1
|
Goodman MS, Schulze L, Daskalakis ZJ, Konstantinou GN, Mansouri F, Trevizol AP, Blumberger DM, Downar J. Randomised controlled trial comparing different intersession intervals of intermittent theta burst delivered to the dorsal medial prefrontal cortex. BMJ MENTAL HEALTH 2024; 27:e301290. [PMID: 39448077 PMCID: PMC11499886 DOI: 10.1136/bmjment-2024-301290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Intermittent theta burst stimulation (iTBS) is a form of repetitive transcranial magnetic stimulation (rTMS) that can be administered in a fraction of the time of standard rTMS. Applying multiple daily iTBS sessions (ie, accelerated iTBS) may enable patients to achieve remission more rapidly. However, questions remain regarding the optimal time interval between treatment sessions. OBJECTIVE The overall aim of this study was to compare the efficacy and tolerability of two accelerated bilateral iTBS protocols (ie, 30-min or 60-min intervals) and a once-daily bilateral iTBS protocol (ie, 0-min interval) while the number of pulses was held constant, in patients with treatment-resistant depression (TRD). METHODS 182 patients with TRD were randomised to receive two sessions per day of bilateral iTBS of the dorsomedial prefrontal cortex (DMPFC) at 60-min, 30-min or 0-min intervals. Sham treatments were delivered using a shielded 'sham coil' which produced the auditory and tactile sensations of stimulation. The primary outcome measure was a change in depression scores on the 17-item Hamilton Rating Scale for Depression (HRSD-17) after 20 days of treatment. RESULTS HRSD-17 scores improved across all groups; however, these improvements did not significantly differ between the three groups after 20 days of treatment. Similarly, response and remission rates did not differ between the treatment groups. CONCLUSIONS These results suggest that contrary to our original hypothesis, implementing a 30-min or 60-min interval between two treatment sessions of DMPFC-iTBS does not lead to a more rapid improvement in symptoms, than once-daily iTBS administration. TRIAL REGISTRATION NUMBER NCT02778035.
Collapse
Affiliation(s)
- Michelle S Goodman
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Laura Schulze
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Gerasimos N Konstantinou
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- University Health Network, Toronto, Ontario, Canada
| | | | - Alisson P Trevizol
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Downar
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Sheen JZ, Mazza F, Momi D, Miron JP, Mansouri F, Russell T, Zhou R, Hyde M, Fox L, Voetterl H, Assi EB, Daskalakis ZJ, Blumberger DM, Griffiths JD, Downar J. N100 as a response prediction biomarker for accelerated 1 Hz right DLPFC-rTMS in major depression. J Affect Disord 2024; 363:174-181. [PMID: 39033822 DOI: 10.1016/j.jad.2024.07.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND AND OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) is a safe and effective treatment for major depressive disorder (MDD); however, this treatment currently lacks reliable biomarkers of treatment response. TMS-evoked potentials (TEPs), measured using TMS-electroencephalography (TMS-EEG), have been suggested as potential biomarker candidates, with the N100 peak being one of the most promising. This study investigated the association between baseline N100 amplitude and 1 Hz right dorsolateral prefrontal cortex (R-DLPFC) accelerated rTMS (arTMS) treatment in MDD. METHODS Baseline TMS-EEG sessions were performed for 23 MDD patients. All patients then underwent 40 sessions of 1 Hz R-DLPFC (F4) arTMS over 5 days and a follow-up TMS-EEG session one week after the end of theses arTMS sessions. RESULTS Baseline N100 amplitude at F4 showed a strong positive association (p < .001) with treatment outcome. The association between the change in N100 amplitude (baseline to follow-up) and treatment outcome did not remain significant after Bonferroni correction (p = .06, corrected; p = .03, uncorrected). Furthermore, treatment responders had a significantly larger mean baseline F4 TEP amplitude during the N100 time frame compared to non-responders (p < .001). Topographically, after Bonferroni correction, F4 is the only electrode at which its baseline N100 amplitude showed a significant positive association (p < .001) with treatment outcome. LIMITATIONS Lack of control group and auditory masking. CONCLUSION Baseline N100 amplitude showed a strong association with treatment outcome and thus demonstrated great potential to be utilized as a cost-effective and widely adoptable biomarker of rTMS treatment in MDD.
