1
|
Jones BO, Paladino MS, Cruz AM, Spencer HF, Kahanek PL, Scarborough LN, Georges SF, Smith RJ. Punishment resistance for cocaine is associated with inflexible habits in rats. ADDICTION NEUROSCIENCE 2024; 11:100148. [PMID: 38859977 PMCID: PMC11164474 DOI: 10.1016/j.addicn.2024.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Addiction is characterized by continued drug use despite negative consequences. In an animal model, a subset of rats continues to self-administer cocaine despite footshock consequences, showing punishment resistance. We sought to test the hypothesis that punishment resistance arises from failure to exert goal-directed control over habitual cocaine seeking. While habits are not inherently permanent or maladaptive, continued use of habits under conditions that should encourage goal-directed control makes them maladaptive and inflexible. We trained male and female Sprague Dawley rats on a seeking-taking chained schedule of cocaine self-administration. We then exposed them to four days of punishment testing in which footshock was delivered randomly on one-third of trials. Before and after punishment testing (four days pre-punishment and ≥ four days post-punishment), we assessed whether cocaine seeking was goal-directed or habitual using outcome devaluation via cocaine satiety. We found that punishment resistance was associated with continued use of habits, whereas punishment sensitivity was associated with increased goal-directed control. Although punishment resistance for cocaine was not predicted by habitual responding pre-punishment, it was associated with habitual responding post-punishment. In parallel studies of food self-administration, we similarly observed that punishment resistance was associated with habitual responding post-punishment but not pre-punishment in males, although it was associated with habitual responding both pre- and post-punishment in females, indicating that punishment resistance was predicted by habitual responding in food-seeking females. These findings indicate that punishment resistance is related to habits that have become inflexible and persist under conditions that should encourage a transition to goal-directed behavior.
Collapse
Affiliation(s)
- Bradley O Jones
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Morgan S Paladino
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Adelis M Cruz
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Haley F Spencer
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Payton L Kahanek
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Lauren N Scarborough
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Sandra F Georges
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Rachel J Smith
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
2
|
Ahrens J, Zaher F, Rabin RA, Cassidy CM, Palaniyappan L. Neuromelanin levels in individuals with substance use disorders: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 161:105690. [PMID: 38678736 DOI: 10.1016/j.neubiorev.2024.105690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Dopamine's role in addiction has been extensively studied, revealing disruptions in its functioning throughout all addiction stages. Neuromelanin in the substantia nigra (SN) may reflect dopamine auto-oxidation, and can be quantified using neuromelaninsensitive magnetic resonance imaging (neuromelanin-MRI) in a non-invasive manner.In this pre-registered systematic review, we assess the current body of evidence related to neuromelanin levels in substance use disorders, using both post-mortem and MRI examinations. The systematic search identified 10 relevant articles, primarily focusing on the substantia nigra. An early-stage meta-analysis (n = 6) revealed varied observations ranging from standardized mean differences of -3.55 to +0.62, with a pooled estimate of -0.44 (95 % CI = -1.52, 0.65), but there was insufficient power to detect differences in neuromelanin content among individuals with substance use disorders. Our gap analysis highlights the lack of sufficient replication studies, with existing studies lacking the power to detect a true difference, and a complete lack of neuromelanin studies on certain substances of clinical interest. We provide recommendations for future studies of dopaminergic neurobiology in addictions and related psychiatric comorbidities.
Collapse
Affiliation(s)
- Jessica Ahrens
- Douglas Research Centre, Douglas Mental Health Research Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Farida Zaher
- Douglas Research Centre, Douglas Mental Health Research Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Rachel A Rabin
- Douglas Research Centre, Douglas Mental Health Research Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Clifford M Cassidy
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Lena Palaniyappan
- Douglas Research Centre, Douglas Mental Health Research Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
3
|
Magnard R, Fouyssac M, Vachez YM, Cheng Y, Dufourd T, Carcenac C, Boulet S, Janak PH, Savasta M, Belin D, Carnicella S. Pramipexole restores behavioral inhibition in highly impulsive rats through a paradoxical modulation of frontostriatal networks. Transl Psychiatry 2024; 14:86. [PMID: 38336862 PMCID: PMC10858232 DOI: 10.1038/s41398-024-02804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Impulse control disorders (ICDs), a wide spectrum of maladaptive behaviors which includes pathological gambling, hypersexuality and compulsive buying, have been recently suggested to be triggered or aggravated by treatments with dopamine D2/3 receptor agonists, such as pramipexole (PPX). Despite evidence showing that impulsivity is associated with functional alterations in corticostriatal networks, the neural basis of the exacerbation of impulsivity by PPX has not been elucidated. Here we used a hotspot analysis to assess the functional recruitment of several corticostriatal structures by PPX in male rats identified as highly (HI), moderately impulsive (MI) or with low levels of impulsivity (LI) in the 5-choice serial reaction time task (5-CSRTT). PPX dramatically reduced impulsivity in HI rats. Assessment of the expression pattern of the two immediate early genes C-fos and Zif268 by in situ hybridization subsequently revealed that PPX resulted in a decrease in Zif268 mRNA levels in different striatal regions of both LI and HI rats accompanied by a high impulsivity specific reduction of Zif268 mRNA levels in prelimbic and cingulate cortices. PPX also decreased C-fos mRNA levels in all striatal regions of LI rats, but only in the dorsolateral striatum and nucleus accumbens core (NAc Core) of HI rats. Structural equation modeling further suggested that the anti-impulsive effect of PPX was mainly attributable to the specific downregulation of Zif268 mRNA in the NAc Core. Altogether, our results show that PPX restores impulse control in highly impulsive rats by modulation of limbic frontostriatal circuits.
Collapse
Affiliation(s)
- Robin Magnard
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France.
| | - Maxime Fouyssac
- Department of Psychology, University of Cambridge, Downing Street, CB2 3EB, Cambridge, United Kingdom
| | - Yvan M Vachez
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Yifeng Cheng
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Thibault Dufourd
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Carole Carcenac
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Sabrina Boulet
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Marc Savasta
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - David Belin
- Department of Psychology, University of Cambridge, Downing Street, CB2 3EB, Cambridge, United Kingdom
| | - Sebastien Carnicella
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| |
Collapse
|
4
|
Dong X, Zhornitsky S, Wang W, Le TM, Chen Y, Chaudhary S, Li CSR, Zhang S. Resting-State Functional Connectivity of the Dorsal and Ventral Striatum, Impulsivity, and Severity of Use in Recently Abstinent Cocaine-Dependent Individuals. Int J Neuropsychopharmacol 2023; 26:627-638. [PMID: 37579016 PMCID: PMC10519818 DOI: 10.1093/ijnp/pyac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/03/2022] [Accepted: 03/01/2022] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Previous studies have focused on both ventral striatum (VS) and dorsal striatum (DS) in characterizing dopaminergic deficits in addiction. Animal studies suggest VS and DS dysfunction each in association with impulsive and compulsive cocaine use during early and later stages of addiction. However, few human studies have aimed to distinguish the roles of VS and DS dysfunction in cocaine misuse. METHODS We examined VS and DS resting-state functional connectivity (rsFC) of 122 recently abstinent cocaine-dependent individuals (CDs) and 122 healthy controls (HCs) in 2 separate cohorts. We followed published routines in imaging data analyses and evaluated the results at a corrected threshold with age, sex, years of drinking, and smoking accounted for. RESULTS CDs relative to HCs showed higher VS rsFC with the left inferior frontal cortex (IFC), lower VS rsFC with the hippocampus, and higher DS rsFC with the left orbitofrontal cortex. Region-of-interest analyses confirmed the findings in the 2 cohorts examined separately. In CDs, VS-left IFC and VS-hippocampus connectivity was positively and negatively correlated with average monthly cocaine use in the prior year, respectively. In the second cohort where participants were assessed with the Barratt Impulsivity Scale (BIS-11), VS-left IFC and VS-hippocampus connectivity was also positively and negatively correlated with BIS-11 scores in CDs. In contrast, DS-orbitofrontal cortex connectivity did not relate significantly to cocaine use metrics or BIS-11 scores. CONCLUSION These findings associate VS rsFC with impulsivity and the severity of recent cocaine use. How DS connectivity partakes in cocaine misuse remains to be investigated.
