI: 10.1016/b978-0-12-820107-7.00021-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hypocretin-1 and 2 (or orexin A and B) are neuropeptides exclusively produced by a group of neurons in the lateral and dorsomedial hypothalamus that project throughout the brain. In accordance with this, the two different hypocretin receptors are also found throughout the brain. The hypocretin system is mainly involved in sleep-wake regulation, but also in reward mechanisms, food intake and metabolism, autonomic regulation including thermoregulation, and pain. The disorder most strongly linked to the hypocretin system is the primary sleep disorder narcolepsy type 1 caused by a lack of hypocretin signaling, which is most likely due to an autoimmune process targeting the hypocretin-producing neurons. However, the hypocretin system may also be affected, but to a lesser extent and less specifically, in various other neurological disorders. Examples are neurodegenerative diseases such as Alzheimer's, Huntington's and Parkinson's disease, immune-mediated disorders such as multiple sclerosis, neuromyelitis optica, and anti-Ma2 encephalitis, and genetic disorders such as type 1 diabetus mellitus and Prader-Willi Syndrome. A partial hypocretin deficiency may contribute to the sleep features of these disorders.
Collapse
Affiliation(s)
- Rolf Fronczek
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands.
| | - Mink Schinkelshoek
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands
| | - Ling Shan
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands; Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Gert Jan Lammers
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands
| |
Collapse
|
9
|
Yaeger JD, Krupp KT, Gale JJ, Summers CH. Counterbalanced microcircuits for Orx1 and Orx2 regulation of stress reactivity. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
10
|
Pulver A, Kiive E, Kanarik M, Harro J. Association of orexin/hypocretin receptor gene (HCRTR1) with reward sensitivity, and interaction with gender. Brain Res 2020; 1746:147013. [PMID: 32652147 DOI: 10.1016/j.brainres.2020.147013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Orexins/hypocretins maintain wakefulness, increase appetite and participate in the coordination of stress response. We have recently provided evidence on the role of orexins in aggression, showing the association of the HCRTR1 genotype. (rs2271933 G > A; leading to amino acid substitution Ile408Val) with aggressiveness or breach of law in four independent cohorts. Aggressive behaviour can be reward driven and hence we have examined the association of HCRTR1 rs2271933 genotype with different aspects of reward sensitivity in the birth cohort representative Estonian Children Personality Behaviour and Health Study. HCRTR1 genotype was associated with reward sensitivity in a gender dependent manner. Male HCRTR1 A/A homozygotes had higher Openness to Rewards and the overall reward sensitivity score while, in contrast, female A/A homozygotes scored lower than G-allele carriers in Openness to Rewards. In the total sample, aggressiveness correlated positively with reward sensitivity, but this was on account of Insatiability by Reward. In contrast, the HCRTR1 A/A homozygotes had a positive association of aggressiveness and Openness to Rewards. Experience of stressful life events had a small but significant increasing effect on both aspects of reward sensitivity, and correlated in an anomalous way with reward sensitivity in the HCRTR1 A/A homozygotes. Conclusively, the higher aggressiveness of HCRTR1 A/A homozygotes appears based on a qualitative difference in sensitivity to rewards, in the form that suggests their lower ability to prevent responses to challenges being converted into overt aggression.
Collapse
Affiliation(s)
- Aleksander Pulver
- School of Natural Sciences and Health, Tallinn University, Narva Road 29, Astra Building, 10120 Tallinn, Estonia
| | - Evelyn Kiive
- Division of Special Education, Department of Education, University of Tartu, Näituse 2, 50409 Tartu, Estonia
| | - Margus Kanarik
- Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia
| | - Jaanus Harro
- School of Natural Sciences and Health, Tallinn University, Narva Road 29, Astra Building, 10120 Tallinn, Estonia; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia.
| |
Collapse
|
11
|
Harro J, Laas K, Eensoo D, Kurrikoff T, Sakala K, Vaht M, Parik J, Mäestu J, Veidebaum T. Orexin/hypocretin receptor gene (HCRTR1) variation is associated with aggressive behaviour. Neuropharmacology 2019; 156:107527. [DOI: 10.1016/j.neuropharm.2019.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/11/2019] [Accepted: 02/06/2019] [Indexed: 12/01/2022]
|
12
|
Cengiz M, Karaj V, Kocabasoğlu N, Gozubatik-Celik G, Dirican A, Bayoglu B. Orexin/hypocretin receptor, Orx1, gene variants are associated with major depressive disorder. Int J Psychiatry Clin Pract 2019; 23:114-121. [PMID: 30596528 DOI: 10.1080/13651501.2018.1551549] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective: Orexins (hypocretins) are neuropeptides expressed in hypothalamic neurons and have regulatory roles in feeding/drinking behaviours, endocrine functions and sleep/wakefulness state. Major depressive disorder (MDD) is a major mood disorder and neurotransmitter dysfunction in hypothalamic neurons may have roles in its formation. Hence, we conducted experiments to determine whether orexin receptor 1 and 2 (Orx1, Orx2) genes were associated with MDD development. Methods: Seventy-five MDD patients and 87 healthy controls were enrolled for the study. Genotyping was carried out with real-time polymerase chain reaction (RT-PCR). Hamilton Rating-Scale for Depression (HRSD) and Beck Depression Inventory (BDI) were utilized to evaluate depressive symptom severity. Results: A significant relation was found in genotype frequencies of Orx1 rs10914456 and rs2271933 variants between MDD patients and controls (p = .009, p = .006). Rs10914456 CC genotype increased MDD risk 3.57 times more than carrying other genotypes (p = .008, OR =3.57;95% CI: 1.39-9.14). However, no association was observed in Orx2 rs2653349 genotypes for MDD development (p > .05). Although statistically not significant, HRSD scores were diminished in MDD subjects carrying rs10914456 CC variants when compared with CT and TT variants (p = .069). Conclusion. This study suggests that, Orx1 rs10914456 and rs2271933 can be associated with MDD development. Hence, Orx1 rs10914456 variants may affect depressive symptom severity.