Collapse
Affiliation(s)
- Jack Z Sheen
- Institute of Medical Science, University of Toronto, Toronto, Canada.
| | - Frank Mazza
- Institute of Medical Science, University of Toronto, Toronto, Canada; Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Canada
| | - Davide Momi
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Canada
| | - Jean-Philippe Miron
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada; Centre Hospitalier de l'Université de Montréal (CHUM), Centre de Recherche du CHUM (CRCHUM), Montreal, QC, Canada; Département de Psychiatrie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Farrokh Mansouri
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Thomas Russell
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Ryan Zhou
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Molly Hyde
- Institute of Medical Science, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, Canada
| | - Linsay Fox
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Helena Voetterl
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands
| | - Elie Bou Assi
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC, Canada; Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | - Zafiris J Daskalakis
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Daniel M Blumberger
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada
| | - John D Griffiths
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada; Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Canada
| | - Jonathan Downar
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada
| |
Collapse
|
3
|
Voetterl H, Alyagon U, Middleton VJ, Downar J, Zangen A, Sack AT, van Dijk H, Halloran A, Donachie N, Arns M. Does 18 Hz deep TMS benefit a different subgroup of depressed patients relative to 10 Hz rTMS? The role of the individual alpha frequency. Eur Neuropsychopharmacol 2024; 89:73-81. [PMID: 39395357 DOI: 10.1016/j.euroneuro.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 09/07/2024] [Accepted: 09/21/2024] [Indexed: 10/14/2024]
Abstract
Both 10 Hz repetitive transcranial magnetic stimulation (rTMS) as well as 18 Hz deep TMS (dTMS) constitute effective, FDA-approved TMS treatment protocols for depression. However, not all patients experience sufficient symptom relief after either of these protocols. Biomarker-guided treatment stratification could aid in personalizing treatment and thereby enhancing improvement. An individual alpha frequency (iAF)-based EEG-biomarker, Brainmarker-I, can differentially stratify patients to depression treatments. For instance, an iAF close to 10 Hz was associated with better improvement to 10 Hz rTMS, possibly reflecting entrainment of endogenous oscillations to the stimulation frequency. Accordingly, we examined whether 18 Hz dTMS would result in better improvement in individuals whose iAF lies around 9 Hz, a harmonic frequency of 18 Hz. Curve fitting and regression analyses were conducted to assess the relation between iAF and improvement. For treatment stratification purposes, correlations with iAF-distance to 10 Hz compared 18 Hz dTMS (N = 114) to 10 Hz rTMS (N = 72). We found a robust quadratic effect, indicating that patients with an iAF around 9 Hz exhibited least symptom improvement (r2=0.126, p<.001). Improvement correlated positively with iAF-distance to 10 Hz (p=.003). A secondary analysis in 20 Hz figure-of-eight data confirmed this direction. A significant interaction of iAF-distance and stimulation frequency between 10 and 18 Hz datasets emerged (p=.026). These results question entrainment of endogenous oscillations by their harmonic frequency for 18 Hz, and suggest that 10 Hz and 18 Hz TMS target different subgroups of depression patients. This study adds to iAF stratification, augmenting Brainmarker-I with alternative TMS protocols (18 Hz/20 Hz) for patients with a slower iAF, thereby broadening clinical applicability and relevance of the biomarker.