Collapse
Affiliation(s)
- Xue Dong
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Psychology, Youth Mental Health Education Center, Shaanxi University of Science & Technology, Xian, Shaanxi, China
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA
- Wu Tsai Institute, Yale University, New Haven, Connecticut, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Jones BO, Paladino MS, Cruz AM, Spencer HF, Kahanek PL, Scarborough LN, Georges SF, Smith RJ. Punishment resistance for cocaine is associated with inflexible habits in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544242. [PMID: 37333299 PMCID: PMC10274925 DOI: 10.1101/2023.06.08.544242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Addiction is characterized by continued drug use despite negative consequences. In an animal model, a subset of rats continues to self-administer cocaine despite footshock consequences, showing punishment resistance. We sought to test the hypothesis that punishment resistance arises from failure to exert goal-directed control over habitual cocaine seeking. While habits are not inherently permanent or maladaptive, continued use of habits under conditions that should encourage goal-directed control makes them maladaptive and inflexible. We trained male and female Sprague Dawley rats on a seeking-taking chained schedule of cocaine self-administration (2 h/day). We then exposed them to 4 days of punishment testing, in which footshock (0.4 mA, 0.3 s) was delivered randomly on one-third of trials, immediately following completion of seeking and prior to extension of the taking lever. Before and after punishment testing (4 days pre-punishment and ≥4 days post-punishment), we assessed whether cocaine seeking was goal-directed or habitual using outcome devaluation via cocaine satiety. We found that punishment resistance was associated with continued use of habits, whereas punishment sensitivity was associated with increased goal-directed control. Although punishment resistance was not predicted by habitual responding pre-punishment, it was associated with habitual responding post-punishment. In parallel studies of food self-administration, we similarly observed that punishment resistance was associated with habitual responding post-punishment but not pre-punishment. These findings indicate that punishment resistance is related to habits that have become inflexible and persist under conditions that should encourage a transition to goal-directed behavior.
Collapse
Affiliation(s)
- Bradley O. Jones
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Morgan S. Paladino
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Adelis M. Cruz
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Haley F. Spencer
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Payton L. Kahanek
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Lauren N. Scarborough
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Sandra F. Georges
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Rachel J. Smith
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
6
|
File D, Bőthe B, File B, Demetrovics Z. The Role of Impulsivity and Reward Deficiency in "Liking" and "Wanting" of Potentially Problematic Behaviors and Substance Uses. Front Psychiatry 2022; 13:820836. [PMID: 35546934 PMCID: PMC9083266 DOI: 10.3389/fpsyt.2022.820836] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
A few studies have examined the changes in substance- and behavior-related "wanting" and "liking" of human subjects, the key properties of Incentive Sensitization Theory (IST). The aim of this study was to examine the dissociation between "wanting" and "liking" as a function of usage frequency, intensity, and subjective severity in individuals across four substances (alcohol, nicotine, cannabis, and other drugs) and ten behaviors (gambling, overeating, gaming, pornography use, sex, social media use, Internet use, TV-series watching, shopping, and work). Also, the potential roles of impulsivity and reward deficiency were investigated in "wanting," "liking," and wellbeing. The sex differences between "wanting" and "liking" were also examined. Based on our findings using structural equation modeling with 749 participants (503 women, M age = 35.7 years, SD = 11.84), who completed self-report questionnaires, "wanting" increased with the severity, frequency, and intensity of potentially problematic use, while "liking" did not change. Impulsivity positively predicted "wanting," and "wanting" positively predicted problem uses/behaviors. Reward deficiency positively predicted problem uses/behaviors, and both impulsivity and problem uses/behaviors negatively predicted wellbeing. Finally, women showed higher levels of "wanting," compared to men. These findings demonstrate the potential roles of incentive sensitization in both potentially problematic substance uses and behaviors.
Collapse
Affiliation(s)
- Domonkos File
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Beáta Bőthe
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Bálint File
- Wigner Research Centre for Physics, Budapest, Hungary
| | - Zsolt Demetrovics
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Centre of Excellence in Responsible Gaming, University of Gibraltar, Gibraltar, Gibraltar
| |
Collapse
|
7
|
Sivils A, Wang JQ, Chu XP. Striatonigrostriatal Spirals in Addiction. Front Neural Circuits 2021; 15:803501. [PMID: 34955762 PMCID: PMC8703003 DOI: 10.3389/fncir.2021.803501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
A biological reward system is integral to all animal life and humans are no exception. For millennia individuals have investigated this system and its influences on human behavior. In the modern day, with the US facing an ongoing epidemic of substance use without an effective treatment, these investigations are of paramount importance. It is well known that basal ganglia contribute to rewards and are involved in learning, approach behavior, economic choices, and positive emotions. This review aims to elucidate the physiological role of striatonigrostriatal (SNS) spirals, as part of basal ganglia circuits, in this reward system and their pathophysiological role in perpetuating addiction. Additionally, the main functions of neurotransmitters such as dopamine and glutamate and their receptors in SNS circuits will be summarized. With this information, the claim that SNS spirals are crucial intermediaries in the shift from goal-directed behavior to habitual behavior will be supported, making this circuit a viable target for potential therapeutic intervention in those with substance use disorders.
Collapse
Affiliation(s)
| | | | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
8
|
Kähler B, Romswinkel EV, Jakovcevski M, Moses A, Schachner M, Morellini F. Hyperfunction of the stress response system and novelty-induced hyperactivity correlate with enhanced cocaine-induced conditioned place preference in NCAM-deficient mice. Addict Biol 2021; 26:e12887. [PMID: 32124535 DOI: 10.1111/adb.12887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/30/2020] [Accepted: 02/12/2020] [Indexed: 02/05/2023]
Abstract
Several studies in humans and rodents suggest an association between impulsivity and activity of the stress response on the one hand and addiction vulnerability on the other. The neural cell adhesion molecule (NCAM) has been related to several neuropsychiatric disorders in humans. Constitutively NCAM-deficient (-/-) mice display enhanced novelty-induced behavior and hyperfunction of the hypothalamic-pituitary-adrenal axis. Here we hypothesize that NCAM deficiency causes an altered response to cocaine. Cocaine-induced behaviors of NCAM-/- mice and wild-type (+/+) littermates were analyzed in the conditioned place preference (CPP) test. c-fos mRNA levels were investigated by quantitative polymerase chain reaction (qPCR) to measure neural activation after exposure to the cocaine-associated context. NCAM-/- mice showed an elevated cocaine-induced sensitization, enhanced CPP, impaired extinction, and potentiated cocaine-induced hyperlocomotion and CPP after extinction. NCAM-/- showed no potentiated CPP as compared with NCAM+/+ littermates when a natural rewarding stimulus (ie, an unfamiliar female) was used, suggesting that the behavioral alterations of NCAM-/- mice observed in the CPP test are specific to the effects of cocaine. Activation of the prefrontal cortex and nucleus accumbens induced by the cocaine-associated context was enhanced in NCAM-/- compared with NCAM+/+ mice. Finally, cocaine-induced behavior correlated positively with novelty-induced behavior and plasma corticosterone levels in NCAM-/- mice and negatively with NCAM mRNA levels in the hippocampus and nucleus accumbens in wild-type mice. Our findings indicate that NCAM deficiency affects cocaine-induced CPP in mice and support the view that hyperfunction of the stress response system and reactivity to novelty predict the behavioral responses to cocaine.
Collapse
Affiliation(s)
- Birgit Kähler
- Institute for Biosynthesis of Neural Structures, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Viktoria Romswinkel
- Behavioral Biology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mira Jakovcevski
- Institute for Biosynthesis of Neural Structures, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ashley Moses
- Behavioral Biology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Institute for Biosynthesis of Neural Structures, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA
| | - Fabio Morellini
- Institute for Biosynthesis of Neural Structures, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Lerner TN. Interfacing behavioral and neural circuit models for habit formation. J Neurosci Res 2020; 98:1031-1045. [PMID: 31916623 DOI: 10.1002/jnr.24581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
Habits are an important mechanism by which organisms can automate the control of behavior to alleviate cognitive demand. However, transitions to habitual control are risky because they lead to inflexible responding in the face of change. The question of how the brain controls transitions into habit is thus an intriguing one. How do we regulate when our repeated actions become automated? When is it advantageous or disadvantageous to release actions from cognitive control? Decades of research have identified a variety of methods for eliciting habitual responding in animal models. Progress has also been made to understand which brain areas and neural circuits control transitions into habit. Here, I discuss existing research on behavioral and neural circuit models for habit formation (with an emphasis on striatal circuits), and discuss strategies for combining information from different paradigms and levels of analysis to prompt further progress in the field.