Collapse
Affiliation(s)
- Mujgan Cengiz
- a Department of Medical Biology, Cerrahpasa Medical Faculty , Istanbul University-Cerrahpasa , Istanbul , Turkey
| | - Vilson Karaj
- b Department of Science, Institute of Forensic Sciences , Istanbul University-Cerrahpasa , Istanbul , Turkey
| | - Nese Kocabasoğlu
- c Department of Psychiatry, Cerrahpasa Medical Faculty , Istanbul University-Cerrahpasa , Istanbul , Turkey
| | - Gokcen Gozubatik-Celik
- d Department of Neurology, Cerrahpasa Medical Faculty , Istanbul University-Cerrahpasa , Istanbul , Turkey
| | - Ahmet Dirican
- e Department of Biostatistics and Medical Informatics, Istanbul Medical Faculty , Istanbul University , Istanbul , Turkey
| | - Burcu Bayoglu
- a Department of Medical Biology, Cerrahpasa Medical Faculty , Istanbul University-Cerrahpasa , Istanbul , Turkey
| |
Collapse
|
13
|
Kowalska M, Kapelusiak-Pielok M, Grzelak T, Wypasek E, Kozubski W, Dorszewska J. The New *G29A and G1222A of HCRTR1, 5-HTTLPR of SLC6A4 Polymorphisms and Hypocretin-1, Serotonin Concentrations in Migraine Patients. Front Mol Neurosci 2018; 11:191. [PMID: 29922128 PMCID: PMC5996111 DOI: 10.3389/fnmol.2018.00191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/15/2018] [Indexed: 01/03/2023] Open
Abstract
Migraine is one of the most common primary headache disorders that affects 11% of the adult population. The disease is divided into two main clinical subtypes: migraine with aura (MA) and migraine without aura (MO). Both serotonergic and hypocretinergic systems are involved in the migraine pathomechanism. Polymorphisms in the serotonin transporter gene (SLC6A4) and the hypocretin receptor 1 gene (HCRTR1) may be risk factors for migraine development due to their ability to affect serotonin and hypocretin-1 (HCRT-1) concentrations. The aim of the study was to analyze, for the first time in the Polish population, the 5-HT transporter linked polymorphic region (5-HTTLPR) in SLC6A4, G1222A (rs2271933) and the never before studied *G29A (rs41263963) polymorphisms in the HCRTR1 gene, as well as the 5-HT and hypocretin-1 plasma concentrations in migraine patients (MA, MO) and control subjects. The study included 123 patients that were diagnosed with migraine and 123 control subjects. Methods such as PCR, HRMA and sequencing were used for genotyping, while 5-HT was determined by HPLC/EC and hypocretin-1 by ELISA. No significant differences were observed in 5-HTTLPR frequencies. The A allele of HCRTR1 G1222A occurred more often in MO, while the GA genotype of HCRTR1 *G29A was more frequent among MA when compared to control group (p < 0.05). The mean age of migraine onset in individuals with HCRTR1 *G29A was 18 years old for patients with MA and 26 years old for MO patients. The localization and type of HCRTR1 polymorphisms (G1222A-missense variant in exon 7, *G29A-3'UTR variant) may predispose patients to the clinical subtype of migraine: MO or MA, respectively. In control subjects, the short allele of 5-HTTLPR tended to decrease the 5-HT concentration, while the A allele of HCRTR1 G1222A decreased both 5-HT and hypocretin-1 levels. Serotonin concentrations differed in terms of clinical features of migraine. The relation between genotypes of 5-HTTLPR, HCRTR1 G1222A, and 5-HT concentrations may bedisturbed in migraine. It seems that HCRTR1 *G29A is more strongly associated with regulating the 5-HT in patients with MA than MO, and therefore may contribute to the early age of onset for migraine.
Collapse
Affiliation(s)
- Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Teresa Grzelak
- Department of Biology of Civilization-Linked Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Ewa Wypasek
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland.,The John Paul II Hospital, Krakow, Poland.,Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
14
|
Öz P, Gökalp HK, Göver T, Uzbay T. Dose-dependent and opposite effects of orexin A on prepulse inhibition response in sleep-deprived and non-sleep-deprived rats. Behav Brain Res 2017; 346:73-79. [PMID: 29237551 DOI: 10.1016/j.bbr.2017.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/19/2017] [Accepted: 12/04/2017] [Indexed: 01/20/2023]
Abstract
Orexin is a novel neurotransmitter released from lateral hypothalamus, that is a crucial modulator in sleep/wakefulness system. Recent studies also suggest its possible role in the neurodevelopmental disorders, such as schizophrenia. Our study consists of two experiments, where we investigate the effect of orexin A (OXA), one of two isoforms of orexin that can pass blood brain barrier, on the prepulse inhibition of acoustic startle reflex. The first experiment tested the effect of OXA on PPI response of non-sleep-deprived rats via intraperitoneal injection 30min before testing. Our results show that 40μg/kg OXA attenuates PPI% at 78dB and 86dB prepulse intensities. The second experiment utilized 72-h REM sleep deprivation, as a model for sleep-deprivation-induced impairment of PPI response. Here, we tested the effect of OXA on PPI% of sleep-deprived rats via intraperitoneal injection at the last 30min of sleep deprivation, testing for PPI immediately afterwards. Our results showed that (1) sleep deprivation attenuates the PPI% at 74dB, 78dB and 86dB prepulse intensities and (2) 10μg/kg OXA completely restores the impaired PPI% at 78dB only, where the highest PPI% impairment was observed. These results suggest that orexin A modulates PPI response in rats in a dose-dependent manner, oppositely for non-sleep-deprived and sleep-deprived rats, and a more detailed investigation for the etiology of this effect should follow.
Collapse
Affiliation(s)
- Pınar Öz
- Neuropsychopharmacology Application and Research Center, Üsküdar University, İstanbul, Turkey; Department of Molecular Biology and Genetics, Üsküdar University, İstanbul, Turkey.
