1
|
Flores-Ramirez FJ, Illenberger JM, Martin-Fardon R. Interaction between corticotropin-releasing factor, orexin, and dynorphin in the infralimbic cortex may mediate exacerbated alcohol-seeking behavior. Neurobiol Stress 2024; 33:100695. [PMID: 39640001 PMCID: PMC11617300 DOI: 10.1016/j.ynstr.2024.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
A major challenge for the treatment of alcohol use disorder (AUD) is relapse to alcohol use, even after protracted periods of self-imposed abstinence. Stress significantly contributes to the chronic relapsing nature of AUD, given its long-lasting ability to elicit intense craving and precipitate relapse. As individuals transition to alcohol dependence, compensatory allostatic mechanisms result in insults to hypothalamic-pituitary-adrenal axis function, mediated by corticotropin-releasing factor (CRF), which is subsequently hypothesized to alter brain reward pathways, influence affect, elicit craving, and ultimately perpetuate problematic drinking and relapse vulnerability. Orexin (OX; also called hypocretin) plays a well-established role in regulating diverse physiological processes, including stress, and has been shown to interact with CRF. Interestingly, most hypothalamic cells that express Ox mRNA also express Pdyn mRNA. Both dynorphin and OX are located in the same synaptic vesicles, and they are co-released. The infralimbic cortex (IL) of the medial prefrontal cortex (mPFC) has emerged as being directly involved in the compulsive nature of alcohol consumption during dependence. The IL is a CRF-rich region that receives OX projections from the hypothalamus and where OX receptor mRNA has been detected. Although not thoroughly understood, anatomical and behavioral pharmacology data suggest that CRF, OX, and dynorphin may interact, particularly in the IL, and that functional interactions between these three systems in the IL may be critical for the etiology and pervasiveness of compulsive alcohol seeking in dependent subjects that may render them vulnerable to relapse. The present review presents evidence of the role of the IL in AUD and discusses functional interactions between CRF, OX, and dynorphin in this structure and how they are related to exacerbated alcohol drinking and seeking.
Collapse
Affiliation(s)
- Francisco J. Flores-Ramirez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Psychology, California State University, San Marcos, CA, USA
| | | | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
2
|
Esmaili-Shahzade-Ali-Akbari P, Ghaderi A, Sadeghi A, Nejat F, Mehramiz A. The Role of Orexin Receptor Antagonists in Inhibiting Drug Addiction: A Review Article. ADDICTION & HEALTH 2024; 16:130-139. [PMID: 39051042 PMCID: PMC11264478 DOI: 10.34172/ahj.2024.1491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 04/15/2024] [Indexed: 07/27/2024]
Abstract
The orexinergic system and its receptors are involved in many physiological processes. Their functions in energy homeostasis, arousal, cognition, stress processing, endocrine functions, and pain modulation have been investigated. Many studies have shown that the orexinergic system cooperates with the dopaminergic system in the addiction process. Emerging evidence suggests that the orexinergic system can be effective in the induction of drug dependence and tolerance. Therefore, several researches have been conducted on the effect of orexin receptor (OXR) antagonists on reducing tolerance and dependence caused by drug abuse. Due to the significant growth of the studies on the orexinergic system, the current literature was conducted to collect the findings of previous studies on orexin and its receptors in the induction of drug addiction. In addition, cellular and molecular mechanisms of the possible role of orexin in drug tolerance and dependence are discussed. The findings indicate that the administration of OXR antagonists reduces drug dependence. OXR blockers seem to counteract the addictive effects of drugs through multiple mechanisms, such as preventing neuronal adaptation. This review proposes the potential clinical use of OXR antagonists in the treatment of drug dependence.
Collapse
Affiliation(s)
- Peyman Esmaili-Shahzade-Ali-Akbari
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Atena Sadeghi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Fatemeh Nejat
- Department of Biology and Health Sciences, Meredith College, Raleigh, North Carolina, USA
| | - Alireza Mehramiz
- Department of Physical Therapy, Faculty of Paramedical and Rehabilitation Science, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Xia L, Liu HY, Wang BY, Lin HN, Wang MC, Ren JX. A review of physiological functions of orexin: From instinctive responses to subjective cognition. Medicine (Baltimore) 2023; 102:e34206. [PMID: 37390267 PMCID: PMC10313292 DOI: 10.1097/md.0000000000034206] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
Orexin, also known as hypocretin, is an excitatory neuropeptide secreted by the hypothalamus. Orexin is divided into orexin-A (OXA) and orexin-B (OXB), which are derived from a common precursor secreted by hypothalamic neurons. Orexin acts on orexin receptor-1 (OX1R) and orexin receptor-2 (OX2R). Orexin neurons, as well as receptors, are widely distributed in various regions of the brain as well as in the peripheral system and have a wider range of functions. This paper reviews the latest research results of orexin in the aspects of food intake, sleep, addiction, depression and anxiety. Because orexin has certain physiological functions in many systems, we further explored the possibility of orexin as a new target for the treatment of bulimia, anorexia nervosa, insomnia, lethargy, anxiety and depression. It is precisely because orexin has physiological functions in multiple systems that orexin, as a new target for the treatment of the above diseases, has potential contradictions. For example, it promotes the function of 1 system and may inhibit the function of another system. How to study a new drug, which can not only treat the diseases of this system, but also do not affect other system functions, is what we need to focus on.
Collapse
Affiliation(s)
- LiBo Xia
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Hai Yan Liu
- Department of Medical Section, Changchun Second Hospital, Changchun, China
| | - Bi Yan Wang
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Hai Ning Lin
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Meng Chen Wang
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Ji-Xiang Ren
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| |
Collapse
|
4
|
Flores-Ramirez FJ, Varodayan FP, Patel RR, Illenberger JM, Di Ottavio F, Roberto M, Martin-Fardon R. Blockade of orexin receptors in the infralimbic cortex prevents stress-induced reinstatement of alcohol-seeking behaviour in alcohol-dependent rats. Br J Pharmacol 2023; 180:1500-1515. [PMID: 36537731 PMCID: PMC10577928 DOI: 10.1111/bph.16015] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE A major problem managing alcohol use disorder is the high vulnerability to relapse, even after long periods of abstinence. Chronic alcohol use dysregulates stress responsivity, rendering this system hyporesponsive and making individuals vulnerable to relapse. Orexin (hypocretin) plays a role in diverse physiological processes, including stress. Orexin neurons in the hypothalamus, project to the infralimbic cortex. This study asked does infralimbic cortex orexin transmission play a significant role in stress-induced reinstatement of alcohol-seeking behaviour in alcohol-dependent rats. EXPERIMENTAL APPROACH Male and female rats were trained to self-administer 10% alcohol (3 weeks) and then made dependent via chronic intermittent alcohol vapour exposure. Following extinction (5 days·week-1 at 8 h abstinence for 10 sessions), rats received an intra- infralimbic cortex microinfusion of the OX1/2 antagonist TCS 1102 (15 μg/0.5 μl per side) and then tested for footshock stress-induced reinstatement of alcohol seeking. In a separate cohort, orexin regulation of infralimbic cortex neuronal activity at the time of reinstatement was investigated using ex vivo electrophysiology. KEY RESULTS TCS 1102 prevented reinstatement in dependent animals only. Moreover, Hcrtr mRNA expression in the hypothalamus and Hcrtr1/2 in the infralimbic cortex increased in alcohol-dependent animals at the time of testing. Dependence dampened basal orexin/OX receptor influence over infralimbic cortex GABAergic synapses (using TCS 1102) allow for greater stimulated orexin effects. CONCLUSION AND IMPLICATIONS Infralimbic cortex transmission is implicate in stress-induced reinstatement of alcohol-seeking behaviour in subjects with a history of alcohol dependence and show maladaptive recruitment of infralimbic cortex transmission by alcohol dependence.
Collapse
Affiliation(s)
| | - Florence P. Varodayan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Reesha R. Patel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Francesca Di Ottavio
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
5
|
Ten-Blanco M, Flores Á, Cristino L, Pereda-Pérez I, Berrendero F. Targeting the orexin/hypocretin system for the treatment of neuropsychiatric and neurodegenerative diseases: from animal to clinical studies. Front Neuroendocrinol 2023; 69:101066. [PMID: 37015302 DOI: 10.1016/j.yfrne.2023.101066] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
Orexins (also known as hypocretins) are neuropeptides located exclusively in hypothalamic neurons that have extensive projections throughout the central nervous system and bind two different G protein-coupled receptors (OX1R and OX2R). Since its discovery in 1998, the orexin system has gained the interest of the scientific community as a potential therapeutic target for the treatment of different pathological conditions. Considering previous basic science research, a dual orexin receptor antagonist, suvorexant, was the first orexin agent to be approved by the US Food and Drug Administration to treat insomnia. In this review, we discuss and update the main preclinical and human studies involving the orexin system with several psychiatric and neurodegenerative diseases. This system constitutes a nice example of how basic scientific research driven by curiosity can be the best route to the generation of new and powerful pharmacological treatments.
Collapse
Affiliation(s)
- Marc Ten-Blanco
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - África Flores
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona and Bellvitge University Hospital-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Inmaculada Pereda-Pérez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando Berrendero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
6
|
Flores-Ramirez FJ, Illenberger JM, Pascasio GE, Matzeu A, Mason BJ, Martin-Fardon R. Alternative use of suvorexant (Belsomra ®) for the prevention of alcohol drinking and seeking in rats with a history of alcohol dependence. Front Behav Neurosci 2022; 16:1085882. [PMID: 36620860 PMCID: PMC9813433 DOI: 10.3389/fnbeh.2022.1085882] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Alcohol use disorder (AUD) is one of the most treatment-resistant medical conditions globally. The orexin (Orx) system regulates diverse physiological processes, including stress, and is a system of interest for the development of pharmaceuticals to treat substance use disorders, particularly AUD. The present study tested the ability of the dual orexin receptor antagonist suvorexant (SUV), marketed by Merck as Belsomra®, for the treatment of insomnia, to decrease alcohol self-administration and the stress-induced reinstatement of alcohol-seeking behavior in male Wistar rats with a history of alcohol dependence. Rats were trained to orally self-administer 10% alcohol (30 min/day for 3 weeks) and were either made dependent via chronic intermittent alcohol vapor exposure (14 h ON, 10 h OFF) for 6 weeks or exposed to air (non-dependent). Starting on week 7, the effect of SUV (0-20 mg/kg, p.o.) was tested on alcohol self-administration at acute abstinence (8 h after vapor was turned OFF) twice weekly. A separate cohort of rats that were prepared in parallel was removed from alcohol vapor exposure and then subjected to extinction training for 14 sessions. Once extinction was achieved, the rats received SUV (0 and 5 mg/kg, p.o.) and were tested for the footshock stress-induced reinstatement of alcohol-seeking behavior. Suvorexant at 5, 10, and 20 mg/kg selectively decreased alcohol intake in dependent rats. Furthermore, 5 mg/kg SUV prevented the stress-induced reinstatement of alcohol-seeking behavior in dependent rats only. These results underscore the significance of targeting the Orx system for the treatment of substance use disorders generally and suggest that repurposing SUV could be an alternative approach for the treatment of AUD.