Collapse
Affiliation(s)
- Talia N Lerner
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
10
|
Lipton DM, Gonzales BJ, Citri A. Dorsal Striatal Circuits for Habits, Compulsions and Addictions. Front Syst Neurosci 2019; 13:28. [PMID: 31379523 PMCID: PMC6657020 DOI: 10.3389/fnsys.2019.00028] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022] Open
Abstract
Here, we review the neural circuit bases of habits, compulsions, and addictions, behaviors which are all characterized by relatively automatic action performance. We discuss relevant studies, primarily from the rodent literature, and describe how major headway has been made in identifying the brain regions and neural cell types whose activity is modulated during the acquisition and performance of these automated behaviors. The dorsal striatum and cortical inputs to this structure have emerged as key players in the wider basal ganglia circuitry encoding behavioral automaticity, and changes in the activity of different neuronal cell-types in these brain regions have been shown to co-occur with the formation of automatic behaviors. We highlight how disordered functioning of these neural circuits can result in neuropsychiatric disorders, such as obsessive-compulsive disorder (OCD) and drug addiction. Finally, we discuss how the next phase of research in the field may benefit from integration of approaches for access to cells based on their genetic makeup, activity, connectivity and precise anatomical location.
Collapse
Affiliation(s)
- David M Lipton
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.,Zuckerman Postdoctoral Scholar, Jerusalem, Israel
| | - Ben J Gonzales
- Institute of Life Sciences, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ami Citri
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.,Institute of Life Sciences, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem, Israel.,Program in Child and Brain Development, MaRS Centre, Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
11
|
Zorrilla EP, Koob GF. Impulsivity Derived From the Dark Side: Neurocircuits That Contribute to Negative Urgency. Front Behav Neurosci 2019; 13:136. [PMID: 31293401 PMCID: PMC6603097 DOI: 10.3389/fnbeh.2019.00136] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/05/2019] [Indexed: 01/05/2023] Open
Abstract
Negative urgency is a unique dimension of impulsivity that involves acting rashly when in extreme distress and impairments in inhibitory control. It has been hypothesized to derive from stress that is related to negative emotional states that are experienced during the withdrawal/negative affect stage of the addiction cycle. Classically, a transition to compulsive drug use prevents or relieves negative emotional states that result from abstinence or stressful environmental circumstances. Recent work suggests that this shift to the "dark side" is also implicated in impulsive use that derives from negative urgency. Stress and anxious, depressed, and irritable mood have high comorbidity with addiction. They may trigger bouts of drug seeking in humans via both negative reinforcement and negative urgency. The neurocircuitry that has been identified in the "dark side" of addiction involves key neuropeptides in the central extended amygdala, including corticotropin-releasing factor. The present review article summarizes empirical and conceptual advances in the field to understand the role of the "dark side" in driving the risky and detrimental substance use that is associated with negative urgency in addiction.
Collapse
Affiliation(s)
- Eric P. Zorrilla
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States
| | - George F. Koob
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, United States
| |
Collapse
|
12
|
Zhou X, Zimmermann K, Xin F, Zhao W, Derckx RT, Sassmannshausen A, Scheele D, Hurlemann R, Weber B, Kendrick KM, Becker B. Cue Reactivity in the Ventral Striatum Characterizes Heavy Cannabis Use, Whereas Reactivity in the Dorsal Striatum Mediates Dependent Use. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:751-762. [PMID: 31204249 DOI: 10.1016/j.bpsc.2019.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Animal models of addiction suggest that the transition from incentive-driven drug use to habitual and ultimately compulsive drug use is mediated by a shift from ventral to dorsal striatal cue control over drug seeking. Previous studies in human cannabis users reported elevated trait impulsivity and neural cue reactivity in striatal circuits; however, these studies were not able to separate addiction-related from exposure-related adaptations. METHODS To differentiate the adaptive changes, the current functional magnetic resonance imaging study examined behavioral and neural cue reactivity in dependent (n = 18) and nondependent (n = 20) heavy cannabis users and a nonusing reference group (n = 44). RESULTS Irrespective of dependence status, cannabis users demonstrated elevated trait impulsivity as well as increased ventral striatal reactivity and striatal frontal coupling in response to drug cues. Dependent users selectively exhibited dorsal striatal reactivity and decreased striatal limbic coupling during cue exposure. An exploratory analysis revealed that higher ventral caudate neural cue reactivity was associated with stronger cue-induced arousal and craving in dependent users, whereas this pattern was reversed in nondependent users. CONCLUSIONS Taken together, the current findings suggest that exaggerated responses of the ventral striatal reward system may promote excessive drug use in humans, whereas adaptations in dorsal striatal systems engaged in habit formation may promote the transition to addictive use.
Collapse
Affiliation(s)
- Xinqi Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Kaeli Zimmermann
- Division of Medical Psychology, Department of Psychiatry, University of Bonn, Bonn, Germany
| | - Fei Xin
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Roelinka T Derckx
- Division of Medical Psychology, Department of Psychiatry, University of Bonn, Bonn, Germany
| | - Anja Sassmannshausen
- Division of Medical Psychology, Department of Psychiatry, University of Bonn, Bonn, Germany
| | - Dirk Scheele
- Division of Medical Psychology, Department of Psychiatry, University of Bonn, Bonn, Germany
| | - Rene Hurlemann
- Division of Medical Psychology, Department of Psychiatry, University of Bonn, Bonn, Germany
| | - Bernd Weber
- Center for Economics and Neuroscience, Department of Epileptology, University of Bonn, Bonn, Germany; Department of Neurocognition, Life & Brain Center, Bonn, Germany
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
13
|
Giuliano C, Belin D, Everitt BJ. Compulsive Alcohol Seeking Results from a Failure to Disengage Dorsolateral Striatal Control over Behavior. J Neurosci 2019; 39:1744-1754. [PMID: 30617206 PMCID: PMC6391574 DOI: 10.1523/jneurosci.2615-18.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/29/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
The acquisition of drug, including alcohol, use is associated with activation of the mesolimbic dopamine system. However, over the course of drug exposure the control over drug seeking progressively devolves to anterior dorsal striatum (aDLS) dopamine-dependent mechanisms. The causal importance of this functional recruitment of aDLS in the switch from controlled to compulsive drug use in vulnerable individuals remains to be established. Here we tested the hypothesis that individual differences in the susceptibility to aDLS dopamine-dependent control over alcohol seeking predicts and underlies the development of compulsive alcohol seeking. Male alcohol-preferring rats, the alcohol-preferring phenotype of which was confirmed in an intermittent two-bottle choice procedure, were implanted bilaterally with cannulae above the aDLS and trained instrumentally on a seeking-taking chained schedule of alcohol reinforcement until some individuals developed compulsive seeking behavior. The susceptibility to aDLS dopamine control over behavior was investigated before and after the development of compulsivity by measuring the extent to which bilateral aDLS infusions of the dopamine receptor antagonist α-flupenthixol (0, 5, 10, and 15 μg/side) decreased alcohol seeking at different stages of training, as follows: (1) after acquisition of instrumental taking responses for alcohol; (2) after alcohol-seeking behavior was well established; and (3) after the development of punishment-resistant alcohol seeking. Only alcohol-seeking, not alcohol-taking, responses became dependent on aDLS dopamine. Further, marked individual differences in the susceptibility of alcohol seeking to aDLS dopamine receptor blockade actually predicted the vulnerability to develop compulsive alcohol seeking, but only in subjects dependent on aDLS dopamine-dependent control.SIGNIFICANCE STATEMENT Over the course of addictive drug exposure, there is a transition in the control over drug seeking from ventral to anterior dorsal striatum (aDLS) dopamine-dependent mechanisms, but it is unclear whether this is causally involved in the development of compulsive drug seeking. We tested the hypothesis that individual differences in the reliance of alcohol seeking on aDLS dopamine predicts and underlies the emergence of compulsive alcohol seeking. We identified individual differences in the reliance of well established alcohol seeking, but not taking behavior, on aDLS mechanisms and also showed that this predicted the subsequent development of compulsive alcohol-seeking behavior. Thus, those individuals in whom alcohol seeking depended on aDLS mechanisms were vulnerable subsequently to display compulsivity.