| | - H Kübra Gökalp
- Department of Molecular Biology and Genetics, Üsküdar University, İstanbul, Turkey
| | - Tansu Göver
- Department of Molecular Biology and Genetics, Üsküdar University, İstanbul, Turkey
| | - Tayfun Uzbay
- Neuropsychopharmacology Application and Research Center, Üsküdar University, İstanbul, Turkey; Department of Molecular Biology and Genetics, Üsküdar University, İstanbul, Turkey
| |
Collapse
|
15
|
Thompson MD, Sakurai T, Rainero I, Maj MC, Kukkonen JP. Orexin Receptor Multimerization versus Functional Interactions: Neuropharmacological Implications for Opioid and Cannabinoid Signalling and Pharmacogenetics. Pharmaceuticals (Basel) 2017; 10:ph10040079. [PMID: 28991183 PMCID: PMC5748636 DOI: 10.3390/ph10040079] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 12/17/2022] Open
Abstract
Orexins/hypocretins are neuropeptides formed by proteolytic cleavage of a precursor peptide, which are produced by neurons found in the lateral hypothalamus. The G protein-coupled receptors (GPCRs) for these ligands, the OX₁ and OX₂ orexin receptors, are more widely expressed throughout the central nervous system. The orexin/hypocretin system has been implicated in many pathways, and its dysregulation is under investigation in a number of diseases. Disorders in which orexinergic mechanisms are being investigated include narcolepsy, idiopathic sleep disorders, cluster headache and migraine. Human narcolepsy has been associated with orexin deficiency; however, it has only rarely been attributed to mutations in the gene encoding the precursor peptide. While gene variations within the canine OX₂ gene hcrtr2 have been directly linked with narcolepsy, the majority of human orexin receptor variants are weakly associated with diseases (the idiopathic sleep disorders, cluster headache and polydipsia-hyponatremia in schizophrenia) or are of potential pharmacogenetic significance. Evidence for functional interactions and/or heterodimerization between wild-type and variant orexin receptors and opioid and cannabinoid receptors is discussed in the context of its relevance to depression and epilepsy.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Pediatrics, University of California, San Diego 92093, CA, USA.
| | - Takeshi Sakurai
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa 920-8620, Japan.
| | - Innocenzo Rainero
- Department of Neuroscience, University of Turin, Torino 10124, Italy.
| | - Mary C Maj
- Department of Biochemistry, School of Medicine, Saint George's University, Saint George's 11739, Grenada.
| | - Jyrki P Kukkonen
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, University of Helsinki, Helsinki 11739, Finland.
- Department of Physiology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki 00100, Finland.
| |
Collapse
|
16
|
Chien YL, Liu CM, Shan JC, Lee HJ, Hsieh MH, Hwu HG, Chiou LC. Elevated plasma orexin A levels in a subgroup of patients with schizophrenia associated with fewer negative and disorganized symptoms. Psychoneuroendocrinology 2015; 53:1-9. [PMID: 25560205 DOI: 10.1016/j.psyneuen.2014.12.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/29/2014] [Accepted: 12/15/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Orexin A and B, a pair of hypothalamic neuropeptides also named hypocretin 1 and 2, play a role in the regulation of arousal, appetite, reward, attention, and cognition. Animal studies showed that antipsychotics can activate orexin neurons in a manner correlated with their weight gain liability. However, little is known about the role of orexin in patients with schizophrenia. This study aimed to investigate the correlation of plasma orexin level with clinical symptom profile, neurocognitive functioning and weight gain liability of the antipsychotics taken in patients with schizophrenia. METHODS We measured plasma levels of orexin A in 127 patients with schizophrenia and 34 healthy controls by radioimmunoassay. In patients, we assessed clinical symptoms on the Positive and Negative Syndrome Scale and executive function by the Wisconsin Card Sorting test (WCST), and examined their associations with plasma orexin A level. RESULTS Patients with schizophrenia had a significantly higher mean orexin A level than healthy controls (60.7±37.9 vs. 38.8±15.5pg/ml). Patients were divided into two subgroups based on their orexin A levels that were distributed in two clusters divided by 80pg/ml. Patients in the high-orexin subgroup had significantly fewer negative and disorganized symptoms, and tended to have fewer perseverative errors, more failure to maintain set yet comparable category achieved on the WCST than the normal-orexin subgroup. There was no significant difference in orexin A levels among patients taking antipsychotics with different weight gain liabilities. CONCLUSION Higher level of orexin A seems to be related to favorable clinical symptom profiles of schizophrenia, but the causal relationship needs further clarification.
Collapse
Affiliation(s)
- Yi-Ling Chien
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jia-Chi Shan
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; Department of Psychiatry, Cathay General Hospital, Taipei, Taiwan
| | - Hsin-Jung Lee
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming H Hsieh
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; Neurobiology and Cognitive Science Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hai-Gwo Hwu
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lih-Chu Chiou
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
17
|
Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015; 9:9. [PMID: 25741247 PMCID: PMC4332303 DOI: 10.3389/fnsys.2015.00009] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/15/2015] [Indexed: 12/26/2022] Open
Abstract
Survival depends on an organism’s ability to sense nutrient status and accordingly regulate intake and energy expenditure behaviors. Uncoupling of energy sensing and behavior, however, underlies energy balance disorders such as anorexia or obesity. The hypothalamus regulates energy balance, and in particular the lateral hypothalamic area (LHA) is poised to coordinate peripheral cues of energy status and behaviors that impact weight, such as drinking, locomotor behavior, arousal/sleep and autonomic output. There are several populations of LHA neurons that are defined by their neuropeptide content and contribute to energy balance. LHA neurons that express the neuropeptides melanin-concentrating hormone (MCH) or orexins/hypocretins (OX) are best characterized and these neurons play important roles in regulating ingestion, arousal, locomotor behavior and autonomic function via distinct neuronal circuits. Recently, another population of LHA neurons containing the neuropeptide Neurotensin (Nts) has been implicated in coordinating anorectic stimuli and behavior to regulate hydration and energy balance. Understanding the specific roles of MCH, OX and Nts neurons in harmonizing energy sensing and behavior thus has the potential to inform pharmacological strategies to modify behaviors and treat energy balance disorders.
Collapse
Affiliation(s)
- Juliette A Brown
- Department of Pharmacology and Toxicology, Michigan State University East Lansing, MI, USA ; Center for Integrative Toxicology East Lansing, MI, USA
| | | | - Gina M Leinninger
- Center for Integrative Toxicology East Lansing, MI, USA ; Department of Physiology, Michigan State University East Lansing, MI, USA
| |
Collapse
|
18
|
Zhang G, Zhang F, Zhu J, Zhang F, Yuan J, Xue Z, Jin C. Association of the angiotensin-converting enzyme gene insertion/deletion polymorphism with schizophrenia: a meta-analysis. Psychiatry Res 2014; 220:1169-71. [PMID: 25262561 DOI: 10.1016/j.psychres.2014.08.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/24/2014] [Accepted: 08/16/2014] [Indexed: 11/15/2022]
Affiliation(s)
- Guofu Zhang
- Wuxi Mental Health Center Affiliated to Nanjing Medical University, Wuxi 214151, Jiangsu Province, China; Mental Health Institute of The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Feng Zhang
- Wuxi Mental Health Center Affiliated to Nanjing Medical University, Wuxi 214151, Jiangsu Province, China
| | - Jianzhong Zhu
- Wuxi Mental Health Center Affiliated to Nanjing Medical University, Wuxi 214151, Jiangsu Province, China
| | - Fuquan Zhang
- Wuxi Mental Health Center Affiliated to Nanjing Medical University, Wuxi 214151, Jiangsu Province, China
| | - Jianmin Yuan
- Wuxi Mental Health Center Affiliated to Nanjing Medical University, Wuxi 214151, Jiangsu Province, China
| | - Zhimin Xue
- Mental Health Institute of The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
| | - Chunhui Jin
- Wuxi Mental Health Center Affiliated to Nanjing Medical University, Wuxi 214151, Jiangsu Province, China.