Collapse
Affiliation(s)
- Helena Voetterl
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, , The Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, , The Netherlands.
| | - Uri Alyagon
- Department of Life Sciences and the Zelman Centre for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Jonathan Downar
- Institute of Medical Science and Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Abraham Zangen
- Department of Life Sciences and the Zelman Centre for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, , The Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain+Nerve Centre, Maastricht University Medical Centre+ (MUMC+)
| | - Hanneke van Dijk
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, , The Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, , The Netherlands; Synaeda Psycho Medisch Centrum, Leeuwarden, , The Netherlands
| | - Aimee Halloran
- Timothy J. Kriske Salience Research Institute, Plano, TX, USA
| | - Nancy Donachie
- Timothy J. Kriske Salience Research Institute, Plano, TX, USA
| | - Martijn Arns
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, , The Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, , The Netherlands; Stanford Brain Stimulation Lab, Stanford University, USA
| |
Collapse
|
4
|
Fan H, Li Q, Du Y, Yan Y, Ni R, Wei J, Zhao L, Yang X, Ma X. Relationship of prefrontal cortex activity with anhedonia and cognitive function in major depressive disorder: an fNIRS study. Front Psychiatry 2024; 15:1428425. [PMID: 39371911 PMCID: PMC11450226 DOI: 10.3389/fpsyt.2024.1428425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024] Open
Abstract
Background Major depressive disorder (MDD) is associated with deficits in cognitive function, thought to be related to underlying decreased hedonic experiences. Further research is needed to fully elucidate the role of functional brain activity in this relationship. In this study, we investigated the neurofunctional correlate of the interplay between cognitive function and hedonic experiences in medication-free MDD using functional near-infrared spectroscopy (fNIRS). Methods We examine differences of brain activation corresponding to the verbal fluency test (VFT) between MDD patients and healthy controls (HCs). Fifty-six MDD patients and 35 HCs underwent fMRI scanning while performing the VFT. In exploratory analyses, cognitive performance, as assessed by the Cambridge Neuropsychological Test Automated Battery (CANTAB), four dimensions of hedonic processing (desire, motivation, effort, and consummatory pleasure) measured by the Dimensional Anhedonia Rating Scale (DARS), and relative changes in oxygenated hemoglobin concentration during the VFT were compared across groups. Results Patients with MDD demonstrated impairments in sustained attention and working memory, accompanied by lower total and subscale scores on the DARS. Compared to healthy controls, MDD patients exhibited reduced activation in the prefrontal cortex (PFC) during the VFT task (t = 2.32 to 4.77, p < 0.001 to 0.02, FDR corrected). DARS motivation, desire, and total scores as well as sustained attention, were positively correlated with activation in the dorsolateral PFC and Broca's area (p < 0.05, FDR corrected). Conclusions These findings indicate that changes in prefrontal lobe oxygenated hemoglobin levels, a region implicated in hedonic motivation and cognitive function, may serve as potential biomarkers for interventions targeting individuals with MDD. Our results corroborate the clinical consensus that the prefrontal cortex is a primary target for non-invasive neuromodulatory treatments for depression.
Collapse
Affiliation(s)
- Huanhuan Fan
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Du
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Yushun Yan
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Rongjun Ni
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Jinxue Wei
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Liansheng Zhao
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Yang
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohong Ma
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Gibson K, Cernasov P, Styner M, Walsh EC, Kinard JL, Kelley L, Bizzell J, Phillips R, Pfister C, Scott M, Freeman L, Pisoni A, Nagy GA, Oliver JA, Smoski MJ, Dichter GS. The effects of psychotherapy for anhedonia on subcortical brain volumes measured with ultra-high field MRI. J Affect Disord 2024; 361:128-138. [PMID: 38815760 PMCID: PMC11259027 DOI: 10.1016/j.jad.2024.05.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Anhedonia is a transdiagnostic symptom often resistant to treatment. The identification of biomarkers sensitive to anhedonia treatment will aid in the evaluation of novel anhedonia interventions. METHODS This is an exploratory analysis of changes in subcortical brain volumes accompanying psychotherapy in a transdiagnostic anhedonic sample using ultra-high field (7-Tesla) MRI. Outpatients with clinically impairing anhedonia (n = 116) received Behavioral Activation Treatment for Anhedonia, a novel psychotherapy, or Mindfulness-Based Cognitive Therapy (ClinicalTrials.gov Identifiers NCT02874534 and NCT04036136). Subcortical brain volumes were estimated via the MultisegPipeline, and regions of interest were the amygdala, caudate nucleus, hippocampus, pallidum, putamen, and thalamus. Bivariate mixed effects models estimated pre-treatment relations between anhedonia severity and subcortical brain volumes, change over time in subcortical brain volumes, and associations between changes in subcortical brain volumes and changes in anhedonia symptoms. RESULTS As reported previously (Cernasov et al., 2023), both forms of psychotherapy resulted in equivalent and significant reductions in anhedonia symptoms. Pre-treatment anhedonia severity and subcortical brain volumes were not related. No changes in subcortical brain volumes were observed over the course of treatment. Additionally, no relations were observed between changes in subcortical brain volumes and changes in anhedonia severity over the course of treatment. LIMITATIONS This trial included a modest sample size and did not have a waitlist-control condition or a non-anhedonic comparison group. CONCLUSIONS In this exploratory analysis, psychotherapy for anhedonia was not accompanied by changes in subcortical brain volumes, suggesting that subcortical brain volumes may not be a candidate biomarker sensitive to response to psychotherapy.
Collapse
Affiliation(s)
- Kathryn Gibson
- Department of Psychiatry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA.
| | - Paul Cernasov
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Martin Styner
- Department of Psychiatry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Erin C Walsh
- Department of Psychiatry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Jessica L Kinard
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27510, USA
| | - Lisalynn Kelley
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27705, USA
| | - Joshua Bizzell
- Department of Psychiatry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27510, USA
| | - Rachel Phillips
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Courtney Pfister
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - McRae Scott
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Louise Freeman
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Angela Pisoni
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27505, USA
| | - Gabriela A Nagy
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27705, USA
| | - Jason A Oliver
- Department of Family and Preventative Medicine, University of Oklahoma, Oklahoma City, OK 73117, USA
| | - Moria J Smoski
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27505, USA
| | - Gabriel S Dichter
- Department of Psychiatry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA; Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27510, USA
| |
Collapse
|
6
|
Dunlop K, Grosenick L, Downar J, Vila-Rodriguez F, Gunning FM, Daskalakis ZJ, Blumberger DM, Liston C. Dimensional and Categorical Solutions to Parsing Depression Heterogeneity in a Large Single-Site Sample. Biol Psychiatry 2024; 96:422-434. [PMID: 38280408 DOI: 10.1016/j.biopsych.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/21/2023] [Accepted: 01/13/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Recent studies have reported significant advances in modeling the biological basis of heterogeneity in major depressive disorder, but investigators have also identified important technical challenges, including scanner-related artifacts, a propensity for multivariate models to overfit, and a need for larger samples with more extensive clinical phenotyping. The goals of the current study were to evaluate dimensional and categorical solutions to parsing heterogeneity in depression that are stable and generalizable in a large, single-site sample. METHODS We used regularized canonical correlation analysis to identify data-driven brain-behavior dimensions that explain individual differences in depression symptom domains in a large, single-site dataset comprising clinical assessments and resting-state functional magnetic resonance imaging data for 328 patients with major depressive disorder and 461 healthy control participants. We examined the stability of clinical loadings and model performance in held-out data. Finally, hierarchical clustering on these dimensions was used to identify categorical depression subtypes. RESULTS The optimal regularized canonical correlation analysis model yielded 3 robust and generalizable brain-behavior dimensions that explained individual differences in depressed mood and anxiety, anhedonia, and insomnia. Hierarchical clustering identified 4 depression subtypes, each with distinct clinical symptom profiles, abnormal resting-state functional connectivity patterns, and antidepressant responsiveness to repetitive transcranial magnetic stimulation. CONCLUSIONS Our results define dimensional and categorical solutions to parsing neurobiological heterogeneity in major depressive disorder that are stable, generalizable, and capable of predicting treatment outcomes, each with distinct advantages in different contexts. They also provide additional evidence that regularized canonical correlation analysis and hierarchical clustering are effective tools for investigating associations between functional connectivity and clinical symptoms.
Collapse
Affiliation(s)
- Katharine Dunlop
- Centre for Depression and Suicide Studies, St Michael's Hospital, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Psychiatry and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Logan Grosenick
- Department of Psychiatry, Weill Cornell Medicine, New York, New York
| | - Jonathan Downar
- Department of Psychiatry and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Faith M Gunning
- Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, New York
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Daniel M Blumberger
- Department of Psychiatry and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Weill Cornell Medicine, New York, New York; Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, New York; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
7
|
Briley PM, Webster L, Boutry C, Oh H, Auer DP, Liddle PF, Morriss R. Magnetic resonance imaging connectivity features associated with response to transcranial magnetic stimulation in major depressive disorder. Psychiatry Res Neuroimaging 2024; 342:111846. [PMID: 38908353 DOI: 10.1016/j.pscychresns.2024.111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/23/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
Transcranial magnetic stimulation (TMS) is an FDA-approved neuromodulation treatment for major depressive disorder (MDD), thought to work by altering dysfunctional brain connectivity pathways, or by indirectly modulating the activity of subcortical brain regions. Clinical response to TMS remains highly variable, highlighting the need for baseline predictors of response and for understanding brain changes associated with response. This systematic review examined brain connectivity features, and changes in connectivity features, associated with clinical improvement following TMS in MDD. Forty-one studies met inclusion criteria, including 1097 people with MDD. Most studies delivered one of two types of TMS to left dorsolateral prefrontal cortex and measured connectivity using resting-state functional MRI. The subgenual anterior cingulate cortex was the most well-studied brain region, particularly its connectivity with the TMS target or with the "executive control network" of brain regions. There was marked heterogeneity in findings. There is a need for greater understanding of how cortical TMS modulates connectivity with, and the activity of, subcortical regions, and how these effects change within and across treatment sessions.
Collapse
Affiliation(s)
- P M Briley
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom.
| | - L Webster
- Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom
| | - C Boutry
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom; NIHR Applied Research Collaboration East Midlands, University of Nottingham, Nottingham, United Kingdom
| | - H Oh
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | - D P Auer
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | - P F Liddle
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom
| | - R Morriss
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom; NIHR Applied Research Collaboration East Midlands, University of Nottingham, Nottingham, United Kingdom; NIHR Mental Health (MindTech) Health Technology Collaboration, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
8
|
Patarroyo-Rodriguez L, Cavalcanti S, Vande Voort JL, Singh B. The Use of Ketamine for the Treatment of Anhedonia in Depression. CNS Drugs 2024; 38:583-596. [PMID: 38910222 DOI: 10.1007/s40263-024-01099-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/25/2024]
Abstract
Anhedonia, a complex symptom rooted in deficits across reward processes, is primarily linked to depression and schizophrenia but transcends diagnostic boundaries across various mental disorders. Its presence correlates with poorer clinical outcomes, including an increased risk of suicide and diminished response to treatment. The neurobiological underpinnings of anhedonia remain incompletely understood despite advancements in biomarkers and imaging that contribute to deeper insights. Ketamine, known for its rapid-acting antidepressant properties, appears to possess antianhedonic effects through a mechanism of action not fully elucidated. This effect appears to be independent of its antidepressant properties. Explorations into alternative antianhedonic treatments have been underway, yet lingering questions persist, underscoring the imperative need for ongoing research to advance the field.
Collapse
Affiliation(s)
| | - Stefanie Cavalcanti
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jennifer L Vande Voort
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Balwinder Singh
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
Chen Y, Hou X, Zhou H, Han R, Lv T, Yang Z, Zheng W, Bai F. Distinguishable neural circuit mechanisms associated with the clinical efficacy of rTMS in aMCI patients. Cereb Cortex 2024; 34:bhae310. [PMID: 39077918 DOI: 10.1093/cercor/bhae310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
Repetitive transcranial magnetic stimulation is used in early-stage Alzheimer's disease to slow progression, but heterogeneity in response results in different treatment outcomes. The mechanisms underlying this heterogeneity are unclear. This study used resting-state neuroimaging to investigate the variability in episodic memory improvement from angular gyrus repetitive transcranial magnetic stimulation and tracked the neural circuits involved. Thirty-four amnestic mild cognitive impairment patients underwent angular gyrus repetitive transcranial magnetic stimulation (4 weeks, 20 Hz, 100% resting motor threshold) and were divided into high-response and low-response groups based on minimal clinically important differences in auditory verbal learning test scores. Baseline and pre/post-treatment neural circuit activities were compared. Results indicated that the orbital middle frontal gyrus in the orbitofrontal cortex network and the precuneus in the default mode network had higher local activity in the low-response group. After treatment, changes in local and remote connectivity within brain regions of the orbitofrontal cortex, default mode network, visual network, and sensorimotor network showed opposite trends and were related to treatment effects. This suggests that the activity states of brain regions within the orbitofrontal cortex and default mode network could serve as imaging markers for early cognitive compensation in amnestic mild cognitive impairment patients and predict the aftereffects of repetitive transcranial magnetic stimulation response.
Collapse
Affiliation(s)
- Ya Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Xinle Hou
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Huijuan Zhou
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - RuiChen Han
- Department of Neurology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 210000, China
| | - Tingyu Lv
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China
- Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China
| | - Zhiyuan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Wenao Zheng
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210000, China
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China
- Department of Neurology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 210000, China
- Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China
- Institute of Geriatric Medicine, Medical School of Nanjing University, Nanjing 210000, China
| |
Collapse
|
10
|
Jiang S, Huang J, Yang H, Czuma R, Farley L, Cohen‐Oram A, Hartney K, Chechotka K, Kozel FA, Jiang H. Diffuse optical tomography for mapping cerebral hemodynamics and functional connectivity in delirium. Alzheimers Dement 2024; 20:4032-4042. [PMID: 38700095 PMCID: PMC11180861 DOI: 10.1002/alz.13827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 05/05/2024]
Abstract
INTRODUCTION Delirium is associated with mortality and new onset dementia, yet the underlying pathophysiology remains poorly understood. Development of imaging biomarkers has been difficult given the challenging nature of imaging delirious patients. Diffuse optical tomography (DOT) offers a promising approach for investigating delirium given its portability and three-dimensional capabilities. METHODS Twenty-five delirious and matched non-delirious patients (n = 50) were examined using DOT, comparing cerebral oxygenation and functional connectivity in the prefrontal cortex during and after an episode of delirium. RESULTS Total hemoglobin values were significantly decreased in the delirium group, even after delirium resolution. Functional connectivity between the dorsolateral prefrontal cortex and dorsomedial prefrontal cortex was strengthened post-resolution compared to during an episode; however, this relationship was still significantly weaker compared to controls. DISCUSSION These findings highlight DOT's potential as an imaging biomarker to measure impaired cerebral oxygenation and functional dysconnectivity during and after delirium. Future studies should focus on the role of cerebral oxygenation in delirium pathogenesis and exploring the etiological link between delirium and dementias. HIGHLIGHTS We developed a portable diffuse optical tomography (DOT) system for bedside three-dimensional functional neuroimaging to study delirium in the hospital. We implemented a novel DOT task-focused seed-based correlation analysis. DOT revealed decreased cerebral oxygenation and functional connectivity strength in the delirium group, even after resolution of delirium.
Collapse
Affiliation(s)
- Shixie Jiang
- Department of Psychiatry and Behavioral NeurosciencesUniversity of South FloridaTampaFloridaUSA
- Department of PsychiatryUniversity of FloridaGainesvilleFloridaUSA
| | - Jingyu Huang
- Department of Medical EngineeringUniversity of South FloridaTampaFloridaUSA
| | - Hao Yang
- Department of Medical EngineