1
|
Mood and behavior regulation: interaction of lithium and dopaminergic system. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02437-1. [PMID: 36843130 DOI: 10.1007/s00210-023-02437-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/20/2023] [Indexed: 02/28/2023]
Abstract
Lithium is one of the most effect mood-stabilizing drugs prescribed especially for bipolar disorder. Lithium has wide range effects on different molecular factors and neural transmission including dopaminergic signaling. On the other hand, mesolimbic and mesocortical dopaminergic signaling is significantly involved in the pathophysiology of neuropsychiatric disorders. This review article aims to study lithium therapeutic mechanisms, dopaminergic signaling, and the interaction of lithium and dopamine. We concluded that acute and chronic lithium treatments often reduce dopamine synthesis and level in the brain. However, some studies have reported conflicting results following lithium treatment, especially chronic treatment. The dosage, duration, and type of lithium administration, and the brain region selected for measuring dopamine level were not significant differences in different chronic treatments used in previous studies. It was suggested that lithium has various mechanisms affecting dopaminergic signaling and mood, and that many molecular factors can be involved, including brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), β-catenin, protein kinase B (Akt), and glycogen synthase kinase-3 beta (GSK-3β). Thus, molecular effects of lithium can be the most important mechanisms of lithium that also alter neural transmissions including dopaminergic signaling in mesolimbic and mesocortical pathways.
Collapse
|
2
|
Xu Z, Wen C, Huang Y, Yuan Q, Zhang X, Lin D, Liu L, Wang W. Effects of Glycogen Synthase Kinase-3 Beta Gene Polymorphisms on the Plasma Concentration of Aripiprazole in Chinese Patients with Schizophrenia: A Preliminary Study. J Mol Neurosci 2023; 73:76-83. [PMID: 36539584 DOI: 10.1007/s12031-022-02079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/25/2022] [Indexed: 12/24/2022]
Abstract
This study explored the differences in glycogen synthase kinase-3 beta (GSK3β) gene polymorphisms between patients with schizophrenia and healthy controls and investigated the association between gene polymorphisms and plasma concentration of aripiprazole. We enrolled 127 patients with schizophrenia and 125 healthy controls from southern Fujian. The genotypes of the rs6438552, rs12630592, and rs3732361 loci of GSK3β were evaluated by sequencing with amplified polymerase chain reaction, and the plasma concentration of aripiprazole was determined by high-performance liquid chromatography-tandem mass spectrometry. All three loci of GSK3β had three genotypes each. The genotype distribution in each locus was not significantly different, but there was a significant difference in the allele frequency between the schizophrenia and control groups within each locus. Linkage disequilibrium analyses of the three single-nucleotide polymorphisms (SNPs) revealed strong linkage. The haplotype analysis results showed two haplotypes in the three SNPs of GSK3β. The plasma concentrations, dose-corrected concentrations, and normalized concentrations of aripiprazole were significantly different among the different genotypes of the three SNPs. In conclusion, the rs6438552, rs12630592, and rs3732361 loci of GSK3β may be involved in schizophrenia, and GSK3β gene polymorphism may be correlated with the plasma concentration of aripiprazole.
Collapse
Affiliation(s)
- Zhizhong Xu
- Department of Mental Health Research, Xiamen Xianyue Hospital, Xiamen, 361012, Fujian, China.
| | - Chunyan Wen
- Department of Mental Health Research, Xiamen Xianyue Hospital, Xiamen, 361012, Fujian, China
| | - Yinghua Huang
- Department of Mental Health Research, Xiamen Xianyue Hospital, Xiamen, 361012, Fujian, China
| | - Qianfa Yuan
- Department of Mental Health Research, Xiamen Xianyue Hospital, Xiamen, 361012, Fujian, China
| | - Xianhua Zhang
- Department of Mental Health Research, Xiamen Xianyue Hospital, Xiamen, 361012, Fujian, China
| | - Duoduo Lin
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, 361012, Fujian, China
| | - Liangsheng Liu
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, 361012, Fujian, China
| | - Wenqiang Wang
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, 361012, Fujian, China.
| |
Collapse
|
3
|
[Chronobiological aspects of bipolar disorder]. DER NERVENARZT 2022; 93:873-881. [PMID: 35881187 DOI: 10.1007/s00115-022-01350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 10/16/2022]
Abstract
BACKGROUND Numerous symptoms of bipolar disorder are regulated by the circadian rhythm. Because of this association it is assumed that disruption of the circadian rhythm may be part of the pathomechanism of bipolar disorder. OBJECTIVES A comparison and subsequent critical discussion of the current data situation on chronobiological aspects of bipolar disorder are presented. METHODS A narrative literature search was carried out and the main findings are presented in a summarized form. RESULTS There are a large number of animal and human studies investigating the connection between disorders of the circadian rhythm and bipolar disorder. Especially chronotype, the environmental factor light and sleep disorders seem to be associated with the development of bipolar disorder. CONCLUSIONS The neurobiology of bipolar disorder shows numerous chronobiological aspects. There is evidence for a direct connection of disruption of the circadian rhythm and development and progression of bipolar disorder; however, at present there is no proof for the specificity of these findings for bipolar disorder. Future studies should consolidate the evidence on the impact of disorders of the circadian rhythm on the pathomechanism of bipolar disorder.
Collapse
|
4
|
McCarthy MJ, Gottlieb JF, Gonzalez R, McClung CA, Alloy LB, Cain S, Dulcis D, Etain B, Frey BN, Garbazza C, Ketchesin KD, Landgraf D, Lee H, Marie‐Claire C, Nusslock R, Porcu A, Porter R, Ritter P, Scott J, Smith D, Swartz HA, Murray G. Neurobiological and behavioral mechanisms of circadian rhythm disruption in bipolar disorder: A critical multi-disciplinary literature review and agenda for future research from the ISBD task force on chronobiology. Bipolar Disord 2022; 24:232-263. [PMID: 34850507 PMCID: PMC9149148 DOI: 10.1111/bdi.13165] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM Symptoms of bipolar disorder (BD) include changes in mood, activity, energy, sleep, and appetite. Since many of these processes are regulated by circadian function, circadian rhythm disturbance has been examined as a biological feature underlying BD. The International Society for Bipolar Disorders Chronobiology Task Force (CTF) was commissioned to review evidence for neurobiological and behavioral mechanisms pertinent to BD. METHOD Drawing upon expertise in animal models, biomarkers, physiology, and behavior, CTF analyzed the relevant cross-disciplinary literature to precisely frame the discussion around circadian rhythm disruption in BD, highlight key findings, and for the first time integrate findings across levels of analysis to develop an internally consistent, coherent theoretical framework. RESULTS Evidence from multiple sources implicates the circadian system in mood regulation, with corresponding associations with BD diagnoses and mood-related traits reported across genetic, cellular, physiological, and behavioral domains. However, circadian disruption does not appear to be specific to BD and is present across a variety of high-risk, prodromal, and syndromic psychiatric disorders. Substantial variability and ambiguity among the definitions, concepts and assumptions underlying the research have limited replication and the emergence of consensus findings. CONCLUSIONS Future research in circadian rhythms and its role in BD is warranted. Well-powered studies that carefully define associations between BD-related and chronobiologically-related constructs, and integrate across levels of analysis will be most illuminating.
Collapse
Affiliation(s)
- Michael J. McCarthy
- UC San Diego Department of Psychiatry & Center for Circadian BiologyLa JollaCaliforniaUSA
- VA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - John F. Gottlieb
- Department of PsychiatryFeinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Robert Gonzalez
- Department of Psychiatry and Behavioral HealthPennsylvania State UniversityHersheyPennsylvaniaUSA
| | - Colleen A. McClung
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Lauren B. Alloy
- Department of PsychologyTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Sean Cain
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
| | - Davide Dulcis
- UC San Diego Department of Psychiatry & Center for Circadian BiologyLa JollaCaliforniaUSA
| | - Bruno Etain
- Université de ParisINSERM UMR‐S 1144ParisFrance
| | - Benicio N. Frey
- Department Psychiatry and Behavioral NeuroscienceMcMaster UniversityHamiltonOntarioCanada
| | - Corrado Garbazza
- Centre for ChronobiologyPsychiatric Hospital of the University of Basel and Transfaculty Research Platform Molecular and Cognitive NeurosciencesUniversity of BaselBaselSwitzerland
| | - Kyle D. Ketchesin
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Dominic Landgraf
- Circadian Biology GroupDepartment of Molecular NeurobiologyClinic of Psychiatry and PsychotherapyUniversity HospitalLudwig Maximilian UniversityMunichGermany
| | - Heon‐Jeong Lee
- Department of Psychiatry and Chronobiology InstituteKorea UniversitySeoulSouth Korea
| | | | - Robin Nusslock
- Department of Psychology and Institute for Policy ResearchNorthwestern UniversityChicagoIllinoisUSA
| | - Alessandra Porcu
- UC San Diego Department of Psychiatry & Center for Circadian BiologyLa JollaCaliforniaUSA
| | | | - Philipp Ritter
- Clinic for Psychiatry and PsychotherapyCarl Gustav Carus University Hospital and Technical University of DresdenDresdenGermany
| | - Jan Scott
- Institute of NeuroscienceNewcastle UniversityNewcastleUK
| | - Daniel Smith
- Division of PsychiatryUniversity of EdinburghEdinburghUK
| | - Holly A. Swartz
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Greg Murray
- Centre for Mental HealthSwinburne University of TechnologyMelbourneVictoriaAustralia
| |
Collapse
|
5
|
Pisanu C, Meloni A, Severino G, Squassina A. Genetic and Epigenetic Markers of Lithium Response. Int J Mol Sci 2022; 23:1555. [PMID: 35163479 PMCID: PMC8836013 DOI: 10.3390/ijms23031555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 01/25/2023] Open
Abstract
The mood stabilizer lithium represents a cornerstone in the long term treatment of bipolar disorder (BD), although with substantial interindividual variability in clinical response. This variability appears to be modulated by genetics, which has been significantly investigated in the last two decades with some promising findings. In addition, recently, the interest in the role of epigenetics has grown significantly, since the exploration of these mechanisms might allow the elucidation of the gene-environment interactions and explanation of missing heritability. In this article, we provide an overview of the most relevant findings regarding the pharmacogenomics and pharmacoepigenomics of lithium response in BD. We describe the most replicated findings among candidate gene studies, results from genome-wide association studies (GWAS) as well as post-GWAS approaches supporting an association between high genetic load for schizophrenia, major depressive disorder or attention deficit/hyperactivity disorder and poor lithium response. Next, we describe results from studies investigating epigenetic mechanisms, such as changes in methylation or noncoding RNA levels, which play a relevant role as regulators of gene expression. Finally, we discuss challenges related to the search for the molecular determinants of lithium response and potential future research directions to pave the path towards a biomarker guided approach in lithium treatment.
Collapse
Affiliation(s)
- Claudia Pisanu
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.M.); (G.S.); (A.S.)
- Section of Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, 75124 Uppsala, Sweden
| | - Anna Meloni
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.M.); (G.S.); (A.S.)
| | - Giovanni Severino
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.M.); (G.S.); (A.S.)
| | - Alessio Squassina
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.M.); (G.S.); (A.S.)
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 2E2, Canada
| |
Collapse
|
6
|
Senner F, Kohshour MO, Abdalla S, Papiol S, Schulze TG. The Genetics of Response to and Side Effects of Lithium Treatment in Bipolar Disorder: Future Research Perspectives. Front Pharmacol 2021; 12:638882. [PMID: 33867988 PMCID: PMC8044839 DOI: 10.3389/fphar.2021.638882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/15/2021] [Indexed: 12/01/2022] Open
Abstract
Although the mood stabilizer lithium is a first-line treatment in bipolar disorder, a substantial number of patients do not benefit from it and experience side effects. No clinical tool is available for predicting lithium response or the occurrence of side effects in everyday clinical practice. Multiple genetic research efforts have been performed in this field because lithium response and side effects are considered to be multifactorial endophenotypes. Available results from linkage and segregation, candidate-gene, and genome-wide association studies indicate a role of genetic factors in determining response and side effects. For example, candidate-gene studies often report GSK3β, brain-derived neurotrophic factor, and SLC6A4 as being involved in lithium response, and the latest genome-wide association study found a genome-wide significant association of treatment response with a locus on chromosome 21 coding for two long non-coding RNAs. Although research results are promising, they are limited mainly by a lack of replicability and, despite the collaboration of consortia, insufficient sample sizes. The need for larger sample sizes and "multi-omics" approaches is apparent, and such approaches are crucial for choosing the best treatment options for patients with bipolar disorder. In this article, we delineate the mechanisms of action of lithium and summarize the results of genetic research on lithium response and side effects.
Collapse
Affiliation(s)
- Fanny Senner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Safa Abdalla
- Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Thomas G. Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
7
|
Abstract
OBJECTIVES A narrative review of past, present, and future of lithium use in psychiatry. METHODS The most important references on the topic were reviewed with special emphasis on the author's works. RESULTS The history of medical and psychiatric use of lithium dates back to more than one and a half-century ago. However, modern psychiatric history began with the publication of John Cade, in 1949, showing a therapeutic effect of lithium in mania. Currently, lithium is a drug of choice as a mood-stabilizer for the maintenance treatment of the bipolar disorder. The second most important use of lithium is probably augmentation of antidepressants in treatment-resistant depression. In addition to its mood-stabilizing properties, lithium exerts anti-suicidal, immunomodulatory, and neuroprotective action. The drug may protect against dementia and some promising effects of lithium in neurodegenerative disorders have been observed. CONCLUSION Given the clinical and biological properties of lithium, this drug is presently greatly underutilized in mood disorders. Therefore, the efforts should be undertaken for challenging a skepticism about the use of lithium and optimizing its long-term administration. In such a way, more patients with mood disorders can become the beneficiaries of lithium's therapeutic action. KEY POINTS Lithium is a drug of choice as a mood-stabiliser for the maintenance treatment of bipolar disorder. Augmentation of antidepressants by lithium is one of the best strategies in treatment-resistant depression. Lithium exerts anti-suicidal, immunomodulatory, and neuroprotective action and may protect against dementia. Despite the evidence for the efficacy and added favourable properties, lithium is greatly underutilised in mood disorders. Challenging a scepticism about the use of lithium and optimising its long-term administration can make more patients with mood disorders the beneficiaries of lithium's therapeutic action.
Collapse
Affiliation(s)
- Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland.,Department of Psychiatric Nursing, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
8
|
Levchenko A, Vyalova NM, Nurgaliev T, Pozhidaev IV, Simutkin GG, Bokhan NA, Ivanova SA. NRG1, PIP4K2A, and HTR2C as Potential Candidate Biomarker Genes for Several Clinical Subphenotypes of Depression and Bipolar Disorder. Front Genet 2020; 11:936. [PMID: 33193575 PMCID: PMC7478333 DOI: 10.3389/fgene.2020.00936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
GSK3B, BDNF, NGF, NRG1, HTR2C, and PIP4K2A play important roles in molecular mechanisms of psychiatric disorders. GSK3B occupies a central position in these molecular mechanisms and is also modulated by psychotropic drugs. BDNF regulates a number of key aspects in neurodevelopment and synaptic plasticity. NGF exerts a trophic action and is implicated in cerebral alterations associated with psychiatric disorders. NRG1 is active in neural development, synaptic plasticity, and neurotransmission. HTR2C is another important psychopharmacological target. PIP4K2A catalyzes the phosphorylation of PI5P to form PIP2, the latter being implicated in various aspects of neuronal signal transduction. In the present study, the six genes were sequenced in a cohort of 19 patients with bipolar affective disorder, 41 patients with recurrent depressive disorder, and 55 patients with depressive episode. The study revealed a number of genetic variants associated with antidepressant treatment response, time to recurrence of episodes, and depression severity. Namely, alleles of rs35641374 and rs10508649 (NRG1 and PIP4K2A) may be prognostic biomarkers of time to recurrence of depressive and manic/mixed episodes among patients with bipolar affective disorder. Alleles of NC_000008.11:g.32614509_32614510del, rs61731109, and rs10508649 (also NRG1 and PIP4K2A) seem to be predictive biomarkers of response to pharmacological antidepressant treatment on the 28th day assessed by the HDRS-17 or CGI-I scale. In particular, the allele G of rs10508649 (PIP4K2A) may increase resistance to antidepressant treatment and be at the same time protective against recurrent manic/mixed episodes. These results support previous data indicating a biological link between resistance to antidepressant treatment and mania. Bioinformatic functional annotation of associated variants revealed possible impact for transcriptional regulation of PIP4K2A. In addition, the allele A of rs2248440 (HTR2C) may be a prognostic biomarker of depression severity. This allele decreases expression of the neighboring immune system gene IL13RA2 in the putamen according to the GTEx portal. The variant rs2248440 is near rs6318 (previously associated with depression and effects of psychotropic drugs) that is an eQTL for the same gene and tissue. Finally, the study points to several protein interactions relevant in the pathogenesis of mood disorders. Functional studies using cellular or animal models are warranted to support these results.
Collapse
Affiliation(s)
- Anastasia Levchenko
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, Russia
| | - Natalia M Vyalova
- Tomsk National Research Medical Center, Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia
| | - Timur Nurgaliev
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Ivan V Pozhidaev
- Tomsk National Research Medical Center, Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia
| | - German G Simutkin
- Tomsk National Research Medical Center, Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia
| | - Nikolay A Bokhan
- Tomsk National Research Medical Center, Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia.,National Research Tomsk State University, Tomsk, Russia.,Siberian State Medical University, Tomsk, Russia
| | - Svetlana A Ivanova
- Tomsk National Research Medical Center, Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia.,Siberian State Medical University, Tomsk, Russia.,National Research Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
9
|
Levchenko A, Nurgaliev T, Kanapin A, Samsonova A, Gainetdinov RR. Current challenges and possible future developments in personalized psychiatry with an emphasis on psychotic disorders. Heliyon 2020; 6:e03990. [PMID: 32462093 PMCID: PMC7240336 DOI: 10.1016/j.heliyon.2020.e03990] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/31/2019] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
A personalized medicine approach seems to be particularly applicable to psychiatry. Indeed, considering mental illness as deregulation, unique to each patient, of molecular pathways, governing the development and functioning of the brain, seems to be the most justified way to understand and treat disorders of this medical category. In order to extract correct information about the implicated molecular pathways, data can be drawn from sampling phenotypic and genetic biomarkers and then analyzed by a machine learning algorithm. This review describes current difficulties in the field of personalized psychiatry and gives several examples of possibly actionable biomarkers of psychotic and other psychiatric disorders, including several examples of genetic studies relevant to personalized psychiatry. Most of these biomarkers are not yet ready to be introduced in clinical practice. In a next step, a perspective on the path personalized psychiatry may take in the future is given, paying particular attention to machine learning algorithms that can be used with the goal of handling multidimensional datasets.
Collapse
Affiliation(s)
- Anastasia Levchenko
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Timur Nurgaliev
- Institute of Translational Biomedicine, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Alexander Kanapin
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Anastasia Samsonova
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| |
Collapse
|
10
|
Rybakowski JK. Lithium treatment in the era of personalized medicine. Drug Dev Res 2020; 82:621-627. [PMID: 32207857 DOI: 10.1002/ddr.21660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/16/2022]
Abstract
In 1949, an Australian psychiatrist, John Cade, reported on the antimanic efficacy of lithium carbonate, which is regarded as an introduction of lithium into contemporary psychiatry. Since the 1960s, lithium has been a precursor of mood stabilizers and has become first-choice drug for the prevention of affective episodes in mood disorders. For nearly four decades, lithium has also been used for the augmentation of antidepressant drugs in treatment-resistant depression. The knowledge of clinical and biological factors connected with the capability of long-term lithium treatment to prevent manic and depressive recurrences makes an important element of the personalized medicine of mood disorders. Excellent prophylactic lithium responders can be characterized by distinct mood episodes, with full remissions between them, the absence of other psychiatric morbidity, and the family history of bipolar illness. In recent years, many other clinical and biological factors connected with such a response have been identified, helping to select the best candidates for lithium prophylaxis. The antisuicidal effect of lithium during its long-term administration has been demonstrated and should also be taken into account as the element of personalized medicine for the pharmacological prophylaxis of patients with mood disorders. Several studies pertaining to personalized medicine were also dedicated to lithium treatment of acute mood episodes. Lithium still has a value in the treatment of mania and bipolar depression. However, it seems that the more important indication would be the augmentation of antidepressant drugs in treatment-resistant depression. The factors connected with the efficacy of lithium in these conditions are reviewed.
Collapse
Affiliation(s)
- Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland.,Department of Psychiatric Nursing, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
11
|
Sunada N, Takekita Y, Nonen S, Wakeno M, Koshikawa Y, Ogata H, Kinoshita T, Kato M. Brain Volume-Related Polymorphisms of the Glycogen Synthase Kinase-3β Gene and Their Effect on Antidepressant Treatment in Major Depressive Disorder. Neuropsychobiology 2020; 78:136-144. [PMID: 31189175 DOI: 10.1159/000500614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Glycogen synthase kinase-3β (GSK-3β) polymorphisms are known to influence hippocampal brain tissue volume in individuals with major depressive disorder (MDD). However, the effects of the GSK-3β gene single nucleotide polymorphisms (SNPs) in those receiving antidepressant therapy are unknown. OBJECTIVES In the present study, we examined the relationship between brain volume-related SNPs of the GSK-3β gene and antidepressant treatment effects in patients with MDD. METHODS Paroxetine, fluvoxamine, or milnacipran was administered to 143 Japanese patients with MDD. Two SNPs of the GSK-3β gene (rs6438552 and rs12630592) that influence brain volume in the hippocampus were genotyped. For the primary outcome, the relationship between genetic variations in the SNPs and the percent change in the Hamilton Rating Scale for Depression (HAM-D) score at week 6 was examined. In addition, rs334558, which has been reported repeatedly, was also genotyped. RESULTS There was a significant correlation between the two SNPs and the percent change in the HAM-D scores at week 6 (rs6438552 A/A vs. A/G + G/G: p = 0.016; rs12630592 G/G vs. G/T + T/T: p = 0.016). There was high linkage disequilibrium between the rs6438552 and rs12630592 SNPs. The correlation between high therapeutic response over time and the two SNPs were also confirmed (rs6438552 A/A vs. others: p = 0.031; rs12630592 G/G vs. others: p = 0.031). CONCLUSIONS Our results suggest that two GSK-3β variants that influence brain volume were associated with changes in the HAM-D scores at week 6 in patients with MDD.
Collapse
Affiliation(s)
- Naotaka Sunada
- Department of Neuropsychiatry, Kansai Medical University, Moriguchi, Japan
| | - Yoshiteru Takekita
- Department of Neuropsychiatry, Kansai Medical University, Moriguchi, Japan
| | - Shinpei Nonen
- Department of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Masataka Wakeno
- Department of Neuropsychiatry, Kansai Medical University, Moriguchi, Japan
| | - Yosuke Koshikawa
- Department of Neuropsychiatry, Kansai Medical University, Moriguchi, Japan
| | - Haruhiko Ogata
- Department of Neuropsychiatry, Kansai Medical University, Moriguchi, Japan
| | | | - Masaki Kato
- Department of Neuropsychiatry, Kansai Medical University, Moriguchi, Japan,
| |
Collapse
|
12
|
Costemale-Lacoste JF, Colle R, Martin S, Asmar KE, Loeb E, Feve B, Verstuyft C, Trabado S, Ferreri F, Haffen E, Polosan M, Becquemont L, Corruble E. Glycogen synthase kinase-3β genetic polymorphisms and insomnia in depressed patients: A prospective study. J Affect Disord 2018; 240:230-236. [PMID: 30081294 DOI: 10.1016/j.jad.2018.07.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/22/2018] [Accepted: 07/22/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND 80-90% of patients with Major Depressive Episode (MDE) experience insomnia and up-to 50% severe insomnia. Glycogen Synthase Kinase-3β (GSK3B) is involved both in mood regulation and circadian rhythm. Since GSK3B polymorphisms could affect protein levels or functionality, we investigated the association of GSK3B polymorphisms with insomnia in a sample of depressed patients treated with antidepressants. METHODS In this 6-month prospective real-world treatment study in psychiatric settings (METADAP), 492 Caucasian patients requiring a new antidepressant treatment were included and genotyped for five GSK3B Single Nucleotide Polymorphisms (SNPs) (rs6808874, rs6782799, rs2319398, rs13321783, rs334558). Insomnia and MDE severity were rated using the Hamilton Depression Rating Scale (HDRS). Bi- and multivariate analyses were performed to assess the association between GSK3B SNPs and insomnia (main objective). We also assessed their association with MDE severity and HDRS response/remission after antidepressant treatment. RESULTS At baseline severe insomnia was associated with the GSK3B rs334558 minor allele (C+) [OR=1.81, CI95%(1.17-2.80), p=0.008]. GSK3B rs334558 C+ had greater insomnia improvement after 6 months of antidepressant treatment (p=0.007, β=0.17, t=2.736). No association was found between GSK3B SNPs and MDE baseline severity or 6-month response/remission. CONCLUSION GSK3B rs334558 was associated with insomnia but not with MDE severity in depressed patients. Targeting GSK3B in patients with MDE and a severe insomnia could be a way to improve their symptoms with greater efficiency. And it should be further studied whether the GSK3B-insomnia association may fit into the larger picture of mood disorders.
Collapse
Affiliation(s)
- Jean-François Costemale-Lacoste
- CESP/UMR-S1178, Equipe "Dépression et Antidépresseurs", Univ Paris-Sud, Faculté de Médecine, INSERM, Le Kremlin Bicêtre, France; Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France; Dispositif Territorial de Recherche et Formation (DTRF) Paris Sud
| | - Romain Colle
- CESP/UMR-S1178, Equipe "Dépression et Antidépresseurs", Univ Paris-Sud, Faculté de Médecine, INSERM, Le Kremlin Bicêtre, France; Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France; Dispositif Territorial de Recherche et Formation (DTRF) Paris Sud
| | - Séverine Martin
- CESP/UMR-S1178, Equipe "Dépression et Antidépresseurs", Univ Paris-Sud, Faculté de Médecine, INSERM, Le Kremlin Bicêtre, France; Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Khalil El Asmar
- CESP/UMR-S1178, Equipe "Dépression et Antidépresseurs", Univ Paris-Sud, Faculté de Médecine, INSERM, Le Kremlin Bicêtre, France
| | - Emanuel Loeb
- CESP/UMR-S1178, Equipe "Dépression et Antidépresseurs", Univ Paris-Sud, Faculté de Médecine, INSERM, Le Kremlin Bicêtre, France; Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Bruno Feve
- Sorbonne Universities, Pierre and Marie Curie University Paris 6, INSERM, Saint-Antoine Research Center, Saint-Antoine Hospital; Hospitalo-Universitary Institute, ICAN; Department of Endocrinology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris France; INSERM, UMR S_938- Centre de Recherche Saint-Antoine, Paris, France
| | - Céline Verstuyft
- CESP/UMR-S1178, Equipe "Dépression et Antidépresseurs", Univ Paris-Sud, Faculté de Médecine, INSERM, Le Kremlin Bicêtre, France; Service de Génétique Moléculaire, pharmacogénétique et hormonologie, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Séverine Trabado
- Service de Génétique Moléculaire, pharmacogénétique et hormonologie, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Florian Ferreri
- UPMC Paris 6; Department of Psychiatry, Saint-Antoine Hospital, Paris, France
| | - Emmanuel Haffen
- Department of Clinical Psychiatry, University Hospital; EA 481, Laboratory of Neurosciences, University of Bourgogne Franche-Comté; CIC-1431 Inserm, University Hospital, Besançon, France
| | - Mircea Polosan
- Univ. Grenoble Alpes; Inserm U1216, Grenoble Institut de Neurosciences, CHU de Grenoble, F-38000 Grenoble, France
| | - Laurent Becquemont
- CESP/UMR-S1178, Equipe "Dépression et Antidépresseurs", Univ Paris-Sud, Faculté de Médecine, INSERM, Le Kremlin Bicêtre, France; Centre de Recherche Clinique Paris Sud, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Emmanuelle Corruble
- CESP/UMR-S1178, Equipe "Dépression et Antidépresseurs", Univ Paris-Sud, Faculté de Médecine, INSERM, Le Kremlin Bicêtre, France; Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France; Dispositif Territorial de Recherche et Formation (DTRF) Paris Sud.
| |
Collapse
|
13
|
GSK3β: a plausible mechanism of cognitive and hippocampal changes induced by erythropoietin treatment in mood disorders? Transl Psychiatry 2018; 8:216. [PMID: 30310078 PMCID: PMC6181907 DOI: 10.1038/s41398-018-0270-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/11/2018] [Accepted: 07/14/2018] [Indexed: 12/16/2022] Open
Abstract
Mood disorders are associated with significant psychosocial and occupational disability. It is estimated that major depressive disorder (MDD) will become the second leading cause of disability worldwide by 2020. Existing pharmacological and psychological treatments are limited for targeting cognitive dysfunctions in mood disorders. However, growing evidence from human and animal studies has shown that treatment with erythropoietin (EPO) can improve cognitive function. A recent study involving EPO-treated patients with mood disorders showed that the neural basis for their cognitive improvements appeared to involve an increase in hippocampal volume. Molecular mechanisms underlying hippocampal changes have been proposed, including the activation of anti-apoptotic, antioxidant, pro-survival and anti-inflammatory signalling pathways. The aim of this review is to describe the potential importance of glycogen synthase kinase 3-beta (GSK3β) as a multi-potent molecular mechanism of EPO-induced hippocampal volume change in mood disorder patients. We first examine published associations between EPO administration, mood disorders, cognition and hippocampal volume. We then highlight evidence suggesting that GSK3β influences hippocampal volume in MDD patients, and how this could assist with targeting more precise treatments particularly for cognitive deficits in patients with mood disorders. We conclude by suggesting how this developing area of research can be further advanced, such as using pharmacogenetic studies of EPO treatment in patients with mood disorders.
Collapse
|
14
|
Duda P, Wiśniewski J, Wójtowicz T, Wójcicka O, Jaśkiewicz M, Drulis-Fajdasz D, Rakus D, McCubrey JA, Gizak A. Targeting GSK3 signaling as a potential therapy of neurodegenerative diseases and aging. Expert Opin Ther Targets 2018; 22:833-848. [PMID: 30244615 DOI: 10.1080/14728222.2018.1526925] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Glycogen synthase kinase 3 (GSK3) is at the center of cellular signaling and controls various aspects of brain functions, including development of the nervous system, neuronal plasticity and onset of neurodegenerative disorders. Areas covered: In this review, recent efforts in elucidating the roles of GSK3 in neuronal plasticity and development of brain pathologies; Alzheimer's and Parkinson's disease, schizophrenia, and age-related neurodegeneration are described. The effect of microglia and astrocytes on development of the pathological states is also discussed. Expert opinion: GSK3β and its signaling pathway partners hold great promise as therapeutic target(s) for a multitude of neurological disorders. Activity of the kinase is often elevated in brain disorders. However, due to the wide range of GSK3 cellular targets, global inhibition of the kinase leads to severe side-effects and GSK3 inhibitors rarely reach Phase-2 clinical trials. Thus, a selective modulation of a specific cellular pool of GSK3 or specific down- or upstream partners of the kinase might provide more efficient anti-neurodegenerative therapies.
Collapse
Affiliation(s)
- Przemysław Duda
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Janusz Wiśniewski
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Tomasz Wójtowicz
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Olga Wójcicka
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Michał Jaśkiewicz
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Dominika Drulis-Fajdasz
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Dariusz Rakus
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - James A McCubrey
- b Department of Microbiology and Immunology , Brody School of Medicine at East Carolina University , Greenville , NC , USA
| | - Agnieszka Gizak
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| |
Collapse
|
15
|
Stacey D, Schubert KO, Clark SR, Amare AT, Milanesi E, Maj C, Leckband SG, Shekhtman T, Kelsoe JR, Gurwitz D, Baune BT. A gene co-expression module implicating the mitochondrial electron transport chain is associated with long-term response to lithium treatment in bipolar affective disorder. Transl Psychiatry 2018; 8:183. [PMID: 30185780 PMCID: PMC6125294 DOI: 10.1038/s41398-018-0237-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/02/2018] [Accepted: 07/14/2018] [Indexed: 02/06/2023] Open
Abstract
Lithium is the first-line treatment for bipolar affective disorder (BPAD) but two-thirds of patients respond only partially or not at all. The reasons for this high variability in lithium response are not well understood. Transcriptome-wide profiling, which tests the interface between genes and the environment, represents a viable means of exploring the molecular mechanisms underlying lithium response variability. Thus, in the present study we performed co-expression network analyses of whole-blood-derived RNA-seq data from n = 50 lithium-treated BPAD patients. Lithium response was assessed using the well-validated ALDA scale, which we used to define both a continuous and a dichotomous measure. We identified a nominally significant correlation between a co-expression module comprising 46 genes and lithium response represented as a continuous (i.e., scale ranging 0-10) phenotype (cor = -0.299, p = 0.035). Forty-three of these 46 genes had reduced mRNA expression levels in better lithium responders relative to poorer responders, and the central regulators of this module were all mitochondrially-encoded (MT-ND1, MT-ATP6, MT-CYB). Accordingly, enrichment analyses indicated that genes involved in mitochondrial functioning were heavily over-represented in this module, specifically highlighting the electron transport chain (ETC) and oxidative phosphorylation (OXPHOS) as affected processes. Disrupted ETC and OXPHOS activity have previously been implicated in the pathophysiology of BPAD. Our data adds to previous evidence suggesting that a normalisation of these processes could be central to lithium's mode of action, and could underlie a favourable therapeutic response.
Collapse
Affiliation(s)
- David Stacey
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - K Oliver Schubert
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Northern Adelaide Local Health Network, Mental Health Services, Lyell McEwin Hospital, Elizabeth Vale, SA, 5112, Australia
| | - Scott R Clark
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Azmeraw T Amare
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Elena Milanesi
- Genetics Unit, IRCCS, San Giovanni di Dio, Fatebenefratelli, Brescia, Italy
- Department of Cellular and Molecular Medicine, 'Victor Babes' National Institute of Pathology, 99-101 Splaiul Independentei, 050096, Bucharest, Romania
| | - Carlo Maj
- Genetics Unit, IRCCS, San Giovanni di Dio, Fatebenefratelli, Brescia, Italy
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
| | - Susan G Leckband
- University of California San Diego and VA San Diego Healthcare System, San Diego, CA, USA
| | - Tatyana Shekhtman
- University of California San Diego and VA San Diego Healthcare System, San Diego, CA, USA
| | - John R Kelsoe
- University of California San Diego and VA San Diego Healthcare System, San Diego, CA, USA
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia.