| |
Collapse
|
19
|
Differences in the structure of drinking, cart expression and dopamine turnover between polydipsic and non polydipsic rats in the quinpirole model of psychotic polydipsia. Psychopharmacology (Berl) 2014; 231:3889-97. [PMID: 24647922 DOI: 10.1007/s00213-014-3527-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 02/26/2014] [Indexed: 12/19/2022]
Abstract
RATIONALE Dopaminergic D2/D3 agonist quinpirole (QNP) elicits nonregulatory drinking in rats, a model of psychotic polydipsia. Why only a fraction of QNP-treated rats responds to the treatment becoming polydipsic is still unclear. OBJECTIVES To unveil possible factors contributing to such variability, we analyzed drinking microstructure in saline and QNP-treated rats, the hypothalamic expression of the cocaine and amphetamine regulated transcript (CART), and the monoaminergic turnover in selected brain areas. METHODS Rats were daily treated with saline or QNP 0.5 mg/kg, and their 5-h water intake was measured for five consecutive days. The number of bouts and episodes of licking, and their duration, were also measured. Brain CART expression was measured by in situ hybridization and monoamines turnover by HPLC analysis of tissue extracts. Based on the amount of water ingested during the 5-h session, QNP-treated rats were post hoc grouped in polydipsic (PD) and in nonpolydipsic (NPD) rats, and the results compared accordingly. RESULTS The number of drinking bouts and episodes increased in PD rats, while NPD rats behaved as the controls. CART expression decreased in the arcuate nucleus of the hypothalamus of the PD rats. In contrast, both PD and NPD rats showed a reduction of DA turnover in both ventral tegmental area (VTA) and nucleus accumbens (NAcc). No difference was detected in the turnover of 5HT and NA. CONCLUSIONS Microstructure analysis confirms that QNP acts on the appetitive component of drinking behavior, making it compulsive. CART expression reduction in response to dopaminergic hyperstimulation might sustain excessive drinking in PD rats.
Collapse
|
20
|
Song GG, Lee YH. The insertion/deletion polymorphism in the angiotensin-converting enzyme and susceptibility to schizophrenia or Parkinson's disease: A meta-analysis. J Renin Angiotensin Aldosterone Syst 2014; 16:434-42. [PMID: 25143327 DOI: 10.1177/1470320313495909] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/30/2013] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION The purpose of this study was to examine whether the insertion (I) and deletion (D) polymorphism of the angiotensin-converting enzyme (ACE) confers susceptibility to schizophrenia and Parkinson's disease (PD). MATERIALS AND METHODS A meta-analysis was performed of the associations between the ACE I/D polymorphism and schizophrenia and PD. RESULTS Thirteen studies with 2024 cases and 2230 controls comprising eight studies on schizophrenia and five on PD were included in the meta-analysis. The meta-analysis revealed no association between the ACE D allele and schizophrenia (OR = 0.990, 95% CI = 0.889-1.102, p = 0.856) or PD (OR = 1.067, 95% CI = 0.907-1.255, p = 0.433). Stratification by ethnicity indicated no association between the ACE D allele and schizophrenia in European, Asian, or Turkish ethnic groups (OR = 0.896, 95% CI = 0.566-1.419, p = 0.640; OR = 1.057, 95% CI = 0.903-1.238, p = 0.492; OR = 1.111, 95% CI = 0.889-1.389, p = 0.354, respectively). Ethnicity-specific meta-analysis was not conducted for PD because only one ethnic PD study was available. CONCLUSIONS This meta-analysis found no association between the ACE I/D polymorphism and schizophrenia or PD.
Collapse
Affiliation(s)
- Gwan Gyu Song
- Division of Rheumatology, Department of Internal Medicine, Korea University College of Medicine, Korea
| | - Young Ho Lee
- Division of Rheumatology, Department of Internal Medicine, Korea University College of Medicine, Korea
| |
Collapse
|
21
|
Chen Q, de Lecea L, Hu Z, Gao D. The hypocretin/orexin system: an increasingly important role in neuropsychiatry. Med Res Rev 2014; 35:152-97. [PMID: 25044006 DOI: 10.1002/med.21326] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hypocretins, also named as orexins, are excitatory neuropeptides secreted by neurons specifically located in lateral hypothalamus and perifornical areas. Orexinergic fibers are extensively distributed in various brain regions and involved in a number of physiological functions, such as arousal, cognition, stress, appetite, and metabolism. Arousal is the most important function of orexin system as dysfunction of orexin signaling leads to narcolepsy. In addition to narcolepsy, orexin dysfunction is associated with serious neural disorders, including addiction, depression, and anxiety. However, some results linking orexin with these disorders are still contradictory, which may result from differences of detection methods or the precision of tools used in measurements; strategies targeted to orexin system (e.g., antagonists to orexin receptors, gene delivery, and cell transplantation) are promising new tools for treatment of neuropsychiatric disorders, though studies are still in a stage of preclinical or clinical research.