Collapse
Affiliation(s)
- Chiara Giuliano
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - David Belin
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Barry J Everitt
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| |
Collapse
|
14
|
Modelling Differential Vulnerability to Substance Use Disorder in Rodents: Neurobiological Mechanisms. Handb Exp Pharmacol 2019; 258:203-230. [PMID: 31707470 DOI: 10.1007/164_2019_300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite the prevalence of drug use within society, only a subset of individuals actively taking addictive drugs lose control over their intake and develop compulsive drug-seeking and intake that typifies substance use disorder (SUD). Although research in this field continues to be an important and dynamic discipline, the specific neuroadaptations that drive compulsive behaviour in humans addicted to drugs and the neurobiological mechanisms that underlie an individual's innate susceptibility to SUD remain surprisingly poorly understood. Nonetheless, it is clear from research within the clinical domain that some behavioural traits are recurrently co-expressed in individuals with SUD, thereby inviting the hypothesis that certain behavioural endophenotypes may be predictive, or at least act in some way, to modify an individual's probability for developing this disorder. The analysis of such endophenotypes and their catalytic relationship to the expression of addiction-related behaviours has been greatly augmented by experimental approaches in rodents that attempt to capture diagnostically relevant aspects of this progressive brain disorder. This work has evolved from an early focus on aberrant drug reinforcement mechanisms to a now much richer account of the putatively impaired cognitive control processes that ultimately determine individual trajectories to compulsive drug-related behaviours. In this chapter we discuss the utility of experimental approaches in rodents designed to elucidate the neurobiological and genetic underpinnings of so-called risk traits and how these innate vulnerabilities collectively contribute to the pathogenesis of SUD.
Collapse
|
15
|
Hodebourg R, Murray JE, Fouyssac M, Puaud M, Everitt BJ, Belin D. Heroin seeking becomes dependent on dorsal striatal dopaminergic mechanisms and can be decreased by N-acetylcysteine. Eur J Neurosci 2018. [PMID: 29514413 PMCID: PMC6767855 DOI: 10.1111/ejn.13894] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The alarming increase in heroin overdoses in the USA is a reminder of the need for efficacious and novel treatments for opiate addiction. This may reflect the relatively poor understanding of the neural basis of heroin, as compared to cocaine, seeking behaviour. While cocaine reinforcement depends on the mesolimbic system, well‐established cocaine seeking is dependent on dorsolateral striatum (aDLS) dopamine‐dependent mechanisms which are disrupted by N‐acetylcysteine, through normalisation of corticostriatal glutamate homeostasis. However, it is unknown whether a functional recruitment of aDLS dopamine‐dependent control over instrumental responding also occurs for heroin seeking, even though heroin reinforcement does not depend on the mesolimbic dopamine system. Lister Hooded rats acquired heroin self‐administration and were subsequently trained to seek heroin daily over prolonged periods of time under the control of drug‐paired cues, as measured under a second‐order schedule of reinforcement. At different stages of training, that is, early on and when heroin seeking behaviour was well established, we measured the sensitivity of drug‐seeking responses to either bilateral aDLS infusions of the dopamine receptor antagonist α‐flupenthixol (5, 10 and 15 μg/side) or systemic administration of N‐acetylcysteine (30, 60 and 90 mg/kg). The results demonstrate that control over heroin seeking behaviour devolves to aDLS dopamine‐dependent mechanisms after extended training. Further aDLS‐dependent well‐established, cue‐controlled heroin seeking was disrupted by N‐acetylcysteine. Comparison with previous data on cocaine suggests that the development of drug seeking habits and the alteration of corticostriatal glutamate homeostasis, which is restored by N‐acetylcysteine, are quantitatively similar between heroin and cocaine.
Collapse
Affiliation(s)
- Ritchy Hodebourg
- Department of Pharmacology, University of Montreal, Montreal, QC, Canada
| | | | - Maxime Fouyssac
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Mickaël Puaud
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Barry J Everitt
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - David Belin
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
16
|
Decrease of cocaine, but not heroin, self-administration and relapse by the tyrosine kinase inhibitor masitinib in male Sprague Dawley rats. Psychopharmacology (Berl) 2018; 235. [PMID: 29520592 PMCID: PMC5920000 DOI: 10.1007/s00213-018-4865-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RATIONALE Accumulating evidence shows that cocaine, and also heroin, influence several tyrosine kinases, expressed in neurons and in non-neuronal populations such as microglia, astrocytes and mast-cells. Drug-induced activation of mast cells both triggers inflammatory processes in the brain mediated by the glial cells they activate, and facilitates histamine release which may directly influence the dopamine system. Thus, by triggering the activation and degranulation of mast cells dependent on the tyrosine kinase c-kit and Fyn, the latter being also involved in NMDA-dependent synaptic plasticity, cocaine and heroin may indirectly influence the neural mechanisms that mediate their reinforcing properties. Masitinib, a novel tyrosine kinase inhibitor with high selectivity for c-Kit, Fyn and Lyn, may alter the aberrant consequences of the activation of these tyrosine kinases by cocaine and heroin. OBJECTIVE We investigated in rats the effect of a chronic oral treatment with masitinib (20 mg/kg) on the reinforcing and motivational properties of self-administered cocaine (250 μg/infusion) and heroin (40 μg/infusion). METHODS Three different cohorts of rats were trained instrumentally to respond for cocaine, heroin or food under continuous reinforcement. In each group, we assessed the influence of chronic daily treatment with masitinib on the maintenance of instrumental responding and intake and the motivation for the reinforcer. Thus, masitinib and vehicle-treated rats were challenged to adapt to high behavioural demand, to respond under a progressive ratio schedule of reinforcement and to reinstate instrumental responding after extinction and/or abstinence. RESULTS Masitinib selectively decreased cocaine intake, the motivation for cocaine and the subsequent propensity to respond for cocaine under extinction, while having no effect on instrumental responding for heroin or food. CONCLUSION The present findings suggest masitinib, a drug with proven efficacy in CNS disorders, could represent a novel treatment for cocaine addiction provided its influence on the reinforcing and incentive properties of the drug is confirmed.
Collapse
|
17
|
Are Cocaine-Seeking "Habits" Necessary for the Development of Addiction-Like Behavior in Rats? J Neurosci 2017; 38:60-73. [PMID: 29158359 DOI: 10.1523/jneurosci.2458-17.2017] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/10/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022] Open
Abstract
Drug self-administration models of addiction typically require animals to make the same response (e.g., a lever-press or nose-poke) over and over to procure and take drugs. By their design, such procedures often produce behavior controlled by stimulus-response (S-R) habits. This has supported the notion of addiction as a "drug habit," and has led to considerable advances in our understanding of the neurobiological basis of such behavior. However, to procure such drugs as cocaine, addicts often require considerable ingenuity and flexibility in seeking behavior, which, by definition, precludes the development of habits. To better model drug-seeking behavior in addicts, we first developed a novel cocaine self-administration procedure [puzzle self-administration procedure (PSAP)] that required rats to solve a new puzzle every day to gain access to cocaine, which they then self-administered on an intermittent access (IntA) schedule. Such daily problem-solving precluded the development of S-R seeking habits. We then asked whether prolonged PSAP/IntA experience would nevertheless produce "symptoms of addiction." It did, including escalation of intake, sensitized motivation for drug, continued drug use in the face of adverse consequences, and very robust cue-induced reinstatement of drug seeking, especially in a subset of "addiction-prone" rats. Furthermore, drug-seeking behavior continued to require dopamine neurotransmission in the core of the nucleus accumbens (but not the dorsolateral striatum). We conclude that the development of S-R seeking habits is not necessary for the development of cocaine addiction-like behavior in rats.SIGNIFICANCE STATEMENT Substance-use disorders are often characterized as "habitual" behaviors aimed at obtaining and administering drugs. Although the actions involved in consuming drugs may involve a rigid repertoire of habitual behaviors, evidence suggests that addicts must be very creative and flexible when trying to procure drugs, and thus drug seeking cannot be governed by habit alone. We modeled flexible drug-seeking behavior in rats by requiring animals to solve daily puzzles to gain access to cocaine. We find that habitual drug-seeking isn't necessary for the development of addiction-like behavior, and that our procedure doesn't result in transfer of dopaminergic control from the ventral to dorsal striatum. This approach may prove useful in studying changes in neuropsychological function that promote the transition to addiction.
Collapse
|
18
|
Martin-Fardon R, Weiss F. Perseveration of craving: effects of stimuli conditioned to drugs of abuse versus conventional reinforcers differing in demand. Addict Biol 2017; 22:923-932. [PMID: 26864474 DOI: 10.1111/adb.12374] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/07/2015] [Accepted: 01/12/2016] [Indexed: 11/30/2022]
Abstract
Associative learning is essential for establishing appropriate responses to cause-effect relationships and effective behavioral adjustments to environmental changes. However, learned associations also promote maladaptive behavior such as uncontrollable drug seeking in addicts exposed to drug-associated stimuli. Here, we sought to identify behavioral characteristics that distinguish reward seeking produced by environmental stimuli conditioned to highly potent but non-addictive conventional reinforcers from reward seeking induced by stimuli conditioned to addictive drugs. Rats were trained to associate discriminative (i.e. contextual) stimuli (S+ ) with availability of cocaine, ethanol, palatable sweet solutions or water during dehydration. Following extinction, response-reinstating effects of re-exposure to these stimuli were established in terms of magnitude and perseveration. Initially, the S+ produced strong reinstatement irrespective of association with conventional or drug reward. However, with repeated testing, S+ -induced reward seeking decreased to extinction levels when motivated by the sweet solutions but perseverated when motivated by cocaine or ethanol. In rats placed on water restriction to induce a motivational constraint, the S+ supported perseverating reinstatement identical to that produced by an S+ conditioned to cocaine. The findings suggest that behavior guided by associations between environmental stimuli and drugs of abuse is characterized by perseverating, apparently highly extinction-resistant reward seeking, whereas behavior controlled by stimuli associated with conventional reward extinguishes rapidly in the absence of primary reinforcement. Reward seeking elicited by stimuli associated with natural reward can, however, become perseverative during physiological deprivation states. Possibly, perseverating drug seeking engages mechanisms overlapping with those that have evolved to promote alleviation of physiological deprivation to secure survival.
Collapse
Affiliation(s)
- Rémi Martin-Fardon
- Molecular and Cellular Neuroscience Department; The Scripps Research Institute; La Jolla CA USA
| | - Friedbert Weiss
- Molecular and Cellular Neuroscience Department; The Scripps Research Institute; La Jolla CA USA
| |
Collapse
|
19
|
Fouyssac M, Everitt BJ, Belin D. Cellular basis of the intrastriatal functional shifts that underlie the development of habits: relevance for drug addiction. Curr Opin Behav Sci 2017. [DOI: 10.1016/j.cobeha.2016.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Boyson CO, Holly EN, Burke AR, Montagud-Romero S, DeBold JF, Miczek KA. Maladaptive choices by defeated rats: link between rapid approach to social threat and escalated cocaine self-administration. Psychopharmacology (Berl) 2016; 233:3173-86. [PMID: 27376946 PMCID: PMC4990818 DOI: 10.1007/s00213-016-4363-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/09/2016] [Indexed: 12/11/2022]
Abstract
RATIONALE Intermittent social defeat stress engenders persistent neuroadaptations and can result in later increased cocaine taking and seeking. However, there are individual differences in stress-escalated cocaine self-administration behavior, which may be a direct result of individual differences in the manner in which rats experience social defeat stress. OBJECTIVE The present study dissected the discrete behavioral phases of social defeat and analyzed which behavioral characteristics may be predictive of subsequent cocaine self-administration. METHODS Male Long-Evans rats underwent nine intermittent social defeat episodes over 21 days in a three-compartment apparatus permitting approach to and escape from a confrontation with an aggressive resident rat. Rats then self-administered intravenous cocaine, which culminated in a 24-h unlimited access "binge." Behaviors during social defeat and cocaine self-administration were evaluated by principal component analysis (PCA). RESULTS PCA revealed that the latency to enter the threatening environment was highly predictive of later cocaine self-administration during the 24-h binge. This behavior was not associated with other cocaine-predictive traits, such as reactivity to novelty in an open field, saccharin preference, and motor impulsivity. Additionally, there was no effect of latency to enter a threatening environment on physiological measures of stress, including plasma corticosterone and corticotropin releasing factor (CRF) in the extended amygdala. However, latency to enter the threatening environment was negatively correlated with brain-derived neurotropic factor (BDNF) and its receptor, tyrosine kinase B (TrkB) in the hippocampus. CONCLUSION These data suggest that latency to enter a threatening environment is a novel behavioral characteristic predictive of later cocaine self-administration.
Collapse
Affiliation(s)
- Christopher O. Boyson
- Department of Psychology, Tufts University, Bacon Hall, 530 Boston Ave, Medford, MA 02155, USA
| | - Elizabeth N. Holly
- Department of Psychology, Tufts University, Bacon Hall, 530 Boston Ave, Medford, MA 02155, USA
,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew R. Burke
- Department of Psychology, Tufts University, Bacon Hall, 530 Boston Ave, Medford, MA 02155, USA
| | - Sandra Montagud-Romero
- Department of Psychology, Tufts University, Bacon Hall, 530 Boston Ave, Medford, MA 02155, USA
,Unidad de Investigación Psicobiología de las Drogodependencias, Departmento de Psicobiología, Universitat de València, València, Spain
| | - Joseph F. DeBold
- Department of Psychology, Tufts University, Bacon Hall, 530 Boston Ave, Medford, MA 02155, USA
| | - Klaus A. Miczek
- Department of Psychology, Tufts University, Bacon Hall, 530 Boston Ave, Medford, MA 02155, USA
,Department of Psychiatry, Tufts University School of Medicine, Boston, MA, USA
,Department of Pharmacology, Tufts University School of Medicine, Boston, MA, USA
,Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
21
|
Gremel CM, Lovinger DM. Associative and sensorimotor cortico-basal ganglia circuit roles in effects of abused drugs. GENES BRAIN AND BEHAVIOR 2016; 16:71-85. [PMID: 27457495 DOI: 10.1111/gbb.12309] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023]
Abstract
The mammalian forebrain is characterized by the presence of several parallel cortico-basal ganglia circuits that shape the learning and control of actions. Among these are the associative, limbic and sensorimotor circuits. The function of all of these circuits has now been implicated in responses to drugs of abuse, as well as drug seeking and drug taking. While the limbic circuit has been most widely examined, key roles for the other two circuits in control of goal-directed and habitual instrumental actions related to drugs of abuse have been shown. In this review we describe the three circuits and effects of acute and chronic drug exposure on circuit physiology. Our main emphasis is on drug actions in dorsal striatal components of the associative and sensorimotor circuits. We then review key findings that have implicated these circuits in drug seeking and taking behaviors, as well as drug use disorders. Finally, we consider different models describing how the three cortico-basal ganglia circuits become involved in drug-related behaviors. This topic has implications for drug use disorders and addiction, as treatments that target the balance between the different circuits may be useful for reducing excessive substance use.
Collapse
Affiliation(s)
- C M Gremel
- Neurosciences Graduate Program, Department of Psychology, University of California San Diego, La Jolla, CA
| | - D M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Ducret E, Puaud M, Lacoste J, Belin-Rauscent A, Fouyssac M, Dugast E, Murray JE, Everitt BJ, Houeto JL, Belin D. N-acetylcysteine Facilitates Self-Imposed Abstinence After Escalation of Cocaine Intake. Biol Psychiatry 2016; 80:226-34. [PMID: 26592462 PMCID: PMC4954758 DOI: 10.1016/j.biopsych.2015.09.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/25/2015] [Accepted: 09/30/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND N-acetylcysteine (NAC) has been suggested to prevent relapse to cocaine seeking. However, the psychological processes underlying its potential therapeutic benefit remain largely unknown. METHODS We investigated the hallmark features of addiction that were influenced by chronic NAC treatment in rats given extended access to cocaine: escalation, motivation, self-imposed abstinence in the face of punishment, or propensity to relapse. For this, Sprague Dawley rats were given access either to 1 hour (short access) or 6 hours (long access [LgA]) self-administration (SA) sessions until LgA rats displayed a robust escalation. Rats then received daily saline or NAC (60 mg/kg, intraperitoneal) treatment and were tested under a progressive ratio and several consecutive sessions in which lever presses were punished by mild electric foot shocks. RESULTS NAC increased the sensitivity to punishment in LgA rats only, thereby promoting abstinence. Following the cessation of punishment, NAC-treated LgA rats failed to recover fully their prepunishment cocaine intake levels and resumed cocaine SA at a lower rate than short access and vehicle-treated LgA rats. However, NAC altered neither the escalation of SA nor the motivation for cocaine. At the neurobiological level, NAC reversed cocaine-induced decreases in the glutamate type 1 transporter observed in both the nucleus accumbens and the dorsolateral striatum. NAC also increased the expression of Zif268 in the nucleus accumbens and dorsolateral striatum of LgA rats. CONCLUSIONS Our results indicate that NAC contributes to the restoration of control over cocaine SA following adverse consequences, an effect associated with plasticity mechanisms in both the ventral and dorsolateral striatum.
Collapse
Affiliation(s)
- Eric Ducret
- French Institute of Health and Medical Research, Avenir Team Psychobiology of Compulsive Disorders, Université de Poitiers, Poitiers, France
| | - Mickaël Puaud
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Jérôme Lacoste
- Service de Psychiatrie et Addictologie, Centre Hospitalier Universitaire de Fort-de-France, Martinique, France
| | - Aude Belin-Rauscent
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Maxime Fouyssac
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Emilie Dugast
- French Institute of Health and Medical Research, Avenir Team Psychobiology of Compulsive Disorders, Université de Poitiers, Poitiers, France
| | - Jennifer E Murray
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Barry J Everitt
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Jean-Luc Houeto
- Service de Neurologie de l'Hôpital de Poitiers and Center for Clinical Investigation-French Institute of Health and Medical Research, Poitiers, France
| | - David Belin
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
23
|
Premature responding is associated with approach to a food cue in male and female heterogeneous stock rats. Psychopharmacology (Berl) 2016; 233:2593-605. [PMID: 27146401 PMCID: PMC5025873 DOI: 10.1007/s00213-016-4306-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/20/2016] [Indexed: 02/06/2023]
Abstract
RATIONALE Disorders of behavioral regulation, including attention deficit hyperactivity disorder (ADHD) and drug addiction, are in part due to poor inhibitory control, attentional deficits, and hyper-responsivity to reward-associated cues. OBJECTIVES To determine whether these traits are related, we tested genetically variable male and female heterogeneous stock rats in the choice reaction time (CRT) task and Pavlovian conditioned approach (PavCA). Sex differences in the response to methylphenidate during the CRT were also assessed. METHODS In the CRT task, rats were required to withhold responding until one of two lights indicated whether responses into a left or right port would be reinforced with water. Reaction time on correct trials and premature responses were the operational definitions of attention and response inhibition, respectively. Rats were also pretreated with oral methylphenidate (0, 2, 4 mg/kg) during the CRT task to determine whether this drug would improve performance. Subsequently, during PavCA, presentation of an illuminated lever predicted the delivery of a food pellet into a food-cup. Lever-directed approach (sign-tracking) and food-cup approach (goal-tracking) were the primary measures, and rats were categorized as "sign-trackers" and "goal-trackers" using an index based on these measures. RESULTS Sign-trackers made more premature responses than goal-trackers but showed no differences in reaction time. There were sex differences in both tasks, with females having higher sign-tracking, completing more CRT trials, and making more premature responses after methylphenidate administration. CONCLUSIONS These results indicate that response inhibition is related to reward-cue responsivity, suggesting that these traits are influenced by common genetic factors.
Collapse
|
24
|
van den Heuvel OA, van Wingen G, Soriano-Mas C, Alonso P, Chamberlain SR, Nakamae T, Denys D, Goudriaan AE, Veltman DJ. Brain circuitry of compulsivity. Eur Neuropsychopharmacol 2016; 26:810-27. [PMID: 26711687 DOI: 10.1016/j.euroneuro.2015.12.005] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/28/2015] [Accepted: 12/01/2015] [Indexed: 01/27/2023]
Abstract
Compulsivity is associated with alterations in the structure and the function of parallel and interacting brain circuits involved in emotional processing (involving both the reward and the fear circuits), cognitive control, and motor functioning. These brain circuits develop during the pre-natal period and early childhood under strong genetic and environmental influences. In this review we bring together literature on cognitive, emotional, and behavioral processes in compulsivity, based mainly on studies in patients with obsessive-compulsive disorder and addiction. Disease symptoms normally change over time. Goal-directed behaviors, in response to reward or anxiety, often become more habitual over time. During the course of compulsive disorders the mental processes and repetitive behaviors themselves contribute to the neuroplastic changes in the involved circuits, mainly in case of chronicity. On the other hand, successful treatment is able to normalize altered circuit functioning or to induce compensatory mechanisms. We conclude that insight in the neurobiological characteristics of the individual symptom profile and disease course, including the potential targets for neuroplasticity is an unmet need to advance the field.
Collapse
Affiliation(s)
- Odile A van den Heuvel
- Department of Psychiatry, VU University Medical Center (VUmc), Amsterdam, The Netherlands; Department of Anatomy & Neurosciences, VUmc, Amsterdam, The Netherlands; The Obsessive-Compulsive Disorder Team, Haukeland University Hospital, Bergen, Norway.
| | - Guido van Wingen
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Carles Soriano-Mas
- OCD Clinical and Research Unit, Department of Psychiatry, Bellvitge University Hospital; Bellvitge Biomedical Research Institute (IDIBELL), and CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Spain
| | - Pino Alonso
- OCD Clinical and Research Unit, Department of Psychiatry, Bellvitge University Hospital; Bellvitge Biomedical Research Institute (IDIBELL), and CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Spain
| | - Samuel R Chamberlain
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridge and Peterborough NHS Foundation Trust (CPFT), Cambridge, United Kingdom
| | - Takashi Nakamae
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Damiaan Denys
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anna E Goudriaan
- Academic Medical Center, Department of Psychiatry, Amsterdam Institute for Addiction Research, University of Amsterdam, Amsterdam, The Netherlands; Arkin Mental Health and Jellinek Addiction Treatment, Amsterdam, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| |
Collapse
|
25
|
Belin-Rauscent A, Daniel ML, Puaud M, Jupp B, Sawiak S, Howett D, McKenzie C, Caprioli D, Besson M, Robbins TW, Everitt BJ, Dalley JW, Belin D. From impulses to maladaptive actions: the insula is a neurobiological gate for the development of compulsive behavior. Mol Psychiatry 2016; 21:491-9. [PMID: 26370145 DOI: 10.1038/mp.2015.140] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/15/2015] [Accepted: 08/10/2015] [Indexed: 02/06/2023]
Abstract
Impulsivity is an endophenotype of vulnerability for compulsive behaviors. However, the neural mechanisms whereby impulsivity facilitates the development of compulsive disorders, such as addiction or obsessive compulsive disorder, remain unknown. We first investigated, in rats, anatomical and functional correlates of impulsivity in the anterior insular (AI) cortex by measuring both the thickness of, and cellular plasticity markers in, the AI with magnetic resonance imaging and in situ hybridization of the immediate early gene zif268, respectively. We then investigated the influence of bilateral AI cortex lesions on the high impulsivity trait, as measured in the five-choice serial reaction time task (5-CSRTT), and the associated propensity to develop compulsivity as measured by high drinking levels in a schedule-induced polydipsia procedure (SIP). We demonstrate that the AI cortex causally contributes to individual vulnerability to impulsive-compulsive behavior in rats. Motor impulsivity, as measured by premature responses in the 5-CSRTT, was shown to correlate with the thinness of the anterior region of the insular cortex, in which highly impulsive (HI) rats expressed lower zif268 mRNA levels. Lesions of AI reduced impulsive behavior in HI rats, which were also highly susceptible to develop compulsive behavior as measured in a SIP procedure. AI lesions also attenuated both the development and the expression of SIP. This study thus identifies the AI as a novel neural substrate of maladaptive impulse control mechanisms that may facilitate the development of compulsive disorders.
Collapse
Affiliation(s)
- A Belin-Rauscent
- Department of Pharmacology, University of Cambridge, Cambridge, UK.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - M-L Daniel
- Inserm CIC-1402, Université de Poitiers, Poitiers, France
| | - M Puaud
- Department of Pharmacology, University of Cambridge, Cambridge, UK.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - B Jupp
- Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.,Department of Psychology, University of Cambridge, Cambridge, UK
| | - S Sawiak
- Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - D Howett
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - C McKenzie
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - D Caprioli
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - M Besson
- Neurobiologie Intégrative des Systèmes Cholinergiques, Institut Pasteur, Paris, France
| | - T W Robbins
- Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.,Department of Psychology, University of Cambridge, Cambridge, UK
| | - B J Everitt
- Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.,Department of Psychology, University of Cambridge, Cambridge, UK
| | - J W Dalley
- Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.,Department of Psychology, University of Cambridge, Cambridge, UK.,Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - D Belin
- Department of Pharmacology, University of Cambridge, Cambridge, UK.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Murray JE, Belin-Rauscent A, Simon M, Giuliano C, Benoit-Marand M, Everitt BJ, Belin D. Basolateral and central amygdala differentially recruit and maintain dorsolateral striatum-dependent cocaine-seeking habits. Nat Commun 2015; 6:10088. [PMID: 26657320 PMCID: PMC4682035 DOI: 10.1038/ncomms10088] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/03/2015] [Indexed: 12/28/2022] Open
Abstract
In the development of addiction, drug seeking becomes habitual and controlled by drug-associated cues, and the neural locus of control over behaviour shifts from the ventral to the dorsolateral striatum. The neural mechanisms underlying this functional transition from recreational drug use to drug-seeking habits are unknown. Here we combined functional disconnections and electrophysiological recordings of the amygdalo-striatal networks in rats trained to seek cocaine to demonstrate that functional shifts within the striatum are driven by transitions from the basolateral (BLA) to the central (CeN) amygdala. Thus, while the recruitment of dorsolateral striatum dopamine-dependent control over cocaine seeking is triggered by the BLA, its long-term maintenance depends instead on the CeN. These data demonstrate that limbic cortical areas both tune the function of cognitive territories of the striatum and thereby underpin maladaptive cocaine-seeking habits.
Collapse
Affiliation(s)
- Jennifer E. Murray
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute of the University of Cambridge, Cambridge CB2 1QB, UK
| | - Aude Belin-Rauscent
- Behavioural and Clinical Neuroscience Institute of the University of Cambridge, Cambridge CB2 1QB, UK
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Marine Simon
- Groupe de recherche en psychiatrie, Paris GDR3557, France
| | - Chiara Giuliano
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute of the University of Cambridge, Cambridge CB2 1QB, UK
| | - Marianne Benoit-Marand
- Laboratoire de Neurosciences Expérimentales et Clinique, INSERM, U1084, Poitiers F-86022, France
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers F-86022, France
| | - Barry J. Everitt
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute of the University of Cambridge, Cambridge CB2 1QB, UK
| | - David Belin
- Behavioural and Clinical Neuroscience Institute of the University of Cambridge, Cambridge CB2 1QB, UK
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| |
Collapse
|
27
|
Cocaine-induced plasticity in the cerebellum of sensitised mice. Psychopharmacology (Berl) 2015; 232:4455-67. [PMID: 26482898 DOI: 10.1007/s00213-015-4072-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 09/03/2015] [Indexed: 12/19/2022]
Abstract
RATIONALE Prior research has accumulated a substantial amount of evidence on the ability of cocaine to produce short- and long-lasting molecular and structural plasticity in the corticostriatal-limbic circuitry. However, traditionally, the cerebellum has not been included in the addiction circuitry, even though growing evidence supports its involvement in the behavioural changes observed after repeated drug experiences. OBJECTIVES In the present study, we explored the ability of seven cocaine administrations to alter plasticity in the cerebellar vermis. METHODS After six cocaine injections, one injection every 48 h, mice remained undisturbed for 1 month in their home cages. Following this withdrawal period, they received a new cocaine injection of a lower dose. Locomotion, behavioural stereotypes and several molecular and structural cerebellar parameters were evaluated. RESULTS Cerebellar proBDNF and mature BDNF levels were both enhanced by cocaine. The high BDNF expression was associated with dendritic sprouting and increased terminal size in Purkinje neurons. Additionally, we found a reduction in extracellular matrix components that might facilitate the subsequent remodelling of Purkinje-nuclear neuron synapses. CONCLUSIONS Although speculative, it is possible that these cocaine-dependent cerebellar changes were incubated during withdrawal and manifested by the last drug injection. Importantly, the present findings indicate that cocaine is able to promote plasticity modifications in the cerebellum of sensitised animals similar to those in the basal ganglia.
Collapse
|
28
|
Have we been ignoring the elephant in the room? Seven arguments for considering the cerebellum as part of addiction circuitry. Neurosci Biobehav Rev 2015; 60:1-11. [PMID: 26602022 DOI: 10.1016/j.neubiorev.2015.11.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 11/09/2015] [Accepted: 11/16/2015] [Indexed: 12/23/2022]
Abstract
Addiction involves alterations in multiple brain regions that are associated with functions such as memory, motivation and executive control. Indeed, it is now well accepted that addictive drugs produce long-lasting molecular and structural plasticity changes in corticostriatal-limbic loops. However, there are brain regions that might be relevant to addiction other than the prefrontal cortex, amygdala, hippocampus and basal ganglia. In addition to these circuits, a growing amount of data suggests the involvement of the cerebellum in many of the brain functions affected in addicts, though this region has been overlooked, traditionally, in the addiction field. Therefore, in the present review we provide seven arguments as to why we should consider the cerebellum in drug addiction. We present and discuss compelling evidence about the effects of drugs of abuse on cerebellar plasticity, the involvement of the cerebellum in drug-induced cue-related memories, and several findings showing that the instrumental memory and executive functions also recruit the cerebellar circuitry. In addition, a hypothetical model of the cerebellum's role relative to other areas within corticostriatal-limbic networks is also provided. Our goal is not to review animal and human studies exhaustively but to support the inclusion of cerebellar alterations as a part of the physiopathology of addiction disorder.
Collapse
|
29
|
Belin D, Belin-Rauscent A, Everitt BJ, Dalley JW. In search of predictive endophenotypes in addiction: insights from preclinical research. GENES BRAIN AND BEHAVIOR 2015; 15:74-88. [DOI: 10.1111/gbb.12265] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 10/12/2015] [Accepted: 10/16/2015] [Indexed: 12/13/2022]
Affiliation(s)
- D. Belin
- Department of Pharmacology; University of Cambridge; Cambridge UK
- Behavioural and Clinical Neuroscience Institute; University of Cambridge
| | - A. Belin-Rauscent
- Department of Pharmacology; University of Cambridge; Cambridge UK
- Behavioural and Clinical Neuroscience Institute; University of Cambridge
| | - B. J. Everitt
- Behavioural and Clinical Neuroscience Institute; University of Cambridge
- Department of Psychology; University of Cambridge; Cambridge UK
| | - J. W. Dalley
- Behavioural and Clinical Neuroscience Institute; University of Cambridge
- Department of Psychology; University of Cambridge; Cambridge UK
- Department of Psychiatry; University of Cambridge; Cambridge UK
| |
Collapse
|
30
|
Ozburn AR, Janowsky AJ, Crabbe JC. Commonalities and Distinctions Among Mechanisms of Addiction to Alcohol and Other Drugs. Alcohol Clin Exp Res 2015; 39:1863-77. [PMID: 26431116 PMCID: PMC4594192 DOI: 10.1111/acer.12810] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/10/2015] [Indexed: 01/25/2023]
Abstract
BACKGROUND Alcohol abuse is comorbid with abuse of many other drugs, some with similar pharmacology and others quite different. This leads to the hypothesis of an underlying, unitary dysfunctional neurobiological basis for substance abuse risk and consequences. METHODS In this review, we discuss commonalities and distinctions of addiction to alcohol and other drugs. We focus on recent advances in preclinical studies using rodent models of drug self-administration. RESULTS While there are specific behavioral and molecular manifestations common to alcohol, psychostimulant, opioid, and nicotine dependence, attempts to propose a unifying theory of the addictions inevitably face details where distinctions are found among classes of drugs. CONCLUSIONS For alcohol, versus other drugs of abuse, we discuss and compare advances in: (i) neurocircuitry important for the different stages of drug dependence; (ii) transcriptomics and genetical genomics; and (iii) enduring effects, noting in particular the contributions of behavioral genetics and animal models.
Collapse
Affiliation(s)
- Angela R. Ozburn
- Research & Development Service, Portland VA Medical Center, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA
- Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Aaron J. Janowsky
- Research & Development Service, Portland VA Medical Center, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA
- Department of Psychiatry, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - John C. Crabbe
- Research & Development Service, Portland VA Medical Center, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA
- Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
31
|
Neuroscience of learning and memory for addiction medicine: from habit formation to memory reconsolidation. PROGRESS IN BRAIN RESEARCH 2015; 223:91-113. [PMID: 26806773 DOI: 10.1016/bs.pbr.2015.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Identifying effective pharmacological treatments for addictive disorders has remained an elusive goal. Many different classes of drugs have shown some efficacy in preclinical models, but the number of effective clinical therapeutics has remained stubbornly low. The persistence of drug use and the high frequency of relapse is at least partly attributable to the enduring ability of environmental stimuli associated with drug use to maintain behavioral patterns of drug use and induce craving during abstinence. We propose that stimuli associated with drug use exert such powerful control over behavior through the development of abnormally strong memories, and their ability to initiate subconscious sequences of motor actions (habits) that promote uncontrolled drug use. In this chapter, we will review the evidence suggesting that drugs of abuse strengthen associations with cues in the environment and facilitate habit formation. We will also discuss potential mechanisms for disrupting memories associated with drug use to help improve treatments for addiction.
Collapse
|
32
|
Abstract
Adolescence is characterized by heightened risk-taking, including substance misuse. These behavioral patterns are influenced by ontogenic changes in neurotransmitter systems, particularly the dopamine system, which is fundamentally involved in the neural coding of reward and motivated approach behavior. During adolescence, this system evidences a peak in activity. At the same time, the dopamine (DA) system is neuroplastically altered by substance abuse, impacting subsequent function. Here, we describe properties of the dopamine system that change with typical adolescent development and that are altered with substance abuse. Much of this work has been gleaned from animal models due to limitations in measuring dopamine in pediatric samples. Structural and functional neuroimaging techniques have been used to examine structures that are heavily DA-innervated; they measure morphological and functional changes with age and with drug exposure. Presenting marijuana abuse as an exemplar, we consider recent findings that support an adolescent peak in DA-driven reward-seeking behavior and related deviations in motivational systems that are associated with marijuana abuse/dependence. Clinicians are advised that (1) chronic adolescent marijuana use may lead to deficiencies in incentive motivation, (2) that this state is due to marijuana's interactions with the developing DA system, and (3) that treatment strategies should be directed to remediating resultant deficiencies in goal-directed activity.
Collapse
|
33
|
Why do liver transplant patients so often become obese? The addiction transfer hypothesis. Med Hypotheses 2015; 85:68-75. [DOI: 10.1016/j.mehy.2015.03.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/06/2015] [Accepted: 03/28/2015] [Indexed: 01/18/2023]
|
34
|
Alcohol-Preferring Rats Show Goal Oriented Behaviour to Food Incentives but Are Neither Sign-Trackers Nor Impulsive. PLoS One 2015; 10:e0131016. [PMID: 26098361 PMCID: PMC4476783 DOI: 10.1371/journal.pone.0131016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/26/2015] [Indexed: 11/19/2022] Open
Abstract
Drug addiction is often associated with impulsivity and altered behavioural responses to both primary and conditioned rewards. Here we investigated whether selectively bred alcohol-preferring (P) and alcohol-nonpreferring (NP) rats show differential levels of impulsivity and conditioned behavioural responses to food incentives. P and NP rats were assessed for impulsivity in the 5-choice serial reaction time task (5-CSRTT), a widely used translational task in humans and other animals, as well as Pavlovian conditioned approach to measure sign- and goal-tracking behaviour. Drug-naïve P and NP rats showed similar levels of impulsivity on the 5-CSRTT, assessed by the number of premature, anticipatory responses, even when the waiting interval to respond was increased. However, unlike NP rats, P rats were faster to enter the food magazine and spent more time in this area. In addition, P rats showed higher levels of goal-tracking responses than NP rats, as measured by the number of magazine nose-pokes during the presentation of a food conditioned stimulus. By contrast, NP showed higher levels of sign-tracking behaviour than P rats. Following a 4-week exposure to intermittent alcohol we confirmed that P rats had a marked preference for, and consumed more alcohol than, NP rats, but were not more impulsive when re-tested in the 5-CSRTT. These findings indicate that high alcohol preferring and drinking P rats are neither intrinsically impulsive nor do they exhibit impulsivity after exposure to alcohol. However, P rats do show increased goal-directed behaviour to food incentives and this may be associated with their strong preference for alcohol.
Collapse
|
35
|
Kaag AM, Crunelle CL, van Wingen G, Homberg J, van den Brink W, Reneman L. Relationship between trait impulsivity and cortical volume, thickness and surface area in male cocaine users and non-drug using controls. Drug Alcohol Depend 2014; 144:210-7. [PMID: 25278147 DOI: 10.1016/j.drugalcdep.2014.09.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/03/2014] [Accepted: 09/12/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Trait impulsivity is commonly associated with cocaine dependence. The few studies that have investigated the relation between trait impulsivity and cortical morphometry, have shown a distinct relation between impulsivity and cortical volume (CV) of temporal, frontal and insula cortex. As CV is the function of cortical surface area (SA) and cortical thickness (CT) impulsivity may be differently associated to SA than to CT. METHOD Fifty-three cocaine users (CU) and thirty-five controls (HC) (males aged 18-55 years) completed the Barrat impulsiveness scale and a structural scan was made on a 3T MRI scanner. CV, SA and CT were measured using Freesurfer. Multivariate analysis was used to test for group differences and group by impulsivity interaction effects in CV, SA and ST across nine regions of interest in the temporal, frontal and insular cortices. Possible confounding effects of drug- and alcohol exposure were explored. RESULTS Compared to HC, CU had a smaller SA of the superior temporal cortex but a larger SA of the insula. There were divergent relations between trait impulsivity and SA of the superior temporal cortex and insula (positive in HC, negative in CU) and CT of the anterior cingulate cortex (negative in HC, positive in CU). Within CU, there was a negative association between monthly cocaine use and CT of the insula and superior temporal cortex. DISCUSSION The distinct relation between trait impulsivity and cortical morphometry in CU and HC might underlie inefficient control over behavior resulting in maladaptive impulsive behaviour such as cocaine abuse.
Collapse
Affiliation(s)
- Anne Marije Kaag
- Departement of Radiology, Academic Medical Center, Amsterdam, The Netherlands; Brain Imaging Center, Academic Medical Center, Amsterdam, The Netherlands.
| | - Cleo L Crunelle
- Toxicological Center, University of Antwerp, Antwerp, Belgium
| | - Guido van Wingen
- Brain Imaging Center, Academic Medical Center, Amsterdam, The Netherlands; Department of Psychiatry, Academic Medical Center, Amsterdam, The Netherlands
| | - Judith Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Medical Centre, Nijmegen, The Netherlands
| | - Wim van den Brink
- Brain Imaging Center, Academic Medical Center, Amsterdam, The Netherlands; Department of Psychiatry, Academic Medical Center, Amsterdam, The Netherlands
| | - Liesbeth Reneman
- Departement of Radiology, Academic Medical Center, Amsterdam, The Netherlands; Brain Imaging Center, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Striatal dopamine D2-like receptor correlation patterns with human obesity and opportunistic eating behavior. Mol Psychiatry 2014; 19:1078-84. [PMID: 25199919 PMCID: PMC4189966 DOI: 10.1038/mp.2014.102] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/25/2014] [Accepted: 07/15/2014] [Indexed: 12/31/2022]
Abstract
The obesity epidemic is believed to be driven by a food environment that promotes consumption of inexpensive, convenient, high-calorie, palatable foods. Individual differences in obesity susceptibility or resistance to weight loss may arise because of alterations in the neurocircuitry supporting food reward and eating habits. In particular, dopamine signaling in the ventromedial striatum is thought to encode food reward and motivation, whereas dopamine in the dorsal and lateral striatum orchestrates the development of eating habits. We measured striatal dopamine D2-like receptor binding potential (D2BP) using positron emission tomography with [(18)F]fallypride in 43 human subjects with body mass indices (BMI) ranging from 18 to 45 kg m(-)(2). Opportunistic eating behavior and BMI were both positively associated with D2BP in the dorsal and lateral striatum, whereas BMI was negatively associated with D2BP in the ventromedial striatum. These results suggest that obese people have alterations in dopamine neurocircuitry that may increase their susceptibility to opportunistic overeating while at the same time making food intake less rewarding, less goal directed and more habitual. Whether or not the observed neurocircuitry alterations pre-existed or occurred as a result of obesity development, they may perpetuate obesity given the omnipresence of palatable foods and their associated cues.
Collapse
|
37
|
Rasgrf2 controls dopaminergic adaptations to alcohol in mice. Brain Res Bull 2014; 109:143-50. [DOI: 10.1016/j.brainresbull.2014.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 11/20/2022]
|
38
|
Everitt BJ. Neural and psychological mechanisms underlying compulsive drug seeking habits and drug memories--indications for novel treatments of addiction. Eur J Neurosci 2014; 40:2163-82. [PMID: 24935353 PMCID: PMC4145664 DOI: 10.1111/ejn.12644] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/23/2014] [Accepted: 02/11/2014] [Indexed: 12/12/2022]
Abstract
This review discusses the evidence for the hypothesis that the development of drug addiction can be understood in terms of interactions between Pavlovian and instrumental learning and memory mechanisms in the brain that underlie the seeking and taking of drugs. It is argued that these behaviours initially are goal-directed, but increasingly become elicited as stimulus-response habits by drug-associated conditioned stimuli that are established by Pavlovian conditioning. It is further argued that compulsive drug use emerges as the result of a loss of prefrontal cortical inhibitory control over drug seeking habits. Data are reviewed that indicate these transitions from use to abuse to addiction depend upon shifts from ventral to dorsal striatal control over behaviour, mediated in part by serial connectivity between the striatum and midbrain dopamine systems. Only some individuals lose control over their drug use, and the importance of behavioural impulsivity as a vulnerability trait predicting stimulant abuse and addiction in animals and humans, together with consideration of an emerging neuroendophenotype for addiction are discussed. Finally, the potential for developing treatments for addiction is considered in light of the neuropsychological advances that are reviewed, including the possibility of targeting drug memory reconsolidation and extinction to reduce Pavlovian influences on drug seeking as a means of promoting abstinence and preventing relapse.
Collapse
Affiliation(s)
- Barry J Everitt
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| |
Collapse
|