Collapse
|
7
|
Gao XB, Horvath TL. From Molecule to Behavior: Hypocretin/orexin Revisited From a Sex-dependent Perspective. Endocr Rev 2022; 43:743-760. [PMID: 34792130 PMCID: PMC9277634 DOI: 10.1210/endrev/bnab042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/19/2022]
Abstract
The hypocretin/orexin (Hcrt/Orx) system in the perifornical lateral hypothalamus has been recognized as a critical node in a complex network of neuronal systems controlling both physiology and behavior in vertebrates. Our understanding of the Hcrt/Orx system and its array of functions and actions has grown exponentially in merely 2 decades. This review will examine the latest progress in discerning the roles played by the Hcrt/Orx system in regulating homeostatic functions and in executing instinctive and learned behaviors. Furthermore, the gaps that currently exist in our knowledge of sex-related differences in this field of study are discussed.
Collapse
Affiliation(s)
- Xiao-Bing Gao
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
8
|
Flores-Ramirez FJ, Matzeu A, Sánchez-Marín L, Martin-Fardon R. Blockade of corticotropin-releasing factor-1 receptors in the infralimbic cortex prevents stress-induced reinstatement of alcohol seeking in male Wistar rats: Evidence of interaction between CRF 1 and orexin receptor signaling. Neuropharmacology 2022; 210:109046. [PMID: 35341789 PMCID: PMC9176217 DOI: 10.1016/j.neuropharm.2022.109046] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
Alcohol use dysregulates responsivity to stress, which is mediated by corticotropin-releasing factor (CRF). With repeated cycles of alcohol use, the hypothalamic-pituitary-adrenal axis becomes hyporesponsive, rendering individuals vulnerable to the reinstatement of alcohol-seeking behavior during stressful episodes. Orexin (Orx; also called hypocretin) plays a well-established role in regulating diverse physiological processes, including stress, and interacts with CRF. The infralimbic cortex (IL) is a CRF-rich region. Anatomical evidence suggests that CRF and Orx interact in this area. To test the behavioral implication of CRF and Orx transmission in the IL during the stress-induced reinstatement of alcohol-seeking behavior, male Wistar rats were trained to self-administer 10% alcohol for 3 weeks. The rats then underwent two weeks of extinction training (identical to the alcohol self-administration sessions, but alcohol was withheld). The day after the last extinction session, the rats received a bilateral intra-IL injection of the CRF1 receptor antagonist CP154,526 (0.6 μg/0.5 μl/side), the dual Orx receptor antagonist TCS1102 (15 μg/0.5 μl/side), or their combination and then were tested for the footshock stress-induced reinstatement of alcohol-seeking behavior. CP154,526 significantly prevented reinstatement, but TCS1102 did not produce such an effect. Interestingly, the co-administration of TCS1102 and CP154,526 reversed the effect of CP154,526 alone, and footshock stress induced a significant increase in Crhr1 and Hcrtr2 mRNA expression in the IL. These results demonstrate a functional interaction between Orx receptor and CRF1 receptor signaling and suggest that CRF1 receptor antagonism may ameliorate stress-induced alcohol-seeking behavior.
Collapse
Affiliation(s)
| | - Alessandra Matzeu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Laura Sánchez-Marín
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
| | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
9
|
Matzeu A, Martin-Fardon R. Understanding the Role of Orexin Neuropeptides in Drug Addiction: Preclinical Studies and Translational Value. Front Behav Neurosci 2022; 15:787595. [PMID: 35126069 PMCID: PMC8811192 DOI: 10.3389/fnbeh.2021.787595] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022] Open
Abstract
Orexins (also known as hypocretins) are neuropeptides that participate in the regulation of energy metabolism, homeostasis, sleep, feeding, stress responses, arousal, and reward. Particularly relevant to the scope of the present review is the involvement of the orexin system in brain mechanisms that regulate motivation, especially highly motivated behavior, arousal, and stress, making it an ideal target for studying addiction and discovering treatments. Drug abuse and misuse are thought to induce maladaptive changes in the orexin system, and these changes might promote and maintain uncontrolled drug intake and contribute to relapse. Dysfunctional changes in this neuropeptidergic system that are caused by drug use might also be responsible for alterations of feeding behavior and the sleep-wake cycle that are commonly disrupted in subjects with substance use disorder. Drug addiction has often been associated with an increase in activity of the orexin system, suggesting that orexin receptor antagonists may be a promising pharmacological treatment for substance use disorder. Substantial evidence has shown that single orexin receptor antagonists that are specific to either orexin receptor 1 or 2 can be beneficial against drug intake and relapse. Interest in the efficacy of dual orexin receptor antagonists, which were primarily developed to treat insomnia, has grown in the field of drug addiction. Treatments that target the orexin system may be a promising strategy to reduce drug intake, mitigate relapse vulnerability, and restore “normal” physiological functions, including feeding and sleep. The present review discusses preclinical and clinical evidence of the involvement of orexins in drug addiction and possible beneficial pharmacotherapeutic effects of orexin receptor antagonists to treat substance use disorder.
Collapse
|
10
|
Drug addiction co-morbidity with alcohol: Neurobiological insights. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 157:409-472. [PMID: 33648675 DOI: 10.1016/bs.irn.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Addiction is a chronic disorder that consists of a three-stage cycle of binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. These stages involve, respectively, neuroadaptations in brain circuits involved in incentive salience and habit formation, stress surfeit and reward deficit, and executive function. Much research on addiction focuses on the neurobiology underlying single drug use. However, alcohol use disorder (AUD) can be co-morbid with substance use disorder (SUD), called dual dependence. The limited epidemiological data on dual dependence indicates that there is a large population of individuals suffering from addiction who are dependent on more than one drug and/or alcohol, yet dual dependence remains understudied in addiction research. Here, we review neurobiological data on neurotransmitter and neuropeptide systems that are known to contribute to addiction pathology and how the involvement of these systems is consistent or divergent across drug classes. In particular, we highlight the dopamine, opioid, corticotropin-releasing factor, norepinephrine, hypocretin/orexin, glucocorticoid, neuroimmune signaling, endocannabinoid, glutamate, and GABA systems. We also discuss the limited research on these systems in dual dependence. Collectively, these studies demonstrate that the use of multiple drugs can produce neuroadaptations that are distinct from single drug use. Further investigation into the neurobiology of dual dependence is necessary to develop effective treatments for addiction to multiple drugs.
Collapse
|
11
|
Differential importance of nucleus accumbens Ox1Rs and AMPARs for female and male mouse binge alcohol drinking. Sci Rep 2021; 11:231. [PMID: 33420199 PMCID: PMC7794293 DOI: 10.1038/s41598-020-79935-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Alcohol use disorder exhausts substantial social and economic costs, with recent dramatic increases in female problem drinking. Thus, it is critically important to understand signaling differences underlying alcohol consumption across the sexes. Orexin-1 receptors (Ox1Rs) can strongly promote motivated behavior, and we previously identified Ox1Rs within nucleus accumbens shell (shell) as crucial for driving binge intake in higher-drinking male mice. Here, shell Ox1R inhibition did not alter female mouse alcohol drinking, unlike in males. Also, lower dose systemic Ox1R inhibition reduced compulsion-like alcohol intake in both sexes, indicating that female Ox1Rs can drive some aspects of pathological consumption, and higher doses of systemic Ox1R inhibition (which might have more off-target effects) reduced binge drinking in both sexes. In contrast to shell Ox1Rs, inhibiting shell calcium-permeable AMPA receptors (CP-AMPARs) strongly reduced alcohol drinking in both sexes, which was specific to alcohol since this did not reduce saccharin intake in either sex. Our results together suggest that the shell critically regulates binge drinking in both sexes, with shell CP-AMPARs supporting intake in both sexes, while shell Ox1Rs drove drinking only in males. Our findings provide important new information about sex-specific and -general mechanisms that promote binge alcohol intake and possible targeted therapeutic interventions.
Collapse
|
12
|
Lei K, Kwok C, Hopf FW. Nucleus accumbens shell Orexin-1 receptors are not needed for single-bottle limited daily access alcohol intake in C57BL/6 mice. Alcohol 2020; 89:139-146. [PMID: 32987129 DOI: 10.1016/j.alcohol.2020.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
Excessive, binge drinking is a major contributor to the great harm and cost of alcohol use disorder. We recently showed, using both limited and intermittent-access two-bottle-choice models, that inhibiting nucleus accumbens shell (Shell) orexin-1-receptors (Ox1Rs) reduces alcohol intake in higher-drinking male C57BL/6 mice (Lei et al., 2019). Other studies implicate Ox1Rs, tested systemically, for several higher-drinking models, including the single-bottle, Rhodes Drinking-in-the-Dark paradigm. Here, we report studies examining whether Shell Ox1Rs contribute to alcohol intake in male mice using a single-bottle Limited Daily Access (LDA) drinking model modified from drinking-in-the-dark paradigms (2-h access starting 3 h into the dark cycle, 5 days per week). In addition, some previous work has suggested possible differences in circuitry for one- versus two-choice behaviors, and thus other mice first drank under a single-bottle schedule, and then an additional water bottle was included 2 days a week starting in week 3. Surprisingly, at the same time we were determining Ox1R importance for two-bottle-choice models, parallel studies found that inhibiting Shell Ox1Rs had no impact on drinking using the single-bottle LDA model, or when a second bottle containing water was added later during drinking. Furthermore, we have related Shell Ox1R regulation of intake to basal consumption, but no such pattern was observed with single-bottle LDA drinking. Thus, unlike our previous work showing the importance of Shell Ox1Rs for male alcohol drinking under several two-bottle-choice models, Shell Ox1Rs were not required under a single-bottle paradigm, even if a second water-containing bottle was later added. These results raise the speculations that different mechanisms could promote intake under single- versus two-bottle access conditions, and that the conditions under which an animal learns to drink can impact circuitry driving future intake.