Collapse
Affiliation(s)
- Quanhui Chen
- Department of Physiology, Third Military Medical University, Chongqing 400038, China; Department of Sleep and Psychology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | |
Collapse
|
22
|
Thompson MD, Xhaard H, Sakurai T, Rainero I, Kukkonen JP. OX1 and OX2 orexin/hypocretin receptor pharmacogenetics. Front Neurosci 2014; 8:57. [PMID: 24834023 PMCID: PMC4018553 DOI: 10.3389/fnins.2014.00057] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 03/12/2014] [Indexed: 01/01/2023] Open
Abstract
Orexin/hypocretin peptide mutations are rare in humans. Even though human narcolepsy is associated with orexin deficiency, this is only extremely rarely due to mutations in the gene coding prepro-orexin, the precursor for both orexin peptides. In contrast, coding and non-coding variants of the OX1 and OX2 orexin receptors have been identified in many human populations; sometimes, these have been associated with disease phenotype, although most confer a relatively low risk. In most cases, these studies have been based on a candidate gene hypothesis that predicts the involvement of orexins in the relevant pathophysiological processes. In the current review, the known human OX1/HCRTR1 and OX2/HCRTR2 genetic variants/polymorphisms as well as studies concerning their involvement in disorders such as narcolepsy, excessive daytime sleepiness, cluster headache, polydipsia-hyponatremia in schizophrenia, and affective disorders are discussed. In most cases, the functional cellular or pharmacological correlates of orexin variants have not been investigated—with the exception of the possible impact of an amino acid 10 Pro/Ser variant of OX2 on orexin potency—leaving conclusions on the nature of the receptor variant effects speculative. Nevertheless, we present perspectives that could shape the basis for further studies. The pharmacology and other properties of the orexin receptor variants are discussed in the context of GPCR signaling. Since orexinergic therapeutics are emerging, the impact of receptor variants on the affinity or potency of ligands deserves consideration. This perspective (pharmacogenetics) is also discussed in the review.
Collapse
Affiliation(s)
- Miles D Thompson
- University of Toronto Epilepsy Research Program, Department of Pharmacology, University of Toronto Toronto, ON, Canada
| | - Henri Xhaard
- Faculty of Pharmacy, Centre for Drug Research, University of Helsinki Helsinki, Finland
| | - Takeshi Sakurai
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University Kanazawa, Japan
| | | | - Jyrki P Kukkonen
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, University of Helsinki Helsinki, Finland
| |
Collapse
|
23
|
Kukkonen JP. Physiology of the orexinergic/hypocretinergic system: a revisit in 2012. Am J Physiol Cell Physiol 2012; 304:C2-32. [PMID: 23034387 DOI: 10.1152/ajpcell.00227.2012] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The neuropeptides orexins and their G protein-coupled receptors, OX(1) and OX(2), were discovered in 1998, and since then, their role has been investigated in many functions mediated by the central nervous system, including sleep and wakefulness, appetite/metabolism, stress response, reward/addiction, and analgesia. Orexins also have peripheral actions of less clear physiological significance still. Cellular responses to the orexin receptor activity are highly diverse. The receptors couple to at least three families of heterotrimeric G proteins and other proteins that ultimately regulate entities such as phospholipases and kinases, which impact on neuronal excitation, synaptic plasticity, and cell death. This article is a 10-year update of my previous review on the physiology of the orexinergic/hypocretinergic system. I seek to provide a comprehensive update of orexin physiology that spans from the molecular players in orexin receptor signaling to the systemic responses yet emphasizing the cellular physiological aspects of this system.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Dept. of Veterinary Biosciences, University of Helsinki, Finland.
| |
Collapse
|
24
|
Vantyghem MC, Balavoine AS, Wémeau JL, Douillard C. Hyponatremia and antidiuresis syndrome. ANNALES D'ENDOCRINOLOGIE 2011; 72:500-12. [PMID: 22119069 DOI: 10.1016/j.ando.2011.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 10/07/2011] [Indexed: 12/27/2022]
Abstract
Antidiuretic hormone (ADH), or arginine vasopressin (AVP), is primarily regulated through plasma osmolarity, as well as non-osmotic stimuli including blood volume and stress. Links between water-electrolyte and carbohydrate metabolism have also been recently demonstrated. AVP acts via the intermediary of three types of receptors: V1a, or V1, which exerts vasoconstrictive effects; pituitary gland V1b, or V3, which participates in the secretion of ACTH; and renal V2, which reduces the excretion of pure water by combining with water channels (aquaporin 2). Antidiuresis syndrome is a form of euvolaemic, hypoosmolar hyponatraemia, which is characterised by a negative free water clearance with inappropriate urine osmolality and intracellular hyper-hydration in the absence of renal, adrenal and thyroid insufficiency. Ninety percent of cases of antidiuresis syndrome occur in association with hypersecretion of vasopressin, while vasopressin is undetectable in 10% of cases. Thus the term "antidiuresis syndrome" is more appropriate than the classic name "syndrome of inappropriate ADH secretion" (SIADH). The clinical symptoms, morbidity and mortality of hyponatraemia are related to its severity, as well as to the rapidity of its onset and duration. Even in cases of moderate hyponatraemia that are considered asymptomatic, there is a very high risk of falls due to gait and attention disorders, as well as rhabdomyolysis, which increases the fracture risk. The aetiological diagnosis of hyponatraemia is based on the analysis of calculated or measured plasma osmolality (POsm), as well as blood volume (skin tenting of dehydration, oedema). Hyperglycaemia and hypertriglyceridaemia lead to hyper- and normoosmolar hyponatraemia, respectively. Salt loss of gastrointestinal, renal, cutaneous and sometimes cerebral origin is hypovolaemic, hypoosmolar hyponatraemia (skin tenting), whereas oedema is present with hypervolaemic, hypoosmolar hyponatraemia of heart failure, nephrotic syndrome and cirrhosis. Some endocrinopathies (glucocorticoid deficiency and hypothyroidism) are associated with euvolaemic, hypoosmolar hyponatraemia, which must be distinguished from SIADH. Independent of adrenal insufficiency, isolated hypoaldosteronism can also be accompanied by hypersecretion of vasopressin secondary to hypovolaemia, which responds to mineralocorticoid administration. The causes of SIADH are classic: neoplastic (notably small-cell lung cancer), iatrogenic (particularly psychoactive drugs, chemotherapy), lung and cerebral. Some causes have been recently described: familial hyponatraemia via X-linked recessive disease caused by an activating mutation of the vasopressin 2 receptor; and corticotropin insufficiency related to drug interference between some inhaled glucocorticoids and cytochrome p450 inhibitors, such as the antiretroviral drugs and itraconazole, etc. SIADH in marathon runners exposes them to a risk of hypotonic encephalopathy with fatal cerebral oedema. SIADH treatment is based on water restriction and demeclocycline. V2 receptor antagonists are still not marketed in France. These aquaretics seem effective clinically and biologically, without demonstrated improvement to date of mortality in eu- and hypervolaemic hyponatraemia. Obviously treatment of a corticotropic deficit, even subtle, should not be overlooked, as well as the introduction of fludrocortisone in isolated hypoaldosteronism and discontinuation of iatrogenic drugs.
Collapse
Affiliation(s)
- Marie-Christine Vantyghem
- Service d'endocrinologie et maladies métaboliques, hôpital Huriez, centre hospitalier régional universitaire de Lille, 1, rue Polonovski, 59000 Lille, France.
| | | | | | | |
Collapse
|
25
|
Rainero I, Ostacoli L, Rubino E, Gallone S, Picci LR, Fenoglio P, Negro E, Rosso C, De Martino P, De Marchi M, Furlan PM, Pinessi L. Association between major mood disorders and the hypocretin receptor 1 gene. J Affect Disord 2011; 130:487-91. [PMID: 21071097 DOI: 10.1016/j.jad.2010.10.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/13/2010] [Accepted: 10/14/2010] [Indexed: 12/22/2022]
Abstract
BACKGROUND Recent studies suggested a role for hypocretins in the neurobiology of Major Mood Disorders (MMD). The purpose of this study was to investigate hypocretin involvement in MMD evaluating whether particular alleles or genotypes of the hypocretin pathway genes (HCRT, HCRTR1 and HCRTR2) would modify the occurrence and clinical features of the disease. METHODS We selected for the study 229 MMD patients and 259 healthy age-, sex- and ethnicity-matched controls. Cases and controls were genotyped for several single-nucleotide polymorphisms (SNPs) of the HCRT, HCRTR1, and HCRTR2 genes. RESULTS We found that allelic and genotypic frequencies of the rs2271933 G>A polymorphism (Ile408Val) in the HCRTR1 gene were significantly different between cases and controls (p=0.003 and p=0.0004, respectively). The carriage of the A allele was associated with a significantly increased disease risk (OR:1.60, 95% C.I. 1.22-2.10). In addition, we found a significant association between HCRTR1 haplotypes and the disease (permutation p<0.0001). In the analysis of subgroups we confirmed the association only in patients with unipolar depression. LIMITATIONS Our sample was relatively small and included only cases and controls recruited from Northern Italy. Analysis of the disease subgroups warrants reexamination with more subjects. Finally, the effects of the rs2271933 G>A polymorphism on the hypocretin-1 receptor function are unknown. CONCLUSIONS Our study suggests that the HCRTR1 gene or a linked locus may modulate the risk for Major Mood Disorders and supports recent studies suggesting an involvement of hypocretin neurotransmitter system in affective disorders.
Collapse
Affiliation(s)
- Innocenzo Rainero
- Neurology II, Department of Neuroscience, University of Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rainero I, Rubino E, Gallone S, Fenoglio P, Picci LR, Giobbe L, Ostacoli L, Pinessi L. Evidence for an association between migraine and the hypocretin receptor 1 gene. J Headache Pain 2011; 12:193-9. [PMID: 21344296 PMCID: PMC3072499 DOI: 10.1007/s10194-011-0314-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 12/12/2010] [Indexed: 02/06/2023] Open
Abstract
The aim of our study was to investigate whether genetic variants in the hypocretin receptor 1 (HCRTR1) gene could modify the occurrence and the clinical features of migraine. Using a case-control strategy we genotyped 384 migraine patients and 259 controls for three SNPs in the HCRTR1 gene. Genotypic and allelic frequencies of the rs2271933 non-synonymous polymorphism resulted different (χ(2)=9.872, p=0.007; χ(2)=8.108, p=0.004) between migraineurs and controls. The carriage of the A allele was associated with an increased migraine risk (OR 1.42, 95% CI 1.11-1.81). When we divided the migraine patients into different subgroups, the difference reached the level of statistical significance only in migraine without aura. The different genotypes had no significant effect on the examined clinical characteristics of the disease. In conclusion, our data supports the hypothesis that the HCRTR1 gene could represent a genetic susceptibility factor for migraine without aura and suggests that the hypocretin system may have a role in the pathophysiology of migraine.
Collapse
Affiliation(s)
- Innocenzo Rainero
- Neurology II, Department of Neuroscience, University of Torino, Via Cherasco 15, 10126 Turin, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
AHMED WA, MORI T, NISHIMURA Y, NAKATA S, KATO T, ABDELHAMID W, KURAHASHI H, SUZUKI K. Lack of association between orexin receptor gene polymorphisms and obstructive sleep apnea syndrome in Japanese. Sleep Biol Rhythms 2011. [DOI: 10.1111/j.1479-8425.2011.00487.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Goldman MB. The assessment and treatment of water imbalance in patients with psychosis. ACTA ACUST UNITED AC 2010; 4:115-23. [PMID: 20643634 DOI: 10.3371/csrp.4.2.3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polydipsia and episodic life-threatening water intoxication remain important clinical problems for a significant portion of persons with schizophrenia. The disorders are associated with increased morbidity and mortality from a number of causes. With a basic understanding of the pathophysiology, one can easily diagnose and assess the clinical conditions. We review here the scope and pathophysiology of disordered water imbalance, including both primary and secondary polydipsia and hyponatremia. Reversible factors and possible interventions are reviewed. Treatment options for preventing water intoxication have expanded from discontinuation of offending agents, targeted fluid restriction, and clozapine therapy to the addition of oral vasopressin antagonists. The latter, however, are extremely potent and must be carefully monitored.
Collapse
Affiliation(s)
- Morris B Goldman
- Northwestern University Feinberg School of Medicine, Department of Psychiatry, 446 East Ontario, Suite 7-100, Chicago, IL 60611, USA.
| |
Collapse
|
29
|
The effects of clozapine on quinpirole-induced non-regulatory drinking and prepulse inhibition disruption in rats. Psychopharmacology (Berl) 2010; 212:105-15. [PMID: 20623106 DOI: 10.1007/s00213-010-1937-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 06/23/2010] [Indexed: 01/11/2023]
Abstract
RATIONALE The biological underpinnings of schizophrenic polydipsia are poorly understood. OBJECTIVES This study is aimed at fulfilling the requisites of an experimental model of this syndrome through the quinpirole (QNP) induction of non-regulatory drinking in rats. METHODS In a first experiment, clozapine (10 and 40 mg/kg p.o.) was substituted for haloperidol during the last 5 days of 10 days QNP (0.5 mg/kg i.p.) administration and water intake measured at 5 h. In a second experiment, animals treated with QNP alone or in combination with clozapine were assessed for water intake and prepulse inhibition (PPI). Expression of genes coding for the dopaminergic D2 receptor, as well as for the early genes BDNF (brain-derived neurotrophic factor) and c-Fos in prefrontal cortex, hippocampus, and striatum was also evaluated. RESULTS Clozapine prevented QNP-induced drinking at 10 and 40 mg/kg, but only at 40 mg/kg when it was substituted for haloperidol. In the second experiment, QNP-treated rats showed both non-regulatory drinking and PPI disruption. Both these effects were prevented by clozapine 40 mg/kg. QNP-reduced BDNF expression in the hippocampus and increased c-Fos in the prefrontal cortex. This effect was prevented by clozapine. Given by itself, clozapine reduced the expression of both D2 receptors and BDNF in the prefrontal cortex and striatum. CONCLUSIONS The present study lends further support to the hypothesis that non-regulatory drinking induced by QNP in rats is a robust and reliable pharmacological effect that might model psychotic polydipsia also in its sensitivity to clozapine.
Collapse
|
30
|
Milella MS, Passarelli F, De Carolis L, Schepisi C, Nativio P, Scaccianoce S, Nencini P. Opposite roles of dopamine and orexin in quinpirole-induced excessive drinking: a rat model of psychotic polydipsia. Psychopharmacology (Berl) 2010; 211:355-66. [PMID: 20552172 DOI: 10.1007/s00213-010-1909-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 06/03/2010] [Indexed: 02/05/2023]
Abstract
RATIONALE Repeated administration of the dopamine D2/D3 agonist quinpirole (QNP) progressively increases non-regulatory water intake. This effect may model psychotic polydipsia, a potentially fatal but poorly understood condition. OBJECTIVES The growing evidence for a role of orexin in mediating arousal and cognition has linked this peptide to schizophrenia, hence we examined whether manipulations of dopaminergic and orexinergic systems, as well as of setting, would further characterize the model. METHODS Water intake was measured in rats sequentially tested in home and then operant conditioning setting, with chronic administration of D2 antagonist haloperidol (Hal) prior to QNP treatment. A group of rats similarly treated was also assessed for orexin A (OxA) expression in the cortex. Finally, the effect of the orexin-1 receptor antagonist SB-334867 on QNP-induced polydipsia was evaluated. RESULTS In rats made polydipsic by QNP the amount of water drank during the first 4 h was strongly correlated with the degree of dissociation between appetitive and consummatory components of drinking behavior in the following hour of operant access to water. Hal 0.2 mg/kg prevented both polydipsia and the dissociation, while 0.1 mg/kg only blocked the dissociation. Chronic QNP treatment increased, in a Hal-reversible way, OxA expression in the somatosensory cortex (SI). Moreover, pretreatment with SB-334867 sped up and potentiated QNP-induced polydipsia. CONCLUSIONS Results disclose compulsive components in QNP-induced polydipsia that are mediated by dopamine D2 receptors. QNP also regulates OxA expression in the SI, while the block of orexin-1 receptors enhances QNP-induced polydipsia. We suggest that dopamine and OxA play opposite roles in QNP-induced polydipsia.
Collapse
Affiliation(s)
- Michele S Milella
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 5 Piazzale Aldo Moro, 00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Poirier S, Legris G, Tremblay P, Michea R, Viau-Guay L, Mérette C, Bouchard RH, Maziade M, Roy MA. Schizophrenia patients with polydipsia and water intoxication are characterized by greater severity of psychotic illness and a more frequent history of alcohol abuse. Schizophr Res 2010; 118:285-91. [PMID: 20096540 DOI: 10.1016/j.schres.2009.12.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 12/29/2009] [Accepted: 12/30/2009] [Indexed: 11/17/2022]
Abstract
Polydipsia and water intoxication (PWI) are relatively frequent among schizophrenic subjects, particularly in institutional settings and may lead to severe complications. However, little is known on their association with other characteristics of psychosis. Hence, we took advantage of a cohort of 114 subjects extensively assessed on natural history and clinical variables to examine the correlates of PWI in chronic schizophrenia. We randomly sampled DSM-IV schizophrenic subjects from: i) a lower functioning subgroup, i.e., long-term psychiatric wards or highly structured group housing facilities; and ii) a higher functioning subgroup, i.e., patients living in the community without supervision. Subjects were assessed from multiple sources for lifetime severity of positive, disorganisation, negative and depressive symptoms, premorbid adjustment, age of onset, level of functioning, comorbid diagnoses of substance abuse and lifetime history of PWI. Twelve subjects (10.5%) met our PWI criteria. We observed more severe psychotic symptoms, earlier onset, poorer current adjustment and more frequent prior alcohol use disorder in PWI subjects. When restricting comparisons to patients living in institutional setting, differences on clinical and natural history variables vanished but the association between PWI and prior alcohol abuse persisted (72.7% in PWI vs. 21.4% in non-PWI subjects, p<0.01). Onset of alcohol abuse predated the onset of PWI by a mean of 12.8 years. PWI schizophrenic subjects are characterized by a non-specific greater severity on a broad array of clinical and natural history variables and by a specific association with prior alcohol abuse. Thus, our data suggest that a greater severity of illness and a prior history of alcohol use disorders interact in increasing the risk of developing PWI in chronic schizophrenic patients.
Collapse
Affiliation(s)
- Simon Poirier
- Centre de Recherche Universite Laval Robert-Giffard, Beauport, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Margetić B, Aukst-Margetić B. A different hypothesis on hyponatremia in psychiatric patients: treatment implications and experiences. World J Biol Psychiatry 2010; 10:677-81. [PMID: 18942040 DOI: 10.1080/15622970802432724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Polydipsia, chronic or intermittent, with or without hyponatremia, frequently occurs among chronic patients with schizophrenia. The pathogenesis of polydipsia remains poorly understood. The key assumption of our hypothesis is that in some of these patients, polydipsia and hyponatremia are consequences of patients' adjustment to a prolonged intake of an insufficient diet, dominantly poor in potassium. Deficits of potassium, without significant hypokalemia, may cause impairment of the urine-concentrating ability with polyuria-polydipsia. A fall of intracellular tonicity, dominantly due to a decreased amount of K(+) and attendant anions in cells, should be accompanied with a fall of extracellular osmolality. Because of the diminished content of ions that may diffuse out of cells and because osmotic equilibrium between the ECF and ICF compartments cannot be established in a short period of time, these patients have a diminished ability to adapt to an excessive intake of fluids. These mechanisms might be related to the development of polydipsia and water intoxication in patients with different mental and somatic disorders. The experiences with the therapeutic effects of diets containing an sufficient amount of potassium in two patients with schizophrenia are described. Further investigations are needed, and we suggest a possible approach to test our hypotheses.
Collapse
|
33
|
Ahangari G, Shariati G, Asadi M, Ostadali M, Ahmadkhaniha H. Novel Mutation Detection of Regulatory Molecule Dopamine Gene Receptors (D1–D5) Encoding Analysis on Human Peripheral Blood Lymphocytes in Schizophrenia Patients. EUR J INFLAMM 2009. [DOI: 10.1177/1721727x0900700304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
There is much evidence which highlights the involvement of the dopamine system in the pathophysiology of schizophrenia. Recently, there have been reports of detected mutations in dopamine gene receptors in genomic DNA of schizophrenia. In this study, we attempt to determine whether there is mutation in encoding dopamine receptor. The PBMC was separated from whole blood by Ficoll-hypaque; the total cellular RNA was extracted and the cDNA was synthesized. This process followed by real-time PCR using primer pairs specific for five dopamine receptor mRNAs and β-actin as internal control. The results show the presence of all types of dopamine receptor types in lymphocytes. The mutational analysis of the obtained PCR products for the respective dopamine receptor fragments were analyzed by sequenced capillary system. The results presented in this study confirm the high frequency of mutations in dopamine gene receptor DRD5 in schizophrenia patients. Mutational amino acid changes in dopamine gene receptors of DR2, DR3, DR4 but not DR1 are also shown. In conclusion, this is the first report of such complete mutational analyses in all dopamine gene receptors. Moreover, we found new mutations and 80% frequency of mutations in DRD5. These data further strengthen the argument for the role of dopamine gene receptor mutations in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- G. Ahangari
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran
| | - G.H. Shariati
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran
- Department of Genetics & Biology, Jundishahpour Medical Science University, Ahwaz
| | - M.R. Asadi
- Department of Psychiatry, Rozheh Hospital, Tehran Medical University, Tehran
| | - M.R. Ostadali
- Department of Hematology, Oncology and Stem Cell Transplantation, Shariati Hospital, Tehran Medical University, Tehran
| | - H.R. Ahmadkhaniha
- Tehran Psychiatric Institute, Iran University of Medical Sciences, Tehran; World Health Organization Collaborating Center for Mental Health, Tehran, Iran
| |
Collapse
|
34
|
Fukunaka Y, Shinkai T, Hwang R, Hori H, Utsunomiya K, Sakata S, Naoe Y, Shimizu K, Matsumoto C, Ohmori O, Nakamura J. The orexin 1 receptor (HCRTR1) gene as a susceptibility gene contributing to polydipsia-hyponatremia in schizophrenia. Neuromolecular Med 2007; 9:292-7. [PMID: 17999203 DOI: 10.1007/s12017-007-8001-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 06/01/2007] [Indexed: 11/25/2022]
Abstract
The underlying pathophysiology of primary polydipsia in schizophrenia (SCZ) is poorly understood. Our previous study, however, suggested that this condition may have a genetic component [Shinkai et al 2003 Am J Med Genet 119B 7-12]. Orexins, also called hypocretins, play an important role in feeding and drinking behavior. Administration of orexin in rats has been shown to induce increased water intake with a longer-lasting effect than angiotensin II, which is also known as a potent dipsogen. Meerabux et al. [2005 Biol Psychiatry 58 401-407] reported an association between the 408Val allele of the orexin 1 receptor (HCRTR1) gene and polydipsia-hyponatremia in a sample of Japanese patients with SCZ. In the present study, we attempted to replicate the findings of Meerabux et al. in an independent Japanese case-control sample. Our sample included 312 patients with SCZ (DSM-IV) (65 with polydipsia and 247 without polydipsia). We also observed an association between the HCRTR1 Ile408Val polymorphism and polydipsia (genotype distribution: chi2 = 9.85, df = 2, P = 0.007). Meerabux et al. (2005) previously demonstrated an association between the 408Val allele of the HCRTR1 gene and polydipsia. In contrast with Meerabux et al. study, we found that the 408Ile allele was associated with polydipsia in our sample (chi2 = 8.00, df = 1, P = 0.0047; OR = 0.53; 95%CI = 0.34-0.83). How either allele contributes to the development of polydipsia in SCZ is unclear at this stage. It is possible that Ile408Val polymorphism is a non-functional marker that lies in linkage disequilibrium with an as-yet undetected functional variant. In any case, our results support the hypothesis that the HCRTR1 Ile408Val polymorphism may confer susceptibility to polydipsia in SCZ. Further studies examining the association between the orexin system and polydipsia in SCZ are warranted.
Collapse
Affiliation(s)
- Yuko Fukunaka
- Department of Psychiatry, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cáceda R, Kinkead B, Nemeroff CB. Involvement of neuropeptide systems in schizophrenia: human studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 78:327-76. [PMID: 17349866 DOI: 10.1016/s0074-7742(06)78011-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Neuropeptides are heterogeneously distributed throughout the digestive, circulatory, and nervous systems and serve as neurotransmitters, neuromodulators, and hormones. Neuropeptides are phylogenetically conserved and have been demonstrated to regulate numerous behaviors. They have been hypothesized to be pathologically involved in several psychiatric disorders, including schizophrenia. On the basis of preclinical data, numerous studies have sought to examine the role of neuropeptide systems in schizophrenia. This chapter reviews the clinical data, linking alterations in neuropeptide systems to the etiology, pathophysiology, and treatment of schizophrenia. Data for the following neuropeptide systems are included: arginine-vasopressin, cholecystokinin (CCK), corticotropin-releasing factor (CRF), interleukins, neuregulin 1 (NRG1), neurotensin (NT), neuropeptide Y (NPY), opioids, secretin, somatostatin, tachykinins, thyrotropin-releasing hormone (TRH), and vasoactive intestinal peptide (VIP). Data from cerebrospinal fluid (CSF), postmortem and genetic studies, as well as clinical trials are described. Despite the inherent difficulties associated with human studies (including small sample size, variable duration of illness, medication status, the presence of comorbid psychiatric disorders, and diagnostic heterogeneity), several findings are noteworthy. Postmortem studies support disease-related alterations in several neuropeptide systems in the frontal and temporal cortices. The strongest genetic evidence supporting a role for neuropeptides in schizophrenia are those studies linking polymorphisms in NRG1 and the CCKA receptor with schizophrenia. Finally, the only compounds that act directly on neuropeptide systems that have demonstrated therapeutic efficacy in schizophrenia are neurokinin receptor antagonists. Clearly, additional investigation into the role of neuropeptide systems in the etiology, pathophysiology, and treatment of schizophrenia is warranted.
Collapse
Affiliation(s)
- Ricardo Cáceda
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|