- Department of Psychiatry, Melbourne Medical School, Royal Melbourne Hospital, University of Melbourne, VIC, Australia.
| |
Collapse
|
16
|
Costemale-Lacoste JF, Guilloux JP, Gaillard R. The role of GSK-3 in treatment-resistant depression and links with the pharmacological effects of lithium and ketamine: A review of the literature. Encephale 2016; 42:156-64. [PMID: 26995153 DOI: 10.1016/j.encep.2016.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/27/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Since the discovery of antidepressants, new treatments have emerged with fewer side effects but no greater efficacy. Glycogen synthase kinase 3 β (GSK-3β), a kinase known for its activity on glycogen synthesis, has in the last few years raised growing interest in biological psychiatry. Several efficient treatments in major depression have an inhibitory effect on this kinase, which could be targeted in new mood disorder treatments. METHODS The aim of this review is to summarize findings concerning the intracellular pharmacologic effects of GSK-3β inhibitors on mood. After a brief description of the intracellular transduction pathways implicated in both GSK-3β and mood disorders, we reviewed the results demonstrating GSK-3β involvement in the effects of lithium and ketamine. RESULTS GSK-3β can be inhibited through several mechanisms such as serine phosphorylation or binding in a proteic scaffold and others. Its inhibition is implicated in numerous cellular pathways of interest involved in neuronal growth and architecture, cell survival, neurogenesis or synaptic plasticity. This inhibition appears to be both efficient and sufficient in improving mood in animal models. In human beings, several levels of evidence show GSK-3β inhibition with antidepressant use. Crucially, strong inhibition has been shown with lithium via the proteic scaffold PP2A/β-arrestin/AKT, and with the rapid antidepressant effect of ketamine via p70S6K. CONCLUSION Our review focuses on mechanisms whereby the GSK-3β pathway has a part in the antidepressant effect of lithium and ketamine. This article highlights the importance of translational research from cell and animal models to the clinical setting in order to develop innovative therapeutic targets.
Collapse
Affiliation(s)
- J F Costemale-Lacoste
- Inserm U1178, équipe « Dépression et antidépresseurs », CESP, université Paris-Sud, 94275 Le Kremlin-Bicêtre, France; Service de psychiatrie de l'adulte, centre hospitalier universitaire Bicêtre, 78, rue du Général-Leclerc, 94270 Le Kremlin-Bicêtre, France.
| | - J P Guilloux
- Inserm U1178, équipe « Dépression et antidépresseurs », CESP, université Paris-Sud, 94275 Le Kremlin-Bicêtre, France; EA3544, faculté de pharmacie, université Paris-Sud, 92296 Châtenay-Malabry, France
| | - R Gaillard
- Laboratoire de physiopathologie des maladies psychiatriques, centre de psychiatrie et neurosciences U894, université Paris Descartes, Sorbonne Paris Cité, Paris, France; Centre hospitalier Sainte-Anne, Paris, France
| |
Collapse
|
17
|
Higgins GA, Allyn-Feuer A, Barbour E, Athey BD. A glutamatergic network mediates lithium response in bipolar disorder as defined by epigenome pathway analysis. Pharmacogenomics 2015; 16:1547-63. [PMID: 26343379 DOI: 10.2217/pgs.15.106] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM A regulatory network in the human brain mediating lithium response in bipolar patients was revealed by analysis of functional SNPs from genome-wide association studies (GWAS) and published gene association studies, followed by epigenome mapping. METHODS An initial set of 23,312 SNPs in linkage disequilibrium with lead SNPs, and sub-threshold GWAS SNPs rescued by pathway analysis, were studied in the same populations. These were assessed using our workflow and annotation by the epigenome roadmap consortium. RESULTS Twenty-seven percent of 802 SNPs that were associated with lithium response (13 published studies gene association studies and two GWAS) were shared in common with 1281 SNPs from 18 GWAS examining psychiatric disorders and adverse events associated with lithium treatment. Nineteen SNPs were annotated as active regulatory elements such as enhancers and promoters in a tissue-specific manner. They were located within noncoding regions of ten genes: ANK3, ARNTL, CACNA1C, CACNG2, CDKN1A, CREB1, GRIA2, GSK3B, NR1D1 and SLC1A2. Following gene set enrichment and pathway analysis, these genes were found to be significantly associated (p = 10(-27); Fisher exact test) with an AMPA2 glutamate receptor network in human brain. Our workflow results showed concordance with annotation of regulatory elements from the epigenome roadmap. Analysis of cognate mRNA and enhancer RNA exhibited patterns consistent with an integrated pathway in human brain. CONCLUSION This pharmacoepigenomic regulatory pathway is located in the same brain regions that exhibit tissue volume loss in bipolar disorder. Although in silico analysis requires biological validation, the approach provides value for identification of candidate variants that may be used in pharmacogenomic testing to identify bipolar patients likely to respond to lithium.
Collapse
Affiliation(s)
- Gerald A Higgins
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Pharmacogenomic Science, Assurex Health, Inc., Mason, OH 45040, USA
| | - Ari Allyn-Feuer
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Edward Barbour
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Brian D Athey
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Is Polyuria a Predictive Sign of Lithium Response in Major Depression? J Clin Psychopharmacol 2015; 35:471-2. [PMID: 26066337 DOI: 10.1097/jcp.0000000000000357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Benedetti F, Poletti S, Radaelli D, Locatelli C, Pirovano A, Lorenzi C, Vai B, Bollettini I, Falini A, Smeraldi E, Colombo C. Lithium and GSK-3β promoter gene variants influence cortical gray matter volumes in bipolar disorder. Psychopharmacology (Berl) 2015; 232:1325-36. [PMID: 25345732 DOI: 10.1007/s00213-014-3770-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/04/2014] [Indexed: 12/11/2022]
Abstract
RATIONALE Lithium is the mainstay for the treatment of bipolar disorder (BD) and inhibits glycogen synthase kinase-3β (GSK-3β). The less active GSK-3β promoter gene variants have been associated with less detrimental clinical features of BD. GSK-3β gene variants and lithium can influence brain gray and white matter structure in psychiatric conditions, so we studied their combined effect in BD. OBJECTIVES The aim of this study is to investigate the effects of ongoing long-term lithium treatment and GSK-3β promoter rs334558 polymorphism on regional gray matter (GM) volumes of patients with BD. MATERIALS AND METHODS GM volumes were estimated with 3.0 Tesla MRI in 150 patients affected by a major depressive episode in course of BD. Duration of lifetime lithium treatment was retrospectively assessed. Analyses were performed by searching for significant effects of lithium and rs334558 in the whole brain. RESULTS The less active GSK-3β rs334558*G gene promoter variant and the long-term administration of lithium were synergistically associated with increased GM volumes in the right frontal lobe, in a large cluster encompassing the boundaries of subgenual and orbitofrontal cortex (including Brodmann areas 25, 11, and 47). Effects of lithium on GM revealed in rs334558*G carriers only, consistent with previously reported clinical effects in these genotype groups, and were proportional to the duration of treatment. CONCLUSIONS Lithium and rs334558 influenced GM volumes in areas critical for the generation and control of affect, which have been widely implicated in the process of BD pathophysiology. In the light of the protective effects of lithium on white matter integrity, our results suggest that the clinical effects of lithium associate with a neurotrophic effect on the whole brain, probably mediated by GSK-3β inhibition.
Collapse
Affiliation(s)
- Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Sleep deprivation (SD) is the most widely documented rapid-onset antidepressant therapy, targeting the broadly defined depressive syndrome. Although SD responses are transient, its effects can be sustained by concomitant medications (e.g., selective serotonin reuptake inhibitors and lithium) and circadian-related interventions (e.g., bright light and sleep phase advance). Thus, considering its safety, this technique can now be considered among the first-line antidepressant treatment strategies for patients affected by mood disorders. SD is a complex intervention and it should be considered multi-target in nature. Thus, the mechanisms explaining its antidepressant effect can be looked for on many levels, involving not only monoaminergic mechanisms but also sleep homeostatic and circadian mechanisms, glutamatergic mechanisms and synaptic plasticity.
Collapse
Affiliation(s)
- Sara Dallaspezia
- Department of Clinical Neurosciences, Scientific Institute, University Vita-Salute San Raffaele, Milano, Italy,
| | | |
Collapse
|
21
|
Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 2014; 148:114-31. [PMID: 25435019 DOI: 10.1016/j.pharmthera.2014.11.016] [Citation(s) in RCA: 1148] [Impact Index Per Article: 114.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/18/2014] [Indexed: 12/23/2022]
Abstract
Glycogen synthase kinase-3 (GSK3) may be the busiest kinase in most cells, with over 100 known substrates to deal with. How does GSK3 maintain control to selectively phosphorylate each substrate, and why was it evolutionarily favorable for GSK3 to assume such a large responsibility? GSK3 must be particularly adaptable for incorporating new substrates into its repertoire, and we discuss the distinct properties of GSK3 that may contribute to its capacity to fulfill its roles in multiple signaling pathways. The mechanisms regulating GSK3 (predominantly post-translational modifications, substrate priming, cellular trafficking, protein complexes) have been reviewed previously, so here we focus on newly identified complexities in these mechanisms, how each of these regulatory mechanism contributes to the ability of GSK3 to select which substrates to phosphorylate, and how these mechanisms may have contributed to its adaptability as new substrates evolved. The current understanding of the mechanisms regulating GSK3 is reviewed, as are emerging topics in the actions of GSK3, particularly its interactions with receptors and receptor-coupled signal transduction events, and differential actions and regulation of the two GSK3 isoforms, GSK3α and GSK3β. Another remarkable characteristic of GSK3 is its involvement in many prevalent disorders, including psychiatric and neurological diseases, inflammatory diseases, cancer, and others. We address the feasibility of targeting GSK3 therapeutically, and provide an update of its involvement in the etiology and treatment of several disorders.
Collapse
Affiliation(s)
- Eleonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Steven F Grieco
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
22
|
Papazoglou IK, Jean A, Gertler A, Taouis M, Vacher CM. Hippocampal GSK3β as a Molecular Link Between Obesity and Depression. Mol Neurobiol 2014; 52:363-74. [PMID: 25169083 DOI: 10.1007/s12035-014-8863-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/13/2014] [Indexed: 01/08/2023]
Abstract
Obesity is considered as a risk factor for mood disorders including depression. Nevertheless, the mechanisms underlying this association are not clearly understood. To address this issue, we investigated the impact of high-fat (HF)-diet-induced obesity on depressive-like behavior and on serotonin (5-HT)-dependent Akt/glycogen synthase kinase 3β (GSK3β) signaling in the dentate gyrus (DG) of the hippocampus, which has been associated with mood regulation. We first showed that a HF diet induced significant overweight and hyperglycemia as well as a depressive-like behavior in adult Wistar rats. By using an ex vivo approach on brain slices, we demonstrated that 5-HT activates the Akt/GSK3β cascade in the DG of control chow (C) diet-fed animals and that a 16-week HF diet feeding abolishes this activation, concurrently with a desensitization of leptin and insulin signaling in the same region. Furthermore, depressive-like behavior inversely correlated with 5-HT-induced phosphorylation of GSK3β in the subgranular neurons of the DG. Interestingly, a substitution of HF with C diet for 6 weeks induced a total loss of depressive symptoms, whereas body weight and glycemia remained significantly higher compared to control rats. In addition, food restoration led to a recovery of the Akt/GSK3β signaling pathway activation in the DG. In parallel, we observed a negative correlation between body weight and cell proliferation in the subgranular zone of the DG. To conclude, we provide evidence for a desensitization of 5-HT-induced Akt/GSK3β signaling and an impaired cell proliferation in the DG by HF diet, suggesting novel molecular mechanisms linking obesity to depression.
Collapse
Affiliation(s)
- Ioannis K Papazoglou
- Neuroendocrinologie Moléculaire de la Prise Alimentaire, University of Paris-Sud 11, UMR 8195, F-91405, Orsay, France
| | | | | | | | | |
Collapse
|
23
|
Faster, better, stronger: towards new antidepressant therapeutic strategies. Eur J Pharmacol 2014; 753:32-50. [PMID: 25092200 DOI: 10.1016/j.ejphar.2014.07.046] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/28/2014] [Accepted: 07/24/2014] [Indexed: 12/26/2022]
Abstract
Major depression is a highly prevalent disorder and is predicted to be the second leading cause of disease burden by 2020. Although many antidepressant drugs are currently available, they are far from optimal. Approximately 50% of patients do not respond to initial first line antidepressant treatment, while approximately one third fail to achieve remission following several pharmacological interventions. Furthermore, several weeks or months of treatment are often required before clinical improvement, if any, is reported. Moreover, most of the commonly used antidepressants have been primarily designed to increase synaptic availability of serotonin and/or noradrenaline and although they are of therapeutic benefit to many patients, it is clear that other therapeutic targets are required if we are going to improve the response and remission rates. It is clear that more effective, rapid-acting antidepressants with novel mechanisms of action are required. The purpose of this review is to outline the current strategies that are being taken in both preclinical and clinical settings for identifying superior antidepressant drugs. The realisation that ketamine has rapid antidepressant-like effects in treatment resistant patients has reenergised the field. Further, developing an understanding of the mechanisms underlying the rapid antidepressant effects in treatment-resistant patients by drugs such as ketamine may uncover novel therapeutic targets that can be exploited to meet the Olympian challenge of developing faster, better and stronger antidepressant drugs.
Collapse
|
24
|
de Bartolomeis A, Buonaguro EF, Iasevoli F, Tomasetti C. The emerging role of dopamine-glutamate interaction and of the postsynaptic density in bipolar disorder pathophysiology: Implications for treatment. J Psychopharmacol 2014; 28:505-26. [PMID: 24554693 DOI: 10.1177/0269881114523864] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aberrant synaptic plasticity, originating from abnormalities in dopamine and/or glutamate transduction pathways, may contribute to the complex clinical manifestations of bipolar disorder (BD). Dopamine and glutamate systems cross-talk at multiple levels, such as at the postsynaptic density (PSD). The PSD is a structural and functional protein mesh implicated in dopamine and glutamate-mediated synaptic plasticity. Proteins at PSD have been demonstrated to be involved in mood disorders pathophysiology and to be modulated by antipsychotics and mood stabilizers. On the other side, post-receptor effectors such as protein kinase B (Akt), glycogen synthase kinase-3 (GSK-3) and the extracellular signal-regulated kinase (Erk), which are implicated in both molecular abnormalities and treatment of BD, may interact with PSD proteins, and participate in the interplay of the dopamine-glutamate signalling pathway. In this review, we describe emerging evidence on the molecular cross-talk between dopamine and glutamate signalling in BD pathophysiology and pharmacological treatment, mainly focusing on dysfunctions in PSD molecules. We also aim to discuss future therapeutic strategies that could selectively target the PSD-mediated signalling cascade at the crossroads of dopamine-glutamate neurotransmission.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| |
Collapse
|
25
|
Salloum NC, McCarthy MJ, Leckband SG, Kelsoe JR. Towards the clinical implementation of pharmacogenetics in bipolar disorder. BMC Med 2014; 12:90. [PMID: 24885933 PMCID: PMC4039055 DOI: 10.1186/1741-7015-12-90] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/29/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Bipolar disorder (BD) is a psychiatric illness defined by pathological alterations between the mood states of mania and depression, causing disability, imposing healthcare costs and elevating the risk of suicide. Although effective treatments for BD exist, variability in outcomes leads to a large number of treatment failures, typically followed by a trial and error process of medication switches that can take years. Pharmacogenetic testing (PGT), by tailoring drug choice to an individual, may personalize and expedite treatment so as to identify more rapidly medications well suited to individual BD patients. DISCUSSION A number of associations have been made in BD between medication response phenotypes and specific genetic markers. However, to date clinical adoption of PGT has been limited, often citing questions that must be answered before it can be widely utilized. These include: What are the requirements of supporting evidence? How large is a clinically relevant effect? What degree of specificity and sensitivity are required? Does a given marker influence decision making and have clinical utility? In many cases, the answers to these questions remain unknown, and ultimately, the question of whether PGT is valid and useful must be determined empirically. Towards this aim, we have reviewed the literature and selected drug-genotype associations with the strongest evidence for utility in BD. SUMMARY Based upon these findings, we propose a preliminary panel for use in PGT, and a method by which the results of a PGT panel can be integrated for clinical interpretation. Finally, we argue that based on the sufficiency of accumulated evidence, PGT implementation studies are now warranted. We propose and discuss the design for a randomized clinical trial to test the use of PGT in the treatment of BD.
Collapse
Affiliation(s)
| | | | | | - John R Kelsoe
- Department of Psychiatry (0603), University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
26
|
Rentzsch J, Adli M, Wiethoff K, Gómez-Carrillo de Castro A, Gallinat J. Pretreatment anterior cingulate activity predicts antidepressant treatment response in major depressive episodes. Eur Arch Psychiatry Clin Neurosci 2014; 264:213-23. [PMID: 23873091 DOI: 10.1007/s00406-013-0424-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 07/08/2013] [Indexed: 01/01/2023]
Abstract
Major depressive disorder leads to substantial individual and socioeconomic costs. Despite the ongoing efforts to improve the treatment for this condition, a trial-and-error approach until an individually effective treatment is established still dominates clinical practice. Searching for clinically useful treatment response predictors is one of the most promising strategies to change this quandary therapeutic situation. This study evaluated the predictive value of a biological and a clinical predictor, as well as a combination of both. Pretreatment EEGs of 31 patients with a major depressive episode were analyzed with neuroelectric brain imaging technique to assess cerebral oscillations related to treatment response. Early improvement of symptoms served as a clinical predictor. Treatment response was assessed after 4 weeks of antidepressant treatment. Responders showed more slow-frequency power in the right anterior cingulate cortex compared to non-responders. Slow-frequency power in this region was found to predict response with good sensitivity (82 %) and specificity (100 %), while early improvement showed lower accuracy (73 % sensitivity and 65 % specificity). Combining both parameters did not further improve predictive accuracy. Pretreatment activity within the anterior cingulate cortex is related to antidepressive treatment response. Our results support the search for biological treatment response predictors using electric brain activity. This technique is advantageous due to its low individual and socioeconomic burden. The benefits of combining both, a clinically and a biologically based predictor, should be further evaluated using larger sample sizes.
Collapse
Affiliation(s)
- Johannes Rentzsch
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany,
| | | | | | | | | |
Collapse
|
27
|
Abstract
The high rate of non-responders to initial treatment with antidepressants requires subsequent treatment strategies such as augmentation of antidepressants. Clinical guidelines recommend lithium augmentation as a first-line treatment strategy for non-responding depressed patients. The objectives of this review were to discuss the current place of lithium augmentation in the management of treatment-resistant depression and to review novel findings concerning lithium's mechanisms of action. We conducted a comprehensive and critical review of randomized, placebo-controlled trials, controlled and naturalistic comparator studies, and continuation-phase and discontinuation studies of lithium augmentation in major depression. The outcomes of interest were efficacy, factors allowing outcome prediction and results from preclinical studies investigating molecular mechanisms of lithium action. Substantial efficacy of lithium augmentation in the acute treatment of major depression has been demonstrated in more than 30 open-label studies and 10 placebo-controlled trials. In a meta-analysis addressing the efficacy of lithium in 10 randomized, controlled trials, it had a significant positive effect versus placebo, with an odds ratio of 3.11 corresponding to a number-needed-to-treat (NNT) of 5 and a mean response rate of 41.2% (versus 14.4% in the placebo group). The main limitations of these studies were the relatively small numbers of study participants and the fact that most studies included augmentation of tricyclic antidepressants, which are not in widespread use anymore. Evidence from continuation-phase studies is sparse but suggests that lithium augmentation should be maintained in the lithium-antidepressant combination for at least 1 year to prevent early relapses. Concerning outcome prediction, single studies have reported associations of better outcome rates with more severe depressive symptomatology, significant weight loss, psychomotor retardation, a history of more than three major depressive episodes and a family history of major depression. Additionally, one study suggested a predictive role of the -50T/C single nucleotide polymorphism of the glycogen synthase kinase 3 beta (GSK3B) gene in the probability of response to lithium augmentation. With regard to novel mechanisms of action, GABAergic, neurotrophic and genetic effects might explain the effects of lithium augmentation. In conclusion, augmentation of antidepressants with lithium remains a first-line, evidence-based management option for patients with major depression who have not responded adequately to antidepressants. While the mechanisms of action are currently widely studied, further clinical research on the role of lithium potentiation of the current generation of antidepressants is warranted to reinforce its role as a gold-standard treatment for patients who respond inadequately to antidepressants.
Collapse
|
28
|
Can A, Schulze TG, Gould TD. Molecular actions and clinical pharmacogenetics of lithium therapy. Pharmacol Biochem Behav 2014; 123:3-16. [PMID: 24534415 DOI: 10.1016/j.pbb.2014.02.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 12/21/2022]
Abstract
Mood disorders, including bipolar disorder and depression, are relatively common human diseases for which pharmacological treatment options are often not optimal. Among existing pharmacological agents and mood stabilizers used for the treatment of mood disorders, lithium has a unique clinical profile. Lithium has efficacy in the treatment of bipolar disorder generally, and in particular mania, while also being useful in the adjunct treatment of refractory depression. In addition to antimanic and adjunct antidepressant efficacy, lithium is also proven effective in the reduction of suicide and suicidal behaviors. However, only a subset of patients manifests beneficial responses to lithium therapy and the underlying genetic factors of response are not exactly known. Here we discuss preclinical research suggesting mechanisms likely to underlie lithium's therapeutic actions including direct targets inositol monophosphatase and glycogen synthase kinase-3 (GSK-3) among others, as well as indirect actions including modulation of neurotrophic and neurotransmitter systems and circadian function. We follow with a discussion of current knowledge related to the pharmacogenetic underpinnings of effective lithium therapy in patients within this context. Progress in elucidation of genetic factors that may be involved in human response to lithium pharmacology has been slow, and there is still limited conclusive evidence for the role of a particular genetic factor. However, the development of new approaches such as genome-wide association studies (GWAS), and increased use of genetic testing and improved identification of mood disorder patients sub-groups will lead to improved elucidation of relevant genetic factors in the future.
Collapse
Affiliation(s)
- Adem Can
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Thomas G Schulze
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
29
|
Severino G, Squassina A, Costa M, Pisanu C, Calza S, Alda M, Del Zompo M, Manchia M. Pharmacogenomics of bipolar disorder. Pharmacogenomics 2014; 14:655-74. [PMID: 23570469 DOI: 10.2217/pgs.13.51] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bipolar disorder (BD) is a lifelong severe psychiatric condition with high morbidity, disability and excess mortality. The longitudinal clinical trajectory of BD is significantly modified by pharmacological treatment(s), both in acute and in long-term stages. However, a large proportion of BD patients have inadequate response to pharmacological treatments. Pharmacogenomic research may lead to the identification of molecular predictors of treatment response. When integrated with clinical information, pharmacogenomic findings may be used in the future to determine the probability of response/nonresponse to treatment on an individual basis. Here we present a selective review of pharmacogenomic findings in BD. In light of the evidence suggesting a genetic effect of lithium reponse in BD, we focused particularly on the pharmacogenomic literature relevant to this trait. The article contributes a detailed overview of the current status of pharmacogenomics in BD and offers a perspective on the challenges that can hinder its transition to personalized healthcare.
Collapse
Affiliation(s)
- Giovanni Severino
- Laboratory of Molecular Genetics, Section of Neuroscience & Clinical Pharmacology, Department of Biomedical Sciences, Sp 8, Sestu-Monserrato, Km 0.700 CA, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Fabbri C, Porcelli S, Serretti A. From pharmacogenetics to pharmacogenomics: the way toward the personalization of antidepressant treatment. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2014; 59:62-75. [PMID: 24881125 PMCID: PMC4079233 DOI: 10.1177/070674371405900202] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Major depressive disorder is the most common psychiatric disorder, worldwide, yet response and remission rates are still unsatisfactory. The identification of genetic predictors of antidepressant (AD) response could provide a promising opportunity to improve current AD efficacy through the personalization of treatment. The major steps and findings along this path are reviewed together with their clinical implications and limitations. METHOD We systematically reviewed the literature through MEDLINE and Embase database searches, using any word combination of "antidepressant," "gene," "polymorphism," "pharmacogenetics," "genome-wide association study," "GWAS," "response," and "adverse drug reactions." Experimental works and reviews published until March 2012 were collected and compared. RESULTS Numerous genes pertaining to several functional systems were associated with AD response. The more robust findings were found for the following genes: solute carrier family 6 (neurotransmitter transporter), member 4; serotonin receptor 1A and 2A; brain-derived neurotrophic factor; and catechol-O-methyltransferase. Genome-wide association studies (GWASs) provided many top markers, even if none of them reached genome-wide significance. CONCLUSIONS AD pharmacogenetics have not produced any knowledge applicable to routine clinical practice yet, as results were mainly inconsistent across studies. Despite this, the rising awareness about methodological deficits of past studies could allow for the identication of more suitable strategies, such as the integration of the GWAS approach with the candidate gene approach, and innovative methodologies, such as pathway analysis and study of depressive endophenotypes.
Collapse
Affiliation(s)
- Chiara Fabbri
- Researcher, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Stefano Porcelli
- Researcher, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Professor, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
31
|
Beurel E. Regulation of inflammation and T cells by glycogen synthase kinase-3: links to mood disorders. Neuroimmunomodulation 2014; 21:140-4. [PMID: 24557047 PMCID: PMC4136426 DOI: 10.1159/000356550] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Accumulative evidence shows a role of the immune system in susceptibility to depression. Proinflammatory cytokines have been shown to be involved in the induction of depressive behavior both in humans and mice, opening a new avenue of therapeutic strategy. Because glycogen synthase kinase-3 (GSK3) was recently identified to be controlling the production of proinflammatory cytokines, and GSK3 has been shown to be implicated in mood disorders for many years, it has been proposed that the proinflammatory action of GSK3 could be responsible for the increased susceptibility to depressive behavior. Moreover, besides regulating cytokines, GSK3 also promotes differentiation of proinflammatory subtypes of Th cells, which are sufficient to induce depressive behavior in mice. Although the clear involvement of the immune system during depressive behavior still needs to be firmly demonstrated, there is growing evidence for the involvement of inflammation in the induction of depressive behavior.
Collapse
Affiliation(s)
- Eleonore Beurel
- University of Miami, Departments of Psychiatry and Biochemistry, 1011 NW 15th Street, Gautier room 415, Miami, FL 33136, phone: 305-243-0263
| |
Collapse
|
32
|
McCarthy MJ, Wei H, Marnoy Z, Darvish RM, McPhie DL, Cohen BM, Welsh DK. Genetic and clinical factors predict lithium's effects on PER2 gene expression rhythms in cells from bipolar disorder patients. Transl Psychiatry 2013; 3:e318. [PMID: 24150227 PMCID: PMC3818008 DOI: 10.1038/tp.2013.90] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/08/2013] [Indexed: 11/09/2022] Open
Abstract
Bipolar disorder (BD) is associated with abnormal circadian rhythms. In treatment responsive BD patients, lithium (Li) stabilizes mood and reduces suicide risk. Li also affects circadian rhythms and expression of 'clock genes' that control them. However, the extent to which BD, Li and the circadian clock share common biological mechanisms is unknown, and there have been few direct measurements of clock gene function in samples from BD patients. Hence, the role of clock genes in BD and Li treatment remains unclear. Skin fibroblasts from BD patients (N=19) or healthy controls (N=19) were transduced with Per2::luc, a rhythmically expressed, bioluminescent circadian clock reporter gene, and rhythms were measured for 5 consecutive days. Rhythm amplitude and period were compared between BD cases and controls with and without Li. Baseline period was longer in BD cases than in controls. Li 1 mM increased amplitude in controls by 36%, but failed to do so in BD cases. Li 10 mM lengthened period in both BD cases and controls. Analysis of clock gene variants revealed that PER3 and RORA genotype predicted period lengthening by Li, whereas GSK3β genotype predicted rhythm effects of Li, specifically among BD cases. Analysis of BD cases by clinical history revealed that cells from past suicide attempters were more likely to show period lengthening with Li 1 mM. Finally, Li enhanced the resynchronization of damped rhythms, suggesting a mechanism by which Li could act therapeutically in BD. Our work suggests that the circadian clock's response to Li may be relevant to molecular pathology of BD.
Collapse
Affiliation(s)
- M J McCarthy
- Psychiatry Service, Veterans Affairs San Diego Healthcare System, University of California, San Diego, CA, USA,Department of Psychiatry, University of California, San Diego, CA, USA,Center for Chronobiology, University of California, San Diego, CA, USA,Psychiatry Service, Veterans Affairs San Diego Healthcare System, University of California, 3350 La Jolla Village Drive, MC 116A, San Diego, 92161 CA, USA. E-mail:
| | - H Wei
- Psychiatry Service, Veterans Affairs San Diego Healthcare System, University of California, San Diego, CA, USA,Department of Psychiatry, University of California, San Diego, CA, USA,Center for Chronobiology, University of California, San Diego, CA, USA
| | - Z Marnoy
- Psychiatry Service, Veterans Affairs San Diego Healthcare System, University of California, San Diego, CA, USA,Department of Psychiatry, University of California, San Diego, CA, USA,Center for Chronobiology, University of California, San Diego, CA, USA
| | - R M Darvish
- Department of Psychiatry, University of California, San Diego, CA, USA,Center for Chronobiology, University of California, San Diego, CA, USA
| | - D L McPhie
- Harvard McLean Hospital, Belmont, MA, USA
| | - B M Cohen
- Harvard McLean Hospital, Belmont, MA, USA
| | - D K Welsh
- Psychiatry Service, Veterans Affairs San Diego Healthcare System, University of California, San Diego, CA, USA,Department of Psychiatry, University of California, San Diego, CA, USA,Center for Chronobiology, University of California, San Diego, CA, USA
| |
Collapse
|
33
|
Fabbri C, Di Girolamo G, Serretti A. Pharmacogenetics of antidepressant drugs: an update after almost 20 years of research. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:487-520. [PMID: 23852853 DOI: 10.1002/ajmg.b.32184] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 06/19/2013] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is an emergent cause of personal and socio-economic burden, both for the high prevalence of the disorder and the unsatisfying response rate of the available antidepressant treatments. No reliable predictor of treatment efficacy and tolerance in the single patient is available, thus drug choice is based on a trial and error principle with poor clinical efficiency. Among modulators of treatment outcome, genetic polymorphisms are thought to explain a significant share of the inter-individual variability. The present review collected the main pharmacogenetic findings primarily about antidepressant response and secondly about antidepressant induced side effects, and discussed the main strengths and limits of both candidate and genome-wide association studies and the most promising methodological opportunities and challenges of the field. Despite clinical applications of antidepressant pharmacogenetics are not available yet, previous findings suggest that genotyping may be applied in the clinical practice. In order to reach this objective, further rigorous pharmacogenetic studies (adequate sample size, study of better defined clinical subtypes of MDD, adequate covering of the genetic variability), their combination with the results obtained through complementary methodologies (e.g., pathway analysis, epigenetics, transcriptomics, and proteomics), and finally cost-effectiveness trials are required.
Collapse
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
34
|
Abstract
Chronotherapeutics refers to treatments based on the principles of circadian rhythm organization and sleep physiology, which control the exposure to environmental stimuli that act on biological rhythms, in order to achieve therapeutic effects in the treatment of psychiatric conditions. It includes manipulations of the sleep-wake cycle such as sleep deprivation and sleep phase advance, and controlled exposure to light and dark. The antidepressant effects of chronotherapeutics are evident in difficult-to-treat conditions such as bipolar depression, which has been associated with extremely low success rates of antidepressant drugs in naturalistic settings and with stable antidepressant response to chronotherapeutics in more than half of the patients. Recent advances in the study of the effects of chronotherapeutics on neurotransmitter systems, and on the biological clock machinery, allow us to pinpoint its mechanism of action and to transform it from a neglected or “orphan” treatment to a powerful clinical instrument in everyday psychiatric practice.
Collapse
Affiliation(s)
- Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
35
|
Bauer M, Pfennig A, Severus E, Whybrow PC, Angst J, Möller HJ. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of unipolar depressive disorders, part 1: update 2013 on the acute and continuation treatment of unipolar depressive disorders. World J Biol Psychiatry 2013; 14:334-85. [PMID: 23879318 DOI: 10.3109/15622975.2013.804195] [Citation(s) in RCA: 386] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES This 2013 update of the practice guidelines for the biological treatment of unipolar depressive disorders was developed by an international Task Force of the World Federation of Societies of Biological Psychiatry (WFSBP). The goal has been to systematically review all available evidence pertaining to the treatment of unipolar depressive disorders, and to produce a series of practice recommendations that are clinically and scientifically meaningful based on the available evidence. The guidelines are intended for use by all physicians seeing and treating patients with these conditions. METHODS The 2013 update was conducted by a systematic update literature search and appraisal. All recommendations were approved by the Guidelines Task Force. RESULTS This first part of the guidelines (Part 1) covers disease definition, classification, epidemiology, and course of unipolar depressive disorders, as well as the management of the acute and continuation phase treatment. It is primarily concerned with the biological treatment (including antidepressants, other psychopharmacological medications, electroconvulsive therapy, light therapy, adjunctive and novel therapeutic strategies) of adults. CONCLUSIONS To date, there is a variety of evidence-based antidepressant treatment options available. Nevertheless there is still a substantial proportion of patients not achieving full remission. In addition, somatic and psychiatric comorbidities and other special circumstances need to be more thoroughly investigated. Therefore, further high-quality informative randomized controlled trials are urgently needed.
Collapse
Affiliation(s)
- Michael Bauer
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
36
|
Rybakowski JK, Abramowicz M, Szczepankiewicz A, Michalak M, Hauser J, Czekalski S. The association of glycogen synthase kinase-3beta (GSK-3β) gene polymorphism with kidney function in long-term lithium-treated bipolar patients. Int J Bipolar Disord 2013; 1:8. [PMID: 25505675 PMCID: PMC4230305 DOI: 10.1186/2194-7511-1-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/31/2013] [Indexed: 11/10/2022] Open
Abstract
Background Most bipolar patients experience a reduction in urinary concentrating ability within a few weeks of starting lithium treatment. This phenomenon may be connected with the effect of lithium on the glycogen synthase kinase-3beta (GSK-3β) present in the renal tubules. The GSK-3β gene is located on chromosome 3q13 and possesses a functional -50 C/T polymorphism. In the present study, we estimated this polymorphism in a group of long-term lithium-treated patients and assessed its association with various parameters of kidney function, including novel markers of kidney injury such as serum neutrophil gelatinase-associated lipocalin (NGAL) and urinary beta2-microglobulin (β2-MG). Methods The study comprised 78 patients with bipolar mood disorder (25 males, 53 females), aged 36 to 82 (60 ± 11) years. The mean duration of bipolar illness was 6 to 50 (24 ± 10) years, and the patients have been receiving lithium for 5 to 38 (16 ± 9) years. All the patients had the following features, regarded as the phenotypes of kidney functions measured: urine examination for specific gravity evaluation, serum creatinine concentration, and estimated glomerular filtration rate (eGFR) evaluation, as well as the serum concentrations of NGAL and urinary β2-MG. Genotyping of GSK-3β gene -50 C/T polymorphism was done by polymerase chain reaction analysis. Results and discussion Thirty-four patients (6 males, 28 females) had the T/T genotype, 37 patients (16 males, 21 females) had the T/C genotype, and 7 patients (3 males, 4 females) had the C/C genotype. Patients homozygous for C allele had significantly higher urine specific gravities (1.019 ± 0.008) compared to the remaining genotypes (1.013 ± 0.007) (p = 0.035), with no influence of the duration of lithium treatment. Other parameters of kidney function (serum creatinine, eGFR, serum NGAL, and urinary β2-MG levels) were not different between genotypes and, again, were not affected by the duration of lithium treatment. There was no correlation between urine specific gravity and other kidney function parameters. The results of our study indicate that the GSK-3β genotype may be connected with lithium-induced impairment of renal concentrating ability in long-term lithium-treated bipolar patients. Limitations of the study include small size of the sample, small number of C/C genotype patients, and a lack of multiple testing analysis of genotypic differences in various measures of kidney function.
Collapse
Affiliation(s)
- Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, ul. Szpitalna 27/33, Poznan, 60-572 Poland
| | - Maria Abramowicz
- Department of Adult Psychiatry, Poznan University of Medical Sciences, ul. Szpitalna 27/33, Poznan, 60-572 Poland
| | - Aleksandra Szczepankiewicz
- Psychiatric Genetics Unit, Poznan University of Medical Sciences, ul. Szpitalna 27/33, Poznan, 60-572 Poland ; Laboratory of Molecular and Cell Biology, Poznan University of Medical Sciences, ul. Szpitalna 27/33, Poznan, 60-572 Poland
| | - Michal Michalak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, ul. Dabrowskiego 79, Poznan, 60-529 Poland
| | - Joanna Hauser
- Psychiatric Genetics Unit, Poznan University of Medical Sciences, ul. Szpitalna 27/33, Poznan, 60-572 Poland
| | - Stanislaw Czekalski
- Department of Nephrology, Transplantology and Internal Diseases, Poznan University of Medical Sciences, ul. Przybyszewskiego 49, Poznan, 60-355 Poland
| |
Collapse
|
37
|
Ozomaro U, Wahlestedt C, Nemeroff CB. Personalized medicine in psychiatry: problems and promises. BMC Med 2013; 11:132. [PMID: 23680237 PMCID: PMC3668172 DOI: 10.1186/1741-7015-11-132] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 04/19/2013] [Indexed: 01/29/2023] Open
Abstract
The central theme of personalized medicine is the premise that an individual's unique physiologic characteristics play a significant role in both disease vulnerability and in response to specific therapies. The major goals of personalized medicine are therefore to predict an individual's susceptibility to developing an illness, achieve accurate diagnosis, and optimize the most efficient and favorable response to treatment. The goal of achieving personalized medicine in psychiatry is a laudable one, because its attainment should be associated with a marked reduction in morbidity and mortality. In this review, we summarize an illustrative selection of studies that are laying the foundation towards personalizing medicine in major depressive disorder, bipolar disorder, and schizophrenia. In addition, we present emerging applications that are likely to advance personalized medicine in psychiatry, with an emphasis on novel biomarkers and neuroimaging.
Collapse
Affiliation(s)
- Uzoezi Ozomaro
- University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Claes Wahlestedt
- University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
- Center for Therapeutic Innovation, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Charles B Nemeroff
- University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
- Center for Therapeutic Innovation, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
38
|
O’Leary O, Zandy S, Dinan T, Cryan J. Lithium augmentation of the effects of desipramine in a mouse model of treatment-resistant depression: A role for hippocampal cell proliferation. Neuroscience 2013; 228:36-46. [DOI: 10.1016/j.neuroscience.2012.09.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 09/23/2012] [Accepted: 09/29/2012] [Indexed: 12/01/2022]
|
39
|
Lithium and GSK3-β promoter gene variants influence white matter microstructure in bipolar disorder. Neuropsychopharmacology 2013; 38:313-27. [PMID: 22990942 PMCID: PMC3527112 DOI: 10.1038/npp.2012.172] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lithium is the mainstay for the treatment of bipolar disorder (BD) and inhibits glycogen synthase kinase 3-β (GSK3-β). The less active GSK3-β promoter gene variants have been associated with less detrimental clinical features of BD. GSK3-β gene variants and lithium can influence brain gray matter structure in psychiatric conditions. Diffusion tensor imaging (DTI) measures of white matter (WM) integrity showed widespred disruption of WM structure in BD. In a sample of 70 patients affected by a major depressive episode in course of BD, we investigated the effect of ongoing long-term lithium treatment and GSK3-β promoter rs334558 polymorphism on WM microstructure, using DTI and tract-based spatial statistics with threshold-free cluster enhancement. We report that the less active GSK3-β rs334558*C gene-promoter variants, and the long-term administration of the GSK3-β inhibitor lithium, were associated with increases of DTI measures of axial diffusivity (AD) in several WM fiber tracts, including corpus callosum, forceps major, anterior and posterior cingulum bundle (bilaterally including its hippocampal part), left superior and inferior longitudinal fasciculus, left inferior fronto-occipital fasciculus, left posterior thalamic radiation, bilateral superior and posterior corona radiata, and bilateral corticospinal tract. AD reflects the integrity of axons and myelin sheaths. We suggest that GSK3-β inhibition and lithium could counteract the detrimental influences of BD on WM structure, with specific benefits resulting from effects on specific WM tracts contributing to the functional integrity of the brain and involving interhemispheric, limbic, and large frontal, parietal, and fronto-occipital connections.
Collapse
|
40
|
Sani G, Napoletano F, Forte AM, Kotzalidis GD, Panaccione I, Porfiri GM, Simonetti A, Caloro M, Girardi N, Telesforo CL, Serra G, Romano S, Manfredi G, Savoja V, Tamorri SM, Koukopoulos AE, Serata D, Rapinesi C, Casale AD, Nicoletti F, Girardi P. The wnt pathway in mood disorders. Curr Neuropharmacol 2012; 10:239-53. [PMID: 23449817 PMCID: PMC3468878 DOI: 10.2174/157015912803217279] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/13/2012] [Accepted: 03/24/2012] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES To review the evidence of the involvement of the Wnt signalling pathway in mood disorders and in the action of drugs used to treat these disorders. METHODS We performed a careful PubMed search using as keywords all possible terms relevant to the Wnt pathway and crossing them with each of four areas, i.e., developmental effects, behavioural effects, mood disorders, and drugs used in their treatment. Papers were selected on the basis of their content and their data used for discussion. RESULTS Neurodevelopmental and behavioural data point to the possibility of involvement of the Wnt pathway in the pathophysiology of mood disorders. Clinical and post-mortem data are not sufficient to corroborate a definite role for Wnt alterations in any mood disorder. Combining genetic and pharmacological data, we may state that glycogen synthase kinase is the key molecule in bipolar disorder, as it is connected with many other signalling pathways that were shown to be involved in mood disorders, while Wnt molecules in the hippocampus appear to be mainly involved in depressive disorders. CONCLUSIONS Altered Wnt signalling may play a role in the pathophysiology of mood disorders, although not a central one. It is premature to draw conclusions regarding the possible usefulness of Wnt manipulations in the treatment of mood disorders.
Collapse
Affiliation(s)
- Gabriele Sani
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
| | - Flavia Napoletano
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Alberto Maria Forte
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- NEUROMED, Pozzilli, Isernia, Italy
| | - Giorgio D Kotzalidis
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Isabella Panaccione
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- NEUROMED, Pozzilli, Isernia, Italy
| | - Giulio Maria Porfiri
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Alessio Simonetti
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
| | - Matteo Caloro
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Nicoletta Girardi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Carla Ludovica Telesforo
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Giulia Serra
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
| | - Silvia Romano
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Giovanni Manfredi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Valeria Savoja
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Stefano Maria Tamorri
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Alexia E Koukopoulos
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
| | - Daniele Serata
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Chiara Rapinesi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- Department of Neuropsychiatry, Villa Rosa, Suore Hospitaliere of the Sacred Heart of Jesus, Viterbo, Italy
| | - Antonio Del Casale
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Ferdinando Nicoletti
- NEUROMED, Pozzilli, Isernia, Italy
- Department of Neuropharmacology, Sapienza University, School of Medicine and Pharmacy, Rome, Italy
| | - Paolo Girardi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| |
Collapse
|
41
|
Freland L, Beaulieu JM. Inhibition of GSK3 by lithium, from single molecules to signaling networks. Front Mol Neurosci 2012; 5:14. [PMID: 22363263 PMCID: PMC3282483 DOI: 10.3389/fnmol.2012.00014] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 01/31/2012] [Indexed: 12/16/2022] Open
Abstract
For more than 60 years, the mood stabilizer lithium has been used alone or in combination for the treatment of bipolar disorder, schizophrenia, depression, and other mental illnesses. Despite this long history, the molecular mechanisms trough which lithium regulates behavior are still poorly understood. Among several targets, lithium has been shown to directly inhibit glycogen synthase kinase 3 alpha and beta (GSK3α and GSK3β). However in vivo, lithium also inhibits GSK3 by regulating other mechanisms like the formation of a signaling complex comprised of beta-arrestin 2 (βArr2) and Akt. Here, we provide an overview of in vivo evidence supporting a role for inhibition of GSK3 in some behavioral effects of lithium. We also explore how regulation of GSK3 by lithium within a signaling network involving several molecular targets and cell surface receptors [e.g., G protein coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs)] may provide cues to its relative pharmacological selectivity and its effects on disease mechanisms. A better understanding of these intricate actions of lithium at a systems level may allow the rational development of better mood stabilizer drugs with enhanced selectivity, efficacy, and lesser side effects.
Collapse
Affiliation(s)
- Laure Freland
- Faculty of Medicine, Departments of Psychiatry and Neuroscience, Université Laval, Québec QC, Canada
| | | |
Collapse
|
42
|
Effect of a chronic treatment with 17β-estradiol on striatal dopamine neurotransmission and the Akt/GSK3 signaling pathway in the brain of ovariectomized monkeys. Psychoneuroendocrinology 2012; 37:280-91. [PMID: 21763075 DOI: 10.1016/j.psyneuen.2011.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 05/03/2011] [Accepted: 06/16/2011] [Indexed: 02/07/2023]
Abstract
The present experiments sought the effect of chronic treatment with 17β-estradiol on striatal dopaminergic activity and the Akt/GSK3 signaling pathway in the brain of monkeys. Eight female monkeys (Macacca fascicularis) were ovariectomized (OVX) and a month later, half received a month treatment with 17β-estradiol and the other with vehicle. The DA transporter (DAT) was measured by autoradiography with [(125)I]RTI-121 and the vesicular DA transporter (VMAT(2)) with [(3)H]TBZ-OH at three rostro-caudal levels (anterior, middle and posterior) of the caudate nucleus and putamen subdivided in their lateral/medial, ventral/dorsal sub-regions. Specific binding to DAT was increased in all sub-regions of the caudate nucleus and the putamen of 17β-estradiol-treated compared to vehicle-treated monkeys whereas specific binding to VMAT(2) remained unchanged. We measured by Western blot the phosphorylated forms of Akt at serine 473 and threonine 308, GSK3β at serine 9 and tyrosine 216 and GSK3α at serine 21 in anterior, middle and posterior caudate nucleus and putamen. 17β-Estradiol treatment increased in all the caudate nucleus and putamen pAkt (Ser473)/βIII-tubulin, pGSK3β (Ser9)/βIII-tubulin and in putamen Akt/βIII-tubulin compared to vehicle-treated monkeys. In anterior and middle putamen, pAkt (Thr308)/βIII-tubulin was also increased in monkeys treated with 17β-estradiol. pGSK3β (Tyr216)/βIII-tubulin and pGSK3α (Ser21)/βIII-tubulin remained unchanged by the 17β-estradiol treatment. These results suggest that 17β-estradiol activates striatal DA neurotransmission in primates as reflected with increased DAT specific binding and downstream activation of Akt/GSK3 signaling. This supports a beneficial role of a chronic treatment with 17β-estradiol by increasing the activity of signaling pathways implicated in cell survival.