Collapse
|
13
|
Amodeo LR, Liu W, Wills DN, Vetreno RP, Crews FT, Ehlers CL. Adolescent alcohol exposure increases orexin-A/hypocretin-1 in the anterior hypothalamus. Alcohol 2020; 88:65-72. [PMID: 32619610 DOI: 10.1016/j.alcohol.2020.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/30/2022]
Abstract
Adolescence is a time of marked changes in sleep, neuromaturation, and alcohol use. While there is substantial evidence that alcohol disrupts sleep and that disrupted sleep may play a role in the development of alcohol use disorders (AUD), there is very little known about the brain mechanisms underlying this phenomenon. The orexin (also known as hypocretin) system is fundamental for a number of homeostatic mechanisms, including the initiation and maintenance of wakefulness that may be impacted by adolescent alcohol exposure. The current study investigated the impact of adolescent ethanol exposure on adult orexin-A/hypocretin-1 immunoreactive (orexin-A + IR) cells in hypothalamic nuclei in two models of adolescent intermittent ethanol (AIE) exposure. Both models assess adult hypothalamic orexin following either an AIE vapor exposure paradigm, or an AIE intragastric gavage paradigm during adolescence. Both AIE exposure models found that binge levels of ethanol intoxication during adolescence significantly increased adult orexin-A + IR expression in the anterior hypothalamic nucleus (AHN). Further, both AIE models found no change in orexin-A + IR in the posterior hypothalamic area (PH), perifornical nucleus (PeF), dorsomedial hypothalamic nucleus dorsal part (DMD) or lateral hypothalamic area (LH). However, AIE vapor exposure reduced orexin-A + IR in the paraventricular nucleus (PVN), but AIE gavage exposure did not. These findings suggest that the AHN orexinergic system is increased in adults following binge-like patterns of intoxication during adolescence. Altered adult AHN orexin could contribute to long-lasting changes in sleep.
Collapse
Affiliation(s)
- Leslie R Amodeo
- Department of Psychology, California State University, San Bernardino, San Bernardino, CA, 92407, United States
| | - Wen Liu
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Derek N Wills
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, United States
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, United States.
| |
Collapse
|
14
|
Targeting the Orexin System for Prescription Opioid Use Disorder. Brain Sci 2020; 10:brainsci10040226. [PMID: 32290110 PMCID: PMC7225970 DOI: 10.3390/brainsci10040226] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/09/2023] Open
Abstract
Prescription opioids are potent analgesics that are used for clinical pain management. However, the nonmedical use of these medications has emerged as a major concern because of dramatic increases in abuse and overdose. Therefore, effective strategies to prevent prescription opioid use disorder are urgently needed. The orexin system has been implicated in the regulation of motivation, arousal, and stress, making this system a promising target for the treatment of substance use disorder. This review discusses recent preclinical studies that suggest that orexin receptor blockade could be beneficial for the treatment of prescription opioid use disorder.
Collapse
|
15
|
Han Y, Yuan K, Zheng Y, Lu L. Orexin Receptor Antagonists as Emerging Treatments for Psychiatric Disorders. Neurosci Bull 2020; 36:432-448. [PMID: 31782044 PMCID: PMC7142186 DOI: 10.1007/s12264-019-00447-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Orexins comprise two neuropeptides produced by orexin neurons in the lateral hypothalamus and are released by extensive projections of these neurons throughout the central nervous system. Orexins bind and activate their associated G protein-coupled orexin type 1 receptors (OX1Rs) and OX2Rs and act on numerous physiological processes, such as sleep-wake regulation, feeding, reward, emotion, and motivation. Research on the development of orexin receptor antagonists has dramatically increased with the approval of suvorexant for the treatment of primary insomnia. In the present review, we discuss recent findings on the involvement of the orexin system in the pathophysiology of psychiatric disorders, including sleep disorders, depression, anxiety, and drug addiction. We discuss the actions of orexin receptor antagonists, including selective OX1R antagonists (SORA1s), selective OX2R antagonists (SORA2s), and dual OX1/2R antagonists (DORAs), in the treatment of these disorders based on both preclinical and clinical evidence. SORA2s and DORAs have more pronounced efficacy in the treatment of sleep disorders, whereas SORA1s may be promising for the treatment of anxiety and drug addiction. We also discuss potential challenges and opportunities for the application of orexin receptor antagonists to clinical interventions.
Collapse
Affiliation(s)
- Ying Han
- National Institute of Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Yongbo Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lin Lu
- National Institute of Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
16
|
Zarrabian S, Riahi E, Karimi S, Razavi Y, Haghparast A. The potential role of the orexin reward system in future treatments for opioid drug abuse. Brain Res 2020; 1731:146028. [DOI: 10.1016/j.brainres.2018.11.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022]
|
17
|
Recent perspectives on orexin/hypocretin promotion of addiction-related behaviors. Neuropharmacology 2020; 168:108013. [PMID: 32092435 DOI: 10.1016/j.neuropharm.2020.108013] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/23/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
Abstract
The neuropeptide hypocretin/orexin plays a broad and important role in physiological functions ranging from addiction, stress, and anxiety to sleep, energy metabolism, and homeostatic regulation. A number of recent reviews addressing the importance of orexin for different addictive behaviors, especially the contribution of orexin-1-receptors (Ox1Rs) in responding for intoxicants in higher-motivation individuals and situations, and orexin-2-receptor (Ox2Rs) in stress-related aspects of addictive responding. This may parallel the importance of more lateral orexin neurons in the hypothalamus for reward and more medial for stress and arousal. However, there is clearly also some crossover, which may reflect, in part, where positive and negative conditioning (reward- and relief-seeking) are both present concurrently in established addiction, and also where orexin signaling can differ in subregions of a particular brain region. Here, we attempt to examine and synthesize some of the most recent work addressing orexin functions in addiction, including a particular role for Ox1Rs for driving responding in higher-motivation individuals and under higher levels of effort. While there are some commonalities across addictive substances addressed here (alcohol, cocaine, opiates), there are also some differences, which may relate to several factors including the speed of intoxication with a given substance. Together, recent findings have shed important insight and clues into what a more unified role of Ox1Rs might entail, and critical areas for future work. In addition, these many studies support the development of Ox1R blockers for use in humans to counteract addiction and other disorders of motivation. This article is part of the special issue on Neuropeptides.
Collapse
|
18
|
Kim JS, Martin-Fardon R. Possible Role of CRF-Hcrt Interaction in the Infralimbic Cortex in the Emergence and Maintenance of Compulsive Alcohol-Seeking Behavior. Alcohol Clin Exp Res 2020; 44:354-367. [PMID: 31840823 PMCID: PMC7018591 DOI: 10.1111/acer.14264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022]
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing disorder that is characterized by the compulsive use of alcohol despite numerous health, social, and economic consequences. Initially, the use of alcohol is driven by positive reinforcement. Over time, however, alcohol use can take on a compulsive quality that is driven by the desire to avoid the negative consequences of abstinence, including negative affect and heightened stress/anxiety. This transition from positive reinforcement- to negative reinforcement-driven consumption involves the corticotropin-releasing factor (CRF) system, although mounting evidence now suggests that the CRF system interacts with other neural systems to ultimately produce behaviors that are symptomatic of compulsive alcohol use, such as the hypocretin (Hcrt) system. Hypocretins are produced exclusively in the hypothalamus, but Hcrt neurons project widely throughout the brain and reach regions that perform regulatory functions for numerous behavioral and physiological responses-including the infralimbic cortex (IL) of the medial prefrontal cortex (mPFC). Although the entire mPFC undergoes neuroadaptive changes following prolonged alcohol exposure, the IL appears to undergo more robust changes compared with other mPFC substructures. Evidence to date suggests that the IL is likely involved in EtOH-seeking behavior, but ambiguities with respect to the specific role of the IL in this regard make it difficult to draw definitive conclusions. Furthermore, the manner in which CRF interacts with Hcrt in this region as it pertains to alcohol-seeking behavior is largely unknown, although immunohistochemical and electrophysiological experiments have shown that CRF and Hcrt directly interact in the mPFC, suggesting that the interaction between CRF and Hcrt in the IL may be critically important for the development and subsequent maintenance of compulsive alcohol seeking. This review aims to consolidate recent literature regarding the role of the IL in alcohol-seeking behavior and to discuss evidence that supports a functional interaction between Hcrt and CRF in the IL.
Collapse
Affiliation(s)
- Jung S. Kim
- Department of Molecular Medicine, Scripps Research, La Jolla, USA
| | | |
Collapse
|
19
|
The role of orexin-1 receptor signaling in demand for the opioid fentanyl. Neuropsychopharmacology 2019; 44:1690-1697. [PMID: 31112988 PMCID: PMC6785092 DOI: 10.1038/s41386-019-0420-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/21/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
Abstract
The orexin system is a potential treatment target for drug addiction. Orexin-1 receptor (OxR1) antagonism reduces demand for cocaine and remifentanil, indicating that orexin-based therapies may reduce demand for many classes of abused drugs. However, pharmacokinetics vary greatly among opioids and it is unclear if OxR1 antagonism would reduce demand for all opioids, particularly ones with high abuse liability. Here, we established a behavioral economics (BE) procedure to assess the effects of OxR1 antagonism on demand for the highly abused opioid fentanyl. We also investigated the utility of our procedure to predict OxR1 antagonism efficacy and relapse propensity. Demand parameters α (demand elasticity or price sensitivity of consumption, an inverse measure of drug motivation) and Qo (drug consumption at null cost) were assessed. The OxR1 antagonist SB-334867 (SB) decreased motivation (increased α) for fentanyl without affecting Qo. Baseline α values predicted SB efficacy, such that SB was most effective at reducing motivation (increasing α) in highly motivated rats. Baseline α values predicted the amount of cued reinstatement of fentanyl seeking; this reinstatement behavior was attenuated by SB administration. These results highlight the promise of the orexin system as a treatment target for opioid addiction and emphasize the usefulness of BE procedures in the study of opioid abuse.
Collapse
|
20
|
Targeting the orexinergic system: Mainly but not only for sleep-wakefulness therapies. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2014.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
21
|
Lei K, Kwok C, Darevsky D, Wegner SA, Yu J, Nakayama L, Pedrozo V, Anderson L, Ghotra S, Fouad M, Hopf FW. Nucleus Accumbens Shell Orexin-1 Receptors Are Critical Mediators of Binge Intake in Excessive-Drinking Individuals. Front Neurosci 2019; 13:88. [PMID: 30814925 PMCID: PMC6381036 DOI: 10.3389/fnins.2019.00088] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/25/2019] [Indexed: 12/29/2022] Open
Abstract
Excessive, binge alcohol drinking is a potent and pernicious obstacle to treating alcohol use disorder (AUD), and heavy-drinking humans are responsible for much of the substantial costs and harms of AUD. Thus, identifying key mechanisms that drive intake in higher-drinking individuals may provide important, translationally useful therapeutic interventions. Orexin-1-receptors (Ox1Rs) promote states of high motivation, and studies with systemic Ox1R inhibition suggest a particular role in individuals with higher intake levels. However, little has been known about circuits where Ox1Rs promote pathological intake, especially excessive alcohol consumption. We previously discovered that binge alcohol drinking requires Ox1Rs in medial nucleus accumbens shell (Shell), using two-bottle-choice Drinking-in-the-Dark (2bc-DID) in adult, male C57BL/6 mice. Here, we show that Shell Ox1Rs promoted intake during intermittent-access alcohol drinking as well as 2bc-DID, and that Shell inhibition with muscimol/baclofen also suppressed 2bc-DID intake. Importantly, with this large data set, we were able to demonstrate that Shell Ox1Rs and overall activity were particularly important for driving alcohol consumption in higher-drinking individuals, with little overall impact in moderate drinkers. Shell inhibition results were compared with control data combined from drug treatments that did not reduce intake, including NMDAR or PKC inhibition in Shell, Ox1R inhibition in accumbens core, and systemic inhibition of dopamine-1 receptors; these were used to understand whether more specific Shell Ox1R contributions in higher drinkers might simply result from intrinsic variability in mouse drinking. Ineffectiveness of Shell inhibition in moderate-drinkers was not due to a floor effect, since systemic baclofen reduced alcohol drinking regardless of basal intake levels, without altering concurrent water intake or saccharin consumption. Finally, alcohol intake in the first exposure predicted consumption levels weeks later, suggesting that intake level may be a stable trait in each individual. Together, our studies indicate that Shell Ox1Rs are critical mediators of binge alcohol intake in higher-drinking individuals, with little net contribution to alcohol drinking in more moderate bingers, and that targeting Ox1Rs may substantially reduce AUD-related harms.
Collapse
Affiliation(s)
- Kelly Lei
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Claudina Kwok
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - David Darevsky
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Scott A Wegner
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - JiHwan Yu
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Lisa Nakayama
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Vincent Pedrozo
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Lexy Anderson
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Shahbaj Ghotra
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Mary Fouad
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Frederic W Hopf
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
22
|
Abstract
Narcolepsy is the most common neurological cause of chronic sleepiness. The discovery about 20 years ago that narcolepsy is caused by selective loss of the neurons producing orexins (also known as hypocretins) sparked great advances in the field. Here, we review the current understanding of how orexin neurons regulate sleep-wake behaviour and the consequences of the loss of orexin neurons. We also summarize the developing evidence that narcolepsy is an autoimmune disorder that may be caused by a T cell-mediated attack on the orexin neurons and explain how these new perspectives can inform better therapeutic approaches.
Collapse
Affiliation(s)
- Carrie E Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Andrew Cogswell
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Igor J Koralnik
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Balkan B, Pogun S. Nicotinic Cholinergic System in the Hypothalamus Modulates the Activity of the Hypothalamic Neuropeptides During the Stress Response. Curr Neuropharmacol 2018; 16:371-387. [PMID: 28730966 PMCID: PMC6018196 DOI: 10.2174/1570159x15666170720092442] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The hypothalamus harbors high levels of cholinergic neurons and axon terminals. Nicotinic acetylcholine receptors, which play an important role in cholinergic neurotransmission, are expressed abundantly in the hypothalamus. Accumulating evidence reveals a regulatory role for nicotine in the regulation of the stress responses. The present review will discuss the hypothalamic neuropeptides and their interaction with the nicotinic cholinergic system. The anatomical distribution of the cholinergic neurons, axon terminals and nicotinic receptors in discrete hypothalamic nuclei will be described. The effect of nicotinic cholinergic neurotransmission and nicotine exposure on hypothalamic-pituitaryadrenal (HPA) axis regulation at the hypothalamic level will be analyzed in view of the different neuropeptides involved. METHODS Published research related to nicotinic cholinergic regulation of the HPA axis activity at the hypothalamic level is reviewed. RESULTS The nicotinic cholinergic system is one of the major modulators of the HPA axis activity. There is substantial evidence supporting the regulation of hypothalamic neuropeptides by nicotinic acetylcholine receptors. However, most of the studies showing the nicotinic regulation of hypothalamic neuropeptides have employed systemic administration of nicotine. Additionally, we know little about the nicotinic receptor distribution on neuropeptide-synthesizing neurons in the hypothalamus and the physiological responses they trigger in these neurons. CONCLUSION Disturbed functioning of the HPA axis and hypothalamic neuropeptides results in pathologies such as depression, anxiety disorders and obesity, which are common and significant health problems. A better understanding of the nicotinic regulation of hypothalamic neuropeptides will aid in drug development and provide means to cope with these diseases. Considering that nicotine is also an abused substance, a better understanding of the role of the nicotinic cholinergic system on the HPA axis will aid in developing improved therapeutic strategies for smoking cessation.
Collapse
Affiliation(s)
- Burcu Balkan
- Center for Brain Research, Ege University, Bornova, Izmir, Turkey.,Department of Physiology, School of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Sakire Pogun
- Center for Brain Research, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
24
|
Effects of concurrent blockade of OX2 and CB1 receptors in the ventral tegmental area on nicotine-induced place preference in rats. Neurosci Lett 2018; 684:121-126. [DOI: 10.1016/j.neulet.2018.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/26/2018] [Accepted: 07/10/2018] [Indexed: 01/01/2023]
|
25
|
Wang C, Wang Q, Ji B, Pan Y, Xu C, Cheng B, Bai B, Chen J. The Orexin/Receptor System: Molecular Mechanism and Therapeutic Potential for Neurological Diseases. Front Mol Neurosci 2018; 11:220. [PMID: 30002617 PMCID: PMC6031739 DOI: 10.3389/fnmol.2018.00220] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/06/2018] [Indexed: 12/25/2022] Open
Abstract
Orexins, also known as hypocretins, are two neuropeptides secreted from orexin-containing neurons, mainly in the lateral hypothalamus (LH). Orexins orchestrate their effects by binding and activating two G-protein–coupled receptors (GPCRs), orexin receptor type 1 (OX1R) and type 2 (OX2R). Orexin/receptor pathways play vital regulatory roles in many physiological processes, especially feeding behavior, sleep–wake rhythm, reward and addiction and energy balance. Furthermore several reports showed that orexin/receptor pathways are involved in pathological processes of neurological diseases such as narcolepsy, depression, ischemic stroke, drug addiction and Alzheimer’s disease (AD). This review article summarizes the expression patterns, physiological functions and potential molecular mechanisms of the orexin/receptor system in neurological diseases, providing an overall framework for considering these pathways from the standpoints of basic research and clinical treatment of neurological diseases.
Collapse
Affiliation(s)
- Chunmei Wang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Qinqin Wang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Bingyuan Ji
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Yanyou Pan
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Chao Xu
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Baohua Cheng
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Bo Bai
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
26
|
Cai Z, Liu H, Wang L, Li X, Bai L, Gan X, Li L, Han C. Molecular Evolutionary Analysis of the HCRTR Gene Family in Vertebrates. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8120263. [PMID: 29967787 PMCID: PMC6008884 DOI: 10.1155/2018/8120263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 03/17/2018] [Accepted: 04/17/2018] [Indexed: 12/02/2022]
Abstract
Hypocretin system is composed of hypocretins (hcrts) and their receptors (hcrtrs), which has multiple vital functions. Hypocretins work via hypocretin receptors and it is reported that functional differentiation occurred in hcrtrs. It is necessary to figure out the evolution process of hypocretin receptors. In our study, we adopt a comprehensive approach and various bioinformatics tools to analyse the evolution process of HCRTR gene family. It turns out that the second round of whole genome duplication in early vertebrate ancestry and the independent round in fish ancestry may contribute to the diversity of HCRTR gene family. HCRTR1 of fishes and mammals are not the same receptor, which means that there are three members in the family. HCRTR2 is proved to be the most ancient one in HCRTR gene family. After duplication events, the structure of HCRTR1 diverged from HCRTR2 owing to relaxed selective pressure. Negative selection is the predominant evolutionary force acting on the HCRTR gene family but HCRTR1 of mammals is found to be subjected to positive selection. Our study gains insight into the molecular evolution process of HCRTR gene family, which contributes to the further study of the system.
Collapse
Affiliation(s)
- Zhen Cai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Liyun Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xinxin Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lili Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xinmeng Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
27
|
Jaggard JB, Stahl BA, Lloyd E, Prober DA, Duboue ER, Keene AC. Hypocretin underlies the evolution of sleep loss in the Mexican cavefish. eLife 2018; 7:32637. [PMID: 29405117 PMCID: PMC5800846 DOI: 10.7554/elife.32637] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/25/2017] [Indexed: 01/09/2023] Open
Abstract
The duration of sleep varies dramatically between species, yet little is known about the genetic basis or evolutionary factors driving this variation in behavior. The Mexican cavefish, Astyanax mexicanus, exists as surface populations that inhabit rivers, and multiple cave populations with convergent evolution on sleep loss. The number of Hypocretin/Orexin (HCRT)-positive hypothalamic neurons is increased significantly in cavefish, and HCRT is upregulated at both the transcript and protein levels. Pharmacological or genetic inhibition of HCRT signaling increases sleep in cavefish, suggesting enhanced HCRT signaling underlies the evolution of sleep loss. Ablation of the lateral line or starvation, manipulations that selectively promote sleep in cavefish, inhibit hcrt expression in cavefish while having little effect on surface fish. These findings provide the first evidence of genetic and neuronal changes that contribute to the evolution of sleep loss, and support a conserved role for HCRT in sleep regulation.
Collapse
Affiliation(s)
- James B Jaggard
- Department of Biological Sciences, Florida Atlantic University, Jupiter, United States
| | - Bethany A Stahl
- Department of Biological Sciences, Florida Atlantic University, Jupiter, United States
| | - Evan Lloyd
- Department of Biological Sciences, Florida Atlantic University, Jupiter, United States
| | - David A Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Erik R Duboue
- Department of Embryology, Carnegie Institution for Science, Baltimore, United States.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, United States
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, United States
| |
Collapse
|
28
|
Jaggard J, Robinson BG, Stahl BA, Oh I, Masek P, Yoshizawa M, Keene AC. The lateral line confers evolutionarily derived sleep loss in the Mexican cavefish. ACTA ACUST UNITED AC 2017; 220:284-293. [PMID: 28100806 DOI: 10.1242/jeb.145128] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/23/2016] [Indexed: 01/19/2023]
Abstract
Sleep is an essential behavior exhibited by nearly all animals, and disruption of this process is associated with an array of physiological and behavioral deficits. Sleep is defined by changes in sensory gating that reduce sensory input to the brain, but little is known about the neural basis for interactions between sleep and sensory processing. Blind Mexican cavefish comprise an extant surface dwelling form and 29 cave morphs that have independently evolved increased numbers of mechanoreceptive lateral line neuromasts and convergent evolution of sleep loss. Ablation of the lateral line enhanced sleep in the Pachón cavefish population, suggesting that heightened sensory input underlies evolutionarily derived sleep loss. Targeted lateral line ablation and behavioral analysis localized the wake-promoting neuromasts in Pachón cavefish to superficial neuromasts of the trunk and cranial regions. Strikingly, lateral line ablation did not affect sleep in four other cavefish populations, suggesting that distinct neural mechanisms regulate the evolution of sleep loss in independently derived cavefish populations. Cavefish are subject to seasonal changes in food availability, raising the possibility that sensory modulation of sleep is influenced by metabolic state. We found that starvation promotes sleep in Pachón cavefish, and is not enhanced by lateral line ablation, suggesting that functional interactions occur between sensory and metabolic regulation of sleep. Taken together, these findings support a model where sensory processing contributes to evolutionarily derived changes in sleep that are modulated in accordance with food availability.
Collapse
Affiliation(s)
- James Jaggard
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Beatriz G Robinson
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Bethany A Stahl
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Ian Oh
- Davidson Academy of Nevada, Reno, NV 89557, USA
| | - Pavel Masek
- Department of Biology, SUNY Binghamton, Binghamton, NY 13902, USA
| | - Masato Yoshizawa
- Department of Biology, University of Hawaii, Manoa, Honolulu, HI 96822, USA
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
29
|
Dehkordi O, Rose JE, Dávila-García MI, Millis RM, Mirzaei SA, Manaye KF, Jayam-Trouth A. Neuroanatomical Relationships between Orexin/Hypocretin-Containing Neurons/Nerve Fibers and Nicotine-Induced c-Fos-Activated Cells of the Reward-Addiction Neurocircuitry. ACTA ACUST UNITED AC 2017; 5. [PMID: 29038792 PMCID: PMC5640973 DOI: 10.4172/2329-6488.1000273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Orexin/hypocretin-containing neurons in lateral hypothalamus (LH) are implicated in the neurobiology of nicotine addiction. However, the neuroanatomical relationships between orexin-neurons/nerve fibers and nicotine-activated cells within the reward-addiction neurocircuitry is not known. In the present study in mice, we first used c-Fos immunohistochemistry to identify CNS cells stimulated by an acute single injection of nicotine (NIC, 2 mg/kg, IP). Sequential double-labelling was then performed to identify the location of orexin-containing neurons and nerve fibers with respect to NIC-induced c-Fos activated cells and/or tyrosine hydroxylase (TH) immunoreactive (IR) cells of the mesocorticolimbic reward-addiction pathways. Orexin-IR nerve fibers and terminals were detected at multiple sites of the NIC reward-addiction circuitry in close apposition to, and intermingled with, NIC-induced c-Fos-IR cells of locus coeruleus (LC), ventral tegmental area (VTA), nucleus accumbens (Acb), LH and paraventricular thalamic nucleus (PVT). Double-labelling of orexin with TH showed frequent contact between orexin-IR nerve fibers and noradrenergic cells of LC. However, there was infrequent contact between the orexinergic fibers and the TH-expressing dopaminergic cells of VTA, dorsal raphe nucleus (DR), posterior hypothalamus (DA11), arcuate hypothalamic nucleus (DA12) and periventricular areas (DA14). The close anatomical contact between orexinergic nerve fibers and NIC-activated cells at multiple sites of the reward-addiction pathways suggests that orexinergic projections from LH are likely to be involved in modulating activity of the neurons that are directly impacted by acute administration of nicotine.
Collapse
Affiliation(s)
- Ozra Dehkordi
- Department of Neurology, Howard University Hospital, Washington, DC, USA.,Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | - Jed E Rose
- Department of Psychiatry, Duke University Medical Center, Durham, NC 27705, USA
| | | | - Richard M Millis
- Department of Medical Physiology, College of Medicine, American University of Antigua, Antigua and Barbuda, West Indies
| | - Samar Ali Mirzaei
- Department of Neurology, Howard University Hospital, Washington, DC, USA
| | - Kebreten F Manaye
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | | |
Collapse
|
30
|
Bruijnzeel AW. Neuropeptide systems and new treatments for nicotine addiction. Psychopharmacology (Berl) 2017; 234:1419-1437. [PMID: 28028605 PMCID: PMC5420481 DOI: 10.1007/s00213-016-4513-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/12/2016] [Indexed: 01/08/2023]
Abstract
RATIONALE The mildly euphoric and cognitive enhancing effects of nicotine play a role in the initiation of smoking, while dysphoria and anxiety associated with smoking cessation contribute to relapse. After the acute withdrawal phase, smoking cues, a few cigarettes (i.e., lapse), and stressors can cause relapse. Human and animal studies have shown that neuropeptides play a critical role in nicotine addiction. OBJECTIVES The goal of this paper is to describe the role of neuropeptide systems in the initiation of nicotine intake, nicotine withdrawal, and the reinstatement of extinguished nicotine seeking. RESULTS The reviewed studies indicate that several drugs that target neuropeptide systems diminish the rewarding effects of nicotine by preventing the activation of dopaminergic systems. Other peptide-based drugs diminish the hyperactivity of brain stress systems and diminish withdrawal-associated symptom severity. Blockade of hypocretin-1 and nociceptin receptors and stimulation of galanin and neurotensin receptors diminishes the rewarding effects of nicotine. Both corticotropin-releasing factor type 1 and kappa-opioid receptor antagonists diminish dysphoria and anxiety-like behavior associated with nicotine withdrawal and inhibit stress-induced reinstatement of nicotine seeking. Furthermore, blockade of vasopressin 1b receptors diminishes dysphoria during nicotine withdrawal, and melanocortin 4 receptor blockade prevents stress-induced reinstatement of nicotine seeking. The role of neuropeptide systems in nicotine-primed and cue-induced reinstatement is largely unexplored, but there is evidence for a role of hypocretin-1 receptors in cue-induced reinstatement of nicotine seeking. CONCLUSION Drugs that target neuropeptide systems might decrease the euphoric effects of smoking and improve relapse rates by diminishing withdrawal symptoms and improving stress resilience.
Collapse
Affiliation(s)
- Adriaan W. Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, Florida, USA,Department of Neuroscience, University of Florida, Gainesville, Florida, USA,Center for Addiction Research and Education, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
31
|
Khoo SYS, McNally GP, Clemens KJ. The dual orexin receptor antagonist TCS1102 does not affect reinstatement of nicotine-seeking. PLoS One 2017; 12:e0173967. [PMID: 28296947 PMCID: PMC5351999 DOI: 10.1371/journal.pone.0173967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/01/2017] [Indexed: 01/17/2023] Open
Abstract
The orexin/hypocretin system is important for appetitive motivation towards multiple drugs of abuse, including nicotine. Both OX1 and OX2 receptors individually have been shown to influence nicotine self-administration and reinstatement. Due to the increasing clinical use of dual orexin receptor antagonists in the treatment of disorders such as insomnia, we examined whether a dual orexin receptor antagonist may also be effective in reducing nicotine seeking. We tested the effect of intracerebroventricular (i.c.v.) administration of the potent and selective dual orexin receptor antagonist TCS1102 on orexin-A-induced food self-administration, nicotine self-administration and reinstatement of nicotine-seeking in rats. Our results show that 30 μg of TCS1102 i.c.v. abolishes orexin-A-induced increases in food self-administration but does not reduce nicotine self-administration. Neither i.c.v. 10 μg nor 30 μg of TCS1102 reduced compound reinstatement after short-term (15 days) self-administration nicotine, but 30 μg transiently reduced cue/nicotine compound reinstatement after chronic self-administration (29 days). These results indicate that TCS1102 has no substantial effect on motivation for nicotine seeking following chronic self-administration and no effect after shorter periods of intake. Orexin receptor antagonists may therefore have little clinical utility against nicotine addiction.
Collapse
Affiliation(s)
| | - Gavan P McNally
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Kelly J Clemens
- School of Psychology, University of New South Wales, Sydney, Australia
| |
Collapse
|
32
|
Dergacheva O, Yamanaka A, Schwartz AR, Polotsky VY, Mendelowitz D. Optogenetic identification of hypothalamic orexin neuron projections to paraventricular spinally projecting neurons. Am J Physiol Heart Circ Physiol 2017; 312:H808-H817. [PMID: 28159808 DOI: 10.1152/ajpheart.00572.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 02/07/2023]
Abstract
Orexin neurons, and activation of orexin receptors, are generally thought to be sympathoexcitatory; however, the functional connectivity between orexin neurons and a likely sympathetic target, the hypothalamic spinally projecting neurons (SPNs) in the paraventricular nucleus of the hypothalamus (PVN) has not been established. To test the hypothesis that orexin neurons project directly to SPNs in the PVN, channelrhodopsin-2 (ChR2) was selectively expressed in orexin neurons to enable photoactivation of ChR2-expressing fibers while examining evoked postsynaptic currents in SPNs in rat hypothalamic slices. Selective photoactivation of orexin fibers elicited short-latency postsynaptic currents in all SPNs tested (n = 34). These light-triggered responses were heterogeneous, with a majority being excitatory glutamatergic responses (59%) and a minority of inhibitory GABAergic (35%) and mixed glutamatergic and GABAergic currents (6%). Both glutamatergic and GABAergic responses were present in the presence of tetrodotoxin and 4-aminopyridine, suggesting a monosynaptic connection between orexin neurons and SPNs. In addition to generating postsynaptic responses, photostimulation facilitated action potential firing in SPNs (current clamp configuration). Glutamatergic, but not GABAergic, postsynaptic currents were diminished by application of the orexin receptor antagonist almorexant, indicating orexin release facilitates glutamatergic neurotransmission in this pathway. This work identifies a neuronal circuit by which orexin neurons likely exert sympathoexcitatory control of cardiovascular function.NEW & NOTEWORTHY This is the first study to establish, using innovative optogenetic approaches in a transgenic rat model, that there are robust heterogeneous projections from orexin neurons to paraventricular spinally projecting neurons, including excitatory glutamatergic and inhibitory GABAergic neurotransmission. Endogenous orexin release modulates glutamatergic, but not GABAergic, neurotransmission in these pathways.
Collapse
Affiliation(s)
- Olga Dergacheva
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia;
| | - Akihiro Yamanaka
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan; and
| | - Alan R Schwartz
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia
| |
Collapse
|
33
|
Nagase H, Yamamoto N, Yata M, Ohrui S, Okada T, Saitoh T, Kutsumura N, Nagumo Y, Irukayama-Tomobe Y, Ishikawa Y, Ogawa Y, Hirayama S, Kuroda D, Watanabe Y, Gouda H, Yanagisawa M. Design and Synthesis of Potent and Highly Selective Orexin 1 Receptor Antagonists with a Morphinan Skeleton and Their Pharmacologies. J Med Chem 2017; 60:1018-1040. [DOI: 10.1021/acs.jmedchem.6b01418] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hiroshi Nagase
- International
Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Graduate
School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Naoshi Yamamoto
- International
Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masahiro Yata
- Graduate
School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Sayaka Ohrui
- International
Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takahiro Okada
- Graduate
School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Tsuyoshi Saitoh
- International
Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Noriki Kutsumura
- International
Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuyuki Nagumo
- International
Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoko Irukayama-Tomobe
- International
Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yukiko Ishikawa
- International
Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuhiro Ogawa
- International
Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shigeto Hirayama
- Laboratory
of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Daisuke Kuroda
- School
of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yurie Watanabe
- School
of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hiroaki Gouda
- School
of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Masashi Yanagisawa
- International
Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
34
|
James MH, Mahler SV, Moorman DE, Aston-Jones G. A Decade of Orexin/Hypocretin and Addiction: Where Are We Now? Curr Top Behav Neurosci 2017; 33:247-281. [PMID: 28012090 PMCID: PMC5799809 DOI: 10.1007/7854_2016_57] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One decade ago, our laboratory provided the first direct evidence linking orexin/hypocretin signaling with drug seeking by showing that activation of these neurons promotes conditioned morphine-seeking behavior. In the years since, contributions from many investigators have revealed roles for orexins in addiction for all drugs of abuse tested, but only under select circumstances. We recently proposed that orexins play a fundamentally unified role in coordinating "motivational activation" under numerous behavioral conditions, and here we unpack this hypothesis as it applies to drug addiction. We describe evidence collected over the past 10 years that elaborates the role of orexin in drug seeking under circumstances where high levels of effort are required to obtain the drug, or when motivation for drug reward is augmented by the presence of external stimuli like drug-associated cues/contexts or stressors. Evidence from studies using traditional self-administration and reinstatement models, as well as behavioral economic analyses of drug demand elasticity, clearly delineates a role for orexin in modulating motivational, rather than the primary reinforcing aspects of drug reward. We also discuss the anatomical interconnectedness of the orexin system with wider motivation and reward circuits, with a particular focus on how orexin modulates prefrontal and other glutamatergic inputs onto ventral tegmental area dopamine neurons. Last, we look ahead to the next decade of the research in this area, highlighting the recent FDA approval of the dual orexin receptor antagonist suvorexant (Belsomra®) for the treatment of insomnia as a promising sign of the potential clinical utility of orexin-based therapies for the treatment of addiction.
Collapse
Affiliation(s)
- Morgan H James
- Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ, 08854, USA
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 2337, Australia
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92967, USA
| | - David E Moorman
- Department of Psychological and Brain Sciences & Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ, 08854, USA.
| |
Collapse
|
35
|
Lei K, Wegner SA, Yu JH, Mototake A, Hu B, Hopf FW. Nucleus Accumbens Shell and mPFC but Not Insula Orexin-1 Receptors Promote Excessive Alcohol Drinking. Front Neurosci 2016; 10:400. [PMID: 27625592 PMCID: PMC5004043 DOI: 10.3389/fnins.2016.00400] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/15/2016] [Indexed: 12/22/2022] Open
Abstract
Addiction to alcohol remains a major social and economic problem, in part because of the high motivation for alcohol that humans exhibit and the hazardous binge intake this promotes. Orexin-1-type receptors (OX1Rs) promote reward intake under conditions of strong drives for reward, including excessive alcohol intake. While systemic modulation of OX1Rs can alter alcohol drinking, the brain regions that mediate this OX1R enhancement of excessive drinking remain unknown. Given the importance of the nucleus accumbens (NAc) and anterior insular cortex (aINS) in driving many addictive behaviors, including OX1Rs within these regions, we examined the importance of OX1Rs in these regions on excessive alcohol drinking in C57BL/6 mice during limited-access alcohol drinking in the dark cycle. Inhibition of OX1Rs with the widely used SB-334867 within the medial NAc Shell (mNAsh) significantly reduced drinking of alcohol, with no effect on saccharin intake, and no effect on alcohol consumption when infused above the mNAsh. In contrast, intra-mNAsh infusion of the orexin-2 receptor TCS-OX2-29 had no impact on alcohol drinking. In addition, OX1R inhibition within the aINS had no effect on excessive drinking, which was surprising given the importance of aINS-NAc circuits in promoting alcohol consumption and the role for aINS OX1Rs in driving nicotine intake. However, OX1R inhibition within the mPFC did reduce alcohol drinking, indicating cortical OXR involvement in promoting intake. Also, in support of the critical role for mNAsh OX1Rs, SB within the mNAsh also significantly reduced operant alcohol self-administration in rats. Finally, orexin ex vivo enhanced firing in mNAsh neurons from alcohol-drinking mice, with no effect on evoked EPSCs or input resistance; a similar orexin increase in firing without a change in input resistance was observed in alcohol-naïve mice. Taken together, our results suggest that OX1Rs within the mNAsh and mPFC, but not the aINS, play a central role in driving excessive alcohol drinking.
Collapse
Affiliation(s)
- Kelly Lei
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Scott A Wegner
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Ji Hwan Yu
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Arisa Mototake
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Bing Hu
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Frederic W Hopf
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| |
Collapse
|
36
|
Nicotinic receptor blockade decreases fos immunoreactivity within orexin/hypocretin-expressing neurons of nicotine-exposed rats. Behav Brain Res 2016; 314:226-33. [PMID: 27491589 DOI: 10.1016/j.bbr.2016.07.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/19/2016] [Accepted: 07/30/2016] [Indexed: 11/23/2022]
Abstract
Tobacco smoking is the leading cause of preventable death in the United States. Nicotine is the principal psychoactive ingredient in tobacco that causes addiction. The structures governing nicotine addiction, including those underlying withdrawal, are still being explored. Nicotine withdrawal is characterized by negative affective and cognitive symptoms that enhance relapse susceptibility, and suppressed dopaminergic transmission from ventral tegmental area (VTA) to target structures underlies behavioral symptoms of nicotine withdrawal. Agonist and partial agonist therapies help 1 in 4 treatment-seeking smokers at one-year post-cessation, and new targets are needed to more effectively aid smokers attempting to quit. Hypothalamic orexin/hypocretin neurons send excitatory projections to dopamine (DA)-producing neurons of VTA and modulate mesoaccumbal DA release. The effects of nicotinic receptor blockade, which is commonly used to precipitate withdrawal, on orexin neurons remain poorly investigated and present an attractive target for intervention. The present study sought to investigate the effects of nicotinic receptor blockade on hypothalamic orexin neurons using mecamylamine to precipitate withdrawal in rats. Separate groups of rats were treated with either chronic nicotine or saline for 7-days at which point effects of mecamylamine or saline on somatic signs and anxiety-like behavior were assessed. Finally, tissue from rats was harvested for immunofluorescent analysis of Fos within orexin neurons. Results demonstrate that nicotinic receptor blockade leads to reduced orexin cell activity, as indicated by lowered Fos-immunoreactivity, and suggest that this underlying cellular activity may be associated with symptoms of nicotine withdrawal as effects were most prominently observed in rats given chronic nicotine. We conclude from this study that orexin transmission becomes suppressed in rats upon nicotinic receptor blockade, and that behavioral symptoms associated with nicotine withdrawal may be aided by intervention upon orexinergic transmission.
Collapse
|
37
|
Flores Á, Julià-Hernández M, Maldonado R, Berrendero F. Involvement of the orexin/hypocretin system in the pharmacological effects induced by Δ(9) -tetrahydrocannabinol. Br J Pharmacol 2016; 173:1381-92. [PMID: 26799708 DOI: 10.1111/bph.13440] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 01/12/2016] [Accepted: 01/17/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Anatomical, biochemical and pharmacological evidence suggest the existence of a crosstalk between the orexinergic and endocannabinoid systems. While the orexin receptor 1 (OX1 receptor) modulates the reinforcing properties of cannabinoids, the participation of orexins in the acute pharmacological effects of Δ(9) -tetrahydrocannabinol (THC) remains unexplored. EXPERIMENTAL APPROACH We assessed the possible role of orexins in THC-induced hypolocomotion, hypothermia, antinociception, anxiolytic- and anxiogenic-like effects and memory impairment. Selective OX1 and OX2 receptor antagonists and OX1 knockout (KO) mice as well as prepro-orexin (PPO) KO mice were used as pharmacological and genetic approaches. CB1 receptor levels in control and PPO KO mice were evaluated by immunoblot analysis. The expression of c-Fos after THC treatment was analysed in several brain areas in wild-type mice and in mice lacking the PPO gene. KEY RESULTS The hypothermia, supraspinal antinociception and anxiolytic-like effects induced by THC were modulated by orexins through OX2 receptor signalling. OX1 receptors did not seem to be involved in these THC responses. No differences in CB1 receptor levels were found between wild-type and PPO KO mice. THC-induced increase in c-Fos expression was reduced in the central amygdala, medial preoptic area and lateral septum in these mutant mice. CONCLUSIONS AND IMPLICATIONS Our results provide new findings to further clarify the interaction between orexins and cannabinoids. OX1 and OX2 receptors are differently implicated in the pharmacological effects of cannabinoids.
Collapse
Affiliation(s)
- África Flores
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Marina Julià-Hernández
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Fernando Berrendero
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| |
Collapse
|
38
|
Ubaldi M, Cannella N, Ciccocioppo R. Emerging targets for addiction neuropharmacology: From mechanisms to therapeutics. PROGRESS IN BRAIN RESEARCH 2015; 224:251-84. [PMID: 26822362 DOI: 10.1016/bs.pbr.2015.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Drug abuse represents a considerable burden of disease and has enormous economic impacts on societies. Over the years, few medications have been developed for clinical use. Their utilization is endowed with several limitations, including partial efficacy or significant side effects. On the other hand, the successful advancement of these compounds provides an important proof of concept for the feasibility of drug development programs in addiction. In recent years, a wealth of information has been generated on the psychological mechanisms, genetic or epigenetic predisposing factors, and neurobiological adaptations induced by drug consumption that interact with each other to contribute to disease progression. It is now clear that addiction develops through phases, from initial recreational use to excessive consumption and compulsive drug seeking, with a shift from positive to negative reinforcement driving motivated behaviors. A greater understanding of these mechanisms has opened new vistas in drug development programs. Researchers' attention has been shifted from investigation of classical targets associated with reward to biological substrates responsible for negative reinforcement, impulse loss of control, and maladaptive mechanisms resulting from protracted drug use. From this research, several new biological targets for the development of innovative therapies have started to emerge. This chapter offers an overview of targets currently under scrutiny for the development of new medications for addiction. This work is not exhaustive but rather it provides a few examples of how this research has advanced in recent years by virtue of studies carried out in our laboratory.
Collapse
Affiliation(s)
- Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Nazzareno Cannella
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.
| |
Collapse
|
39
|
Neuroscience of nicotine for addiction medicine: novel targets for smoking cessation medications. PROGRESS IN BRAIN RESEARCH 2015; 223:191-214. [PMID: 26806777 DOI: 10.1016/bs.pbr.2015.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Morbidity and mortality associated with tobacco smoking constitutes a significant burden on healthcare budgets all over the world. Therefore, promoting smoking cessation is an important goal of health professionals and policy makers throughout the world. Nicotine is a major psychoactive component in tobacco that is largely responsible for the widespread addiction to tobacco. A majority of the currently available FDA-approved smoking cessation medications act via neuronal nicotinic receptors. These medications are effective in approximately half of all the smokers, who want to quit and relapse among abstinent smokers continues to be high. In addition to relapse among abstinent smokers, unpleasant effects associated with nicotine withdrawal are a major motivational factor in continued tobacco smoking. Over the last two decades, animal studies have helped in identifying several neural substrates that are involved in nicotine-dependent behaviors including those associated with nicotine withdrawal and relapse to tobacco smoking. In this review, first the role of specific brain regions/circuits that are involved in nicotine dependence will be discussed. Next, the review will describe the role of specific nicotinic receptor subunits in nicotine dependence. Finally, the review will discuss the role of classical neurotransmitters (dopamine, serotonin, noradrenaline, glutamate, and γ-aminobutyric acid) as well as endogenous opioid and endocannabinoid signaling in nicotine dependence. The nicotinic and nonnicotinic neural substrates involved in nicotine-dependent behaviors can serve as possible targets for future smoking cessation medications.
Collapse
|
40
|
Gao XB, Hermes G. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals. Front Syst Neurosci 2015; 9:142. [PMID: 26539086 PMCID: PMC4612503 DOI: 10.3389/fnsys.2015.00142] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/02/2015] [Indexed: 12/22/2022] Open
Abstract
The neuronal system that resides in the perifornical and lateral hypothalamus (Pf/LH) and synthesizes the neuropeptide hypocretin/orexin participates in critical brain functions across species from fish to human. The hypocretin system regulates neural activity responsible for daily functions (such as sleep/wake homeostasis, energy balance, appetite, etc.) and long-term behavioral changes (such as reward seeking and addiction, stress response, etc.) in animals. The most recent evidence suggests that the hypocretin system undergoes substantial plastic changes in response to both daily fluctuations (such as food intake and sleep-wake regulation) and long-term changes (such as cocaine seeking) in neuronal activity in the brain. The understanding of these changes in the hypocretin system is essential in addressing the role of the hypocretin system in normal physiological functions and pathological conditions in animals and humans. In this review, the evidence demonstrating that neural plasticity occurs in hypocretin-containing neurons in the Pf/LH will be presented and possible physiological, behavioral, and mental health implications of these findings will be discussed.
Collapse
Affiliation(s)
- Xiao-Bing Gao
- Section of Comparative Medicine, Yale University School of Medicine New Haven, CT, USA ; Program on Integrative Cell Signaling and Neurobiology of Metabolism (ICSNM), Yale University School of Medicine New Haven, CT, USA
| | - Gretchen Hermes
- Department of Psychiatry, Yale University School of Medicine New Haven, CT, USA
| |
Collapse
|
41
|
Baimel C, Bartlett SE, Chiou LC, Lawrence AJ, Muschamp JW, Patkar O, Tung LW, Borgland SL. Orexin/hypocretin role in reward: implications for opioid and other addictions. Br J Pharmacol 2015; 172:334-48. [PMID: 24641197 PMCID: PMC4292951 DOI: 10.1111/bph.12639] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/24/2014] [Accepted: 01/31/2014] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Addiction is a devastating disorder that affects 15.3 million people worldwide. While prevalent, few effective treatments exist. Orexin receptors have been proposed as a potential target for anti-craving medications. Orexins, also known as hypocretins, are neuropeptides produced in neurons of the lateral and dorsomedial hypothalamus and perifornical area, which project widely throughout the brain. The absence of orexins in rodents and humans leads to narcolepsy. However, orexins also have an established role in reward seeking. This review will discuss some of the original studies describing the roles of the orexins in reward seeking as well as specific works that were presented at the 2013 International Narcotics Research Conference. Orexin signalling can promote drug-induced plasticity of glutamatergic synapses onto dopamine neurons of the ventral tegmental area (VTA), a brain region implicated in motivated behaviour. Additional evidence suggests that orexin signalling can also promote drug seeking by initiating an endocannabinoid-mediated synaptic depression of GABAergic inputs to the VTA, and thereby disinhibiting dopaminergic neurons. Orexin neurons co-express the inhibitory opioid peptide dynorphin. It has been proposed that orexin in the VTA may not mediate reward per se, but rather occludes the 'anti-reward' effects of dynorphin. Finally, orexin signalling in the prefrontal cortex and the central amygdala is implicated in reinstatement of reward seeking. This review will highlight recent work describing the role of orexin signalling in cellular processes underlying addiction-related behaviours and propose novel hypotheses for the mechanisms by which orexin signalling may impart drug seeking. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- Corey Baimel
- Department of Physiology and Pharmacology, The University of CalgaryCalgary, AB, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British ColumbiaVancouver, BC, Canada
| | - Selena E Bartlett
- Translational Research Institute, Institute for Health and Biomedical Sciences, Faculty of Health Queensland University of TechnologyBrisbane, QLD, Australia
| | - Lih-Chu Chiou
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of MelbourneParkville, VIC, Australia
| | - John W Muschamp
- Center for Substance Abuse Research, Department of Pharmacology, School of Medicine, Temple UniversityPhiladelphia, PA, USA
| | - Omkar Patkar
- Translational Research Institute, Institute for Health and Biomedical Sciences, Faculty of Health Queensland University of TechnologyBrisbane, QLD, Australia
| | - Li-Wei Tung
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, The University of CalgaryCalgary, AB, Canada
| |
Collapse
|
42
|
Jackson KJ, Muldoon PP, De Biasi M, Damaj MI. New mechanisms and perspectives in nicotine withdrawal. Neuropharmacology 2014; 96:223-34. [PMID: 25433149 DOI: 10.1016/j.neuropharm.2014.11.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/21/2014] [Accepted: 11/17/2014] [Indexed: 02/08/2023]
Abstract
Diseases associated with tobacco use constitute a major health problem worldwide. Upon cessation of tobacco use, an unpleasant withdrawal syndrome occurs in dependent individuals. Avoidance of the negative state produced by nicotine withdrawal represents a motivational component that promotes continued tobacco use and relapse after smoking cessation. With the modest success rate of currently available smoking cessation therapies, understanding mechanisms involved in the nicotine withdrawal syndrome are crucial for developing successful treatments. Animal models provide a useful tool for examining neuroadaptative mechanisms and factors influencing nicotine withdrawal, including sex, age, and genetic factors. Such research has also identified an important role for nicotinic receptor subtypes in different aspects of the nicotine withdrawal syndrome (e.g., physical vs. affective signs). In addition to nicotinic receptors, the opioid and endocannabinoid systems, various signal transduction pathways, neurotransmitters, and neuropeptides have been implicated in the nicotine withdrawal syndrome. Animal studies have informed human studies of genetic variants and potential targets for smoking cessation therapies. Overall, the available literature indicates that the nicotine withdrawal syndrome is complex, and involves a range of neurobiological mechanisms. As research in nicotine withdrawal progresses, new pharmacological options for smokers attempting to quit can be identified, and treatments with fewer side effects that are better tailored to the unique characteristics of patients may become available. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- K J Jackson
- Department of Psychiatry, Virginia Commonwealth University, 800 E. Leigh St., Richmond, VA 23219, USA
| | - P P Muldoon
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1220 E. Marshall St., Richmond, VA 23219, USA
| | - M De Biasi
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M I Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1220 E. Marshall St., Richmond, VA 23219, USA.
| |
Collapse
|
43
|
The hypocretin/orexin system mediates the extinction of fear memories. Neuropsychopharmacology 2014; 39:2732-41. [PMID: 24930888 PMCID: PMC4200503 DOI: 10.1038/npp.2014.146] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/15/2014] [Accepted: 06/09/2014] [Indexed: 01/01/2023]
Abstract
Anxiety disorders are often associated with an inability to extinguish learned fear responses. The hypocretin/orexin system is involved in the regulation of emotional states and could also participate in the consolidation and extinction of aversive memories. Using hypocretin receptor-1 and hypocretin receptor-2 antagonists, hypocretin-1 and hypocretin-2 peptides, and hypocretin receptor-1 knockout mice, we investigated the role of the hypocretin system in cue- and context-dependent fear conditioning and extinction. Hypocretins were crucial for the consolidation of fear conditioning, and this effect was mainly observed in memories with a high emotional component. Notably, after the acquisition of fear memory, hypocretin receptor-1 blockade facilitated fear extinction, whereas hypocretin-1 administration impaired this extinction process. The extinction-facilitating effects of the hypocretin receptor-1 antagonist SB334867 were associated with increased expression of cFos in the basolateral amygdala and the infralimbic cortex. Intra-amygdala, but neither intra-infralimbic prefrontal cortex nor intra-dorsohippocampal infusion of SB334867 enhanced fear extinction. These results reveal a key role for hypocretins in the extinction of aversive memories and suggest that hypocretin receptor-1 blockade could represent a novel therapeutic target for the treatment of diseases associated with inappropriate retention of fear, such as post-traumatic stress disorder and phobias.
Collapse
|
44
|
Varani AP, Moutinho Machado L, Balerio GN. Baclofen prevented the changes in c-Fos and brain-derived neutrophic factor expressions during mecamylamine-precipitated nicotine withdrawal in mice. Synapse 2014; 68:508-17. [DOI: 10.1002/syn.21763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/12/2014] [Accepted: 06/30/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Andrés P. Varani
- Instituto de Investigaciones Farmacológicas (UBA-CONICET); Junín 956, 5° piso, (C1113AAD) Buenos Aires Argentina
| | - Lirane Moutinho Machado
- Instituto de Investigaciones Farmacológicas (UBA-CONICET); Junín 956, 5° piso, (C1113AAD) Buenos Aires Argentina
| | - Graciela N. Balerio
- Instituto de Investigaciones Farmacológicas (UBA-CONICET); Junín 956, 5° piso, (C1113AAD) Buenos Aires Argentina
- Cátedra de Farmacología; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Junín 956 5° Piso, (C1113AAD) Buenos Aires Argentina
| |
Collapse
|
45
|
Abstract
Addiction is a chronic relapsing disorder which presents a significant global health burden and unmet medical need. The orexin/hypocretin system is an attractive potential therapeutic target as demonstrated by the successful clinical trials of antagonist medications like Suvorexant for insomnia. It is composed of two neuropeptides, orexin-A and orexin-B and two excitatory and promiscuous G-protein coupled receptors, OX1 and OX2. Orexins are known to have a variety of functions, most notably in regulating arousal, appetite and reward. The orexins have been shown to have a role in mediating the effects of several drugs of abuse, such as cocaine, morphine and alcohol via projections to key brain regions such as the ventral tegmental area, nucleus accumbens and prefrontal cortex. However, it has not yet been demonstrated whether the dual orexin receptor antagonists (DORAs) under development for insomnia are ideal drugs for the treatment of addiction. The question of whether to use a DORA or single orexin receptor antagonist (SORA) for the treatment of addiction is a key question that will need to be answered in order to maximize the clinical utility of orexin receptor antagonists. This review will examine the role of the orexin/hypocretin system in addiction, orexin-based pharmacotherapies under development and factors affecting the selection of one or both orexin receptors as drug targets for the treatment of addiction.
Collapse
|
46
|
Giardino WJ, de Lecea L. Hypocretin (orexin) neuromodulation of stress and reward pathways. Curr Opin Neurobiol 2014; 29:103-8. [PMID: 25050887 DOI: 10.1016/j.conb.2014.07.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/11/2014] [Accepted: 07/02/2014] [Indexed: 01/08/2023]
Abstract
Hypocretin (also known as orexin) is a peptide neuromodulator that is expressed exclusively in the lateral hypothalamic area and plays a fundamental role in wakefulness and arousal. Chronic stress and compulsive drug-seeking are two examples of dysregulated states of hyperarousal that are influenced by hypocretin transmission throughout hypothalamic, extended amygdala, brainstem, and mesolimbic pathways. Here, we review current advances in the understanding of hypocretin's modulatory actions underlying conditions of negative and positive emotional valence, focusing particularly on mechanisms that facilitate adaptive (and maladaptive) responses to stressful or rewarding environmental stimuli. We conclude by discussing progress toward integrated theories for hypocretin modulation of divergent behavioral domains.
Collapse
Affiliation(s)
- William J Giardino
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, P154, Stanford, CA 94305, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, P154, Stanford, CA 94305, USA.
| |
Collapse
|
47
|
Chen Q, de Lecea L, Hu Z, Gao D. The hypocretin/orexin system: an increasingly important role in neuropsychiatry. Med Res Rev 2014; 35:152-97. [PMID: 25044006 DOI: 10.1002/med.21326] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hypocretins, also named as orexins, are excitatory neuropeptides secreted by neurons specifically located in lateral hypothalamus and perifornical areas. Orexinergic fibers are extensively distributed in various brain regions and involved in a number of physiological functions, such as arousal, cognition, stress, appetite, and metabolism. Arousal is the most important function of orexin system as dysfunction of orexin signaling leads to narcolepsy. In addition to narcolepsy, orexin dysfunction is associated with serious neural disorders, including addiction, depression, and anxiety. However, some results linking orexin with these disorders are still contradictory, which may result from differences of detection methods or the precision of tools used in measurements; strategies targeted to orexin system (e.g., antagonists to orexin receptors, gene delivery, and cell transplantation) are promising new tools for treatment of neuropsychiatric disorders, though studies are still in a stage of preclinical or clinical research.
Collapse
Affiliation(s)
- Quanhui Chen
- Department of Physiology, Third Military Medical University, Chongqing 400038, China; Department of Sleep and Psychology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | |
Collapse
|
48
|
Falasca S, Ranc V, Petruzziello F, Khani A, Kretz R, Zhang X, Rainer G. Altered neurochemical levels in the rat brain following chronic nicotine treatment. J Chem Neuroanat 2014; 59-60:29-35. [PMID: 24915436 DOI: 10.1016/j.jchemneu.2014.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 05/21/2014] [Accepted: 05/25/2014] [Indexed: 12/31/2022]
Abstract
Converging evidence shows that neurochemical systems are crucial mediators of nicotine dependence. Our present study evaluates the effect of 3-month chronic nicotine treatment on the levels of multiple quaternary ammonium compounds as well as glutamate and gamma aminobutyric acid in the rat prefrontal cortex, dorsal striatum and hypothalamus. We observed a marked decrease of acetylcholine levels in the dorsal striatum (22.88%, p<0.01), reflecting the impact of chronic nicotine in local interneuron circuits. We found decreases of carnitine in the dorsal striatum and prefrontal cortex (19.44%, p<0.01; 13.58%, p<0.01, respectively), but robust enhancements of carnitine in the hypothalamus (26.59%, p<0.01), which may reflect the alterations in food and water intake during chronic nicotine treatment. Finally, we identified an increase of prefrontal cortex glutamate levels (8.05%, p<0.05), supporting previous studies suggesting enhanced prefrontal activity during chronic drug use. Our study shows that quaternary ammonium compounds are regulated in a highly brain region specific manner during chronic nicotine treatment, and provides novel insights into neurochemical regulation during nicotine use.
Collapse
Affiliation(s)
- Sara Falasca
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Chemin du Musee 5, Fribourg CH-1700, Switzerland
| | - Vaclav Ranc
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Chemin du Musee 5, Fribourg CH-1700, Switzerland
| | - Filomena Petruzziello
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Chemin du Musee 5, Fribourg CH-1700, Switzerland
| | - Abbas Khani
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Chemin du Musee 5, Fribourg CH-1700, Switzerland
| | - Robert Kretz
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Chemin du Musee 5, Fribourg CH-1700, Switzerland
| | - Xiaozhe Zhang
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Chemin du Musee 5, Fribourg CH-1700, Switzerland.
| | - Gregor Rainer
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Chemin du Musee 5, Fribourg CH-1700, Switzerland; Fribourg Center for Cognition, University of Fribourg, Fribourg CH-1700, Switzerland
| |
Collapse
|
49
|
Abstract
The basic elements of animal behavior that are critical to survival include energy, arousal, and motivation: Energy intake and expenditure are fundamental to all organisms for the performance of any type of function; according to the Yerkes-Dodson law, an optimal level of arousal is required for animals to perform normal functions; and motivation is critical to goal-oriented behaviors in higher animals. The brain is the primary organ that controls these elements and, through evolution, has developed specialized structures to accomplish this task. The orexin/hypocretin system in the perifornical/lateral hypothalamus, which was discovered 15 years ago, is one such specialized area. This review summarizes a fast-growing body of evidence discerning how the orexin/hypocretin system integrates internal and external cues to regulate energy intake that can then be used to generate sufficient arousal for animals to perform innate and goal-oriented behaviors.
Collapse
Affiliation(s)
- Xiao-Bing Gao
- Yale Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520; ,
| | | |
Collapse
|
50
|
Matzeu A, Zamora-Martinez ER, Martin-Fardon R. The paraventricular nucleus of the thalamus is recruited by both natural rewards and drugs of abuse: recent evidence of a pivotal role for orexin/hypocretin signaling in this thalamic nucleus in drug-seeking behavior. Front Behav Neurosci 2014; 8:117. [PMID: 24765071 PMCID: PMC3982054 DOI: 10.3389/fnbeh.2014.00117] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/20/2014] [Indexed: 01/12/2023] Open
Abstract
A major challenge for the successful treatment of drug addiction is the long-lasting susceptibility to relapse and multiple processes that have been implicated in the compulsion to resume drug intake during abstinence. Recently, the orexin/hypocretin (Orx/Hcrt) system has been shown to play a role in drug-seeking behavior. The Orx/Hcrt system regulates a wide range of physiological processes, including feeding, energy metabolism, and arousal. It has also been shown to be recruited by drugs of abuse. Orx/Hcrt neurons are predominantly located in the lateral hypothalamus that projects to the paraventricular nucleus of the thalamus (PVT), a region that has been identified as a "way-station" that processes information and then modulates the mesolimbic reward and extrahypothalamic stress systems. Although not thought to be part of the "drug addiction circuitry", recent evidence indicates that the PVT is involved in the modulation of reward function in general and drug-directed behavior in particular. Evidence indicates a role for Orx/Hcrt transmission in the PVT in the modulation of reward function in general and drug-directed behavior in particular. One hypothesis is that following repeated drug exposure, the Orx/Hcrt system acquires a preferential role in mediating the effects of drugs vs. natural rewards. The present review discusses recent findings that suggest maladaptive recruitment of the PVT by drugs of abuse, specifically Orx/Hcrt-PVT neurotransmission.
Collapse
Affiliation(s)
- Alessandra Matzeu
- Molecular and Cellular Neuroscience Department, The Scripps Research InstituteLa Jolla, CA, USA
| | - Eva R. Zamora-Martinez
- Molecular and Cellular Neuroscience Department, The Scripps Research InstituteLa Jolla, CA, USA
| | - Rémi Martin-Fardon
- Molecular and Cellular Neuroscience Department, The Scripps Research InstituteLa Jolla, CA, USA
| |
Collapse
|