Collapse
|
43
|
Benedetti F, Dallaspezia S, Lorenzi C, Pirovano A, Radaelli D, Locatelli C, Poletti S, Colombo C, Smeraldi E. Gene-gene interaction of glycogen synthase kinase 3-β and serotonin transporter on human antidepressant response to sleep deprivation. J Affect Disord 2012; 136:514-9. [PMID: 22119086 DOI: 10.1016/j.jad.2011.10.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 02/02/2023]
Abstract
BACKGROUND Glycogen synthase kinase 3-β (GSK3-β) is involved in the control of cell behavior and in the mechanism of action of lithium and serotonergic antidepressants, and in humans a promoter variant (rs334558*C) was associated with reduced activity and better antidepressant response. The short form of a polymorphism in the promoter in the serotonin transporter (5-HTTLPR) has been consistently associated with worse antidepressant response. In animals the knockout of GSK3-β counteracts the depressive-like behavioral effects of 5-HT inhibition. METHODS With a translational approach, we studied the effect of 5-HTTLPR and rs334558 on antidepressant response to sleep deprivation in a unique sample of 122 patients affected by a major depressive episode in course of bipolar disorder. Mood was self rated on Visual Analog Scales, and severity of depression was rated on Montgomery-Asberg rating scale. RESULTS We observed a triple interaction of 5-HTTLPR, rs334558 and treatment on severity of depression. While among rs334558 T/T homozygotes the best antidepressant response was associated with 5-HTTLPR l/l homozygosity, among the rs334558 C carriers the 5-HTTLPR s/s showed the best response to treatment. CONCLUSIONS A gene promoter polymorphism which reduces the activity of GSK3-β counteracts the detrimental influence of the short form of the 5-HT promoter on antidepressant response. A key component of Wnt pathway, and upstream of the mTOR signaling cascade, GSK3-β influences synaptic plasticity and cell resilience. Gene-gene interactions between components of the monoaminergic signal transduction pathways and of plasticity related pathways can shape the individual antidepressant response.
Collapse
Affiliation(s)
- Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute San Raffaele and University Vita-Salute, Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
McCarthy MJ, Leckband SG, Kelsoe JR. Pharmacogenetics of lithium response in bipolar disorder. Pharmacogenomics 2011; 11:1439-65. [PMID: 21047205 DOI: 10.2217/pgs.10.127] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bipolar disorder (BD) is a serious mental illness with well-established, but poorly characterized genetic risk. Lithium is among the best proven mood stabilizer therapies for BD, but treatment responses vary considerably. Based upon these and other findings, it has been suggested that lithium-responsive BD may be a genetically distinct phenotype within the mood disorder spectrum. This assertion has practical implications both for the treatment of BD and for understanding the neurobiological basis of the illness: genetic variation within lithium-sensitive signaling pathways may confer preferential treatment response, and the involved genes may underlie BD in some individuals. Presently, the mechanism of lithium is reviewed with an emphasis on gene-expression changes in response to lithium. Within this context, findings from genetic-association studies designed to identify lithium response genes in BD patients are evaluated. Finally, a framework is proposed by which future pharmacogenetic studies can incorporate advances in genetics, molecular biology and bioinformatics in a pathway-based approach to predicting lithium treatment response.
Collapse
Affiliation(s)
- Michael J McCarthy
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
45
|
McCarthy MJ, Nievergelt CM, Shekhtman T, Kripke DF, Welsh DK, Kelsoe JR. Functional genetic variation in the Rev-Erbα pathway and lithium response in the treatment of bipolar disorder. GENES BRAIN AND BEHAVIOR 2011; 10:852-61. [PMID: 21781277 DOI: 10.1111/j.1601-183x.2011.00725.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bipolar disorder (BD) is characterized by disruptions in circadian rhythms such as sleep and daily activity that often normalize after lithium treatment in responsive patients. As lithium is known to interact with the circadian clock, we hypothesized that variation in circadian 'clock genes' would be associated with lithium response in BD. We determined genotype for 16 variants in seven circadian clock genes and conducted a candidate gene association study of these in 282 Caucasian patients with BD who were previously treated with lithium. We found that a variant in the promoter of NR1D1 encoding Rev-Erbα (rs2071427) and a second variant in CRY1 (rs8192440) were nominally associated with good treatment response. Previous studies have shown that lithium regulates Rev-Erbα protein stability by inhibiting glycogen synthase kinase 3β (GSK3β). We found that GSK3β genotype was also suggestive of a lithium response association, but not statistically significant. However, when GSK3β and NR1D1 genotypes were considered together, they predicted lithium response robustly and additively in proportion to the number of response-associated alleles. Using lymphoblastoid cell lines from patients with BD, we found that both the NR1D1 and GSK3β variants are associated with functional differences in gene expression. Our findings support a role for Rev-Erbα in the therapeutic mechanism of lithium and suggest that the interaction between Rev-Erbα and GSK3β may warrant further study.
Collapse
Affiliation(s)
- M J McCarthy
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
46
|
Tsutsumi T, Terao T, Hatanaka K, Goto S, Hoaki N, Wang Y. Association between affective temperaments and brain-derived neurotrophic factor, glycogen synthase kinase 3β and Wnt signaling pathway gene polymorphisms in healthy subjects. J Affect Disord 2011; 131:353-7. [PMID: 21115199 DOI: 10.1016/j.jad.2010.10.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 10/10/2010] [Accepted: 10/12/2010] [Indexed: 11/29/2022]
Abstract
BACKGROUND There is increased attention towards elucidating genetic factors that underlie both psychiatric diseases as well as healthy psychological phenomena. Recent evidence suggests that temperamental traits, including affective temperaments, are heritable and associated with genetic polymorphisms. Genetic research examining affective temperaments using the Temperament Evaluation of the Memphis, Pisa, Paris, and San Diego Autoquestionnaire (TEMPS-A) may therefore elucidate the concept of a spectrum of mood disorders and the genetic relationship between affective temperaments and mood disorders. The purpose of this study was to examine the association between brain-derived neurotrophic factor (BDNF), glycogen synthase kinase 3β(GSK3β) and Wnt signaling pathway (Wnt) gene polymorphisms and affective temperaments in non-clinical Japanese subjects, as measured by TEMPS-A. METHODS 44 healthy Japanese subjects were recruited through our university hospital and completed the TEMPS-A. We genotyped three SNPs (single nucleotide polymorphisms) from the BDNF, GSK3βand Wnt genes in order to test the relationship between these gene variants and five affective temperaments measured by the TEMPS-A. RESULTS No significant difference in the frequency of alleles between affective temperaments (depressive, cyclothymic, hyperthymic, irritable and anxious temperament) and non affective temperaments was shown. One-way analysis of variance (ANOVA) revealed no significant differences among 5 groups (depressive, cyclothymic, hyperthymic, irritable and anxious temperament) in healthy subjects for all the scores of affective temperaments by TEMPS-A. LIMITATIONS The number of subjects was relatively small. CONCLUSIONS The variant of BDNF, GSK3β and Wnt gene polymorphism might not be related to the five temperaments of TEMPS-A and TEMPS-A score in healthy Japanese subjects. The present results suggest that BDNF, GSK3βand Wnt genes, might not have a major role in the development of personality traits. Further studies with larger sample size are warranted to evaluate the association of affective temperament and gene polymorphisms.
Collapse
Affiliation(s)
- Takashi Tsutsumi
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Bipolar disorder is a complex psychiatric condition that has been shown to carry a great degree of genetic loading. This review addresses current research in the genetics of treatment response in bipolar disorder, with a focus on findings that have shaped our understanding of the changing direction of this field in light of recent technological advancements. RECENT FINDINGS The recent publications in bipolar disorder treatment response have helped consolidate or improve upon knowledge of susceptibility loci and genes in the field. There seems to be an increasing trend toward functionally assessing the role played by putative candidate genes and molecular factors modulating expression in bipolar disorder, as well as a movement toward more global, pathway and genome-wide-oriented research. SUMMARY Genetic and molecular research to date in bipolar disorder treatment response has not completely answered all the lingering questions in the field, but has contributed to the development of a more patient-based understanding of treatment. In order to apply these findings at a clinical level, more comprehensive treatment response studies are imperative, combining recent advances in high-throughput genomics with functional molecular research.
Collapse
|
48
|
Abstract
Little is known regarding the mechanisms underlying the complex etiology of mood disorders, represented mainly by major depressive disorder and bipolar disorder. The 1996 discovery that lithium inhibits glycogen synthase kinase-3 (GSK3) raised the possibility that impaired inhibition of GSK3 is associated with mood disorders. This is now supported by evidence from animal biochemical, pharmacological, molecular, and behavioral studies and from human post-mortem brain, peripheral tissue, and genetic studies that are reviewed here. Mood disorders may result in part from impairments in mechanisms controlling the activity of GSK3 or GSK3-regulated functions, and disruptions of these regulating systems at different signaling sites may contribute to the heterogeneity of mood disorders. This substantial evidence supports the conclusion that bolstering the inhibitory control of GSK3 is an important component of the therapeutic actions of drugs used to treat mood disorders and that GSK3 is a valid target for developing new therapeutic interventions.
Collapse
|
49
|
Okamoto H, Voleti B, Banasr M, Sarhan M, Duric V, Girgenti MJ, Dileone RJ, Newton SS, Duman RS. Wnt2 expression and signaling is increased by different classes of antidepressant treatments. Biol Psychiatry 2010; 68:521-7. [PMID: 20570247 PMCID: PMC2929274 DOI: 10.1016/j.biopsych.2010.04.023] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/09/2010] [Accepted: 04/15/2010] [Indexed: 12/19/2022]
Abstract
BACKGROUND Despite recent interest in glycogen synthase kinase-3beta (GSK-3beta) as a target for the treatment of mood disorders, there has been very little work related to these illnesses on the upstream signaling molecules that regulate this kinase as well as downstream targets. METHODS With a focused microarray approach we examined the influence of different classes of antidepressants on Wnt signaling that controls GSK-3beta activity as well as the transcription factors that contribute to the actions of GSK-3beta. RESULTS The results demonstrate that Wnt2 is a common target of different classes of antidepressants and also show differential regulation of Wnt-GSK-3beta signaling genes. Increased expression and function of Wnt2 was confirmed by secondary measures. Moreover, with a viral vector approach we demonstrate that increased expression of Wnt2 in the hippocampus is sufficient to produce antidepressant-like behavioral actions in well-established models of depression and treatment response. CONCLUSIONS These findings demonstrate that Wnt2 expression and signaling is a common target of antidepressants and that increased Wnt2 is sufficient to produce antidepressant effects.
Collapse
Affiliation(s)
- Hideki Okamoto
- Connecticut Mental Health Center, Yale University School of Medicine, New Haven, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Saus E, Soria V, Escaramís G, Crespo JM, Valero J, Gutiérrez-Zotes A, Martorell L, Vilella E, Menchón JM, Estivill X, Gratacòs M, Urretavizcaya M. A haplotype of glycogen synthase kinase 3β is associated with early onset of unipolar major depression. GENES BRAIN AND BEHAVIOR 2010; 9:799-807. [PMID: 20618448 DOI: 10.1111/j.1601-183x.2010.00617.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recent findings suggest that glycogen synthase kinase 3β (GSK3β) may play a role in the pathophysiology and treatment of mood disorders. Various genetic studies have shown the association of GSK3β polymorphisms with different mood disorder phenotypes. We hypothesized that genetic variants in the GSK3β gene could partially underlie the susceptibility to mood disorders. We performed a genetic case-control study of 440 psychiatrically screened control subjects and 445 mood disorder patients [256 unipolar major depressive disorder (MDD) and 189 bipolar disorder (BD)]. We genotyped a set of 11 single nucleotide polymorphisms (SNPs) and determined the relative frequency of a known copy number variant (CNV) overlapping the GSK3β by quantitative real-time polymerase chain reaction (PCR). We found no evidence of association with MDD or BD diagnosis, and we further investigated the age at onset (AAO) of the disorder and severity of depressive index episode. We found that rs334555, located in intron 1 of GSK3β, was nominally associated with an earlier AAO of the disease in MDD (P = 0.001). We also identified a haplotype containing three SNPs (rs334555, rs119258668 and rs11927974) associated with AAO of the disorder (permutated P = 0.0025). We detected variability for the CNV, but we could not detect differences between patients and controls for any of the explored phenotypes. This study presents further evidence of the contribution of GSK3β to mood disorders, implicating a specific SNP and a haplotype with an earlier onset of the disorder in a group of well-characterized patients with unipolar MDD. Further replication studies in patients with the same phenotypic characteristics should confirm the results reported here.
Collapse
Affiliation(s)
- E Saus
- Genes and Disease Program, Center for Genomic Regulation (CRG-UPF), CIBER en Epidemiología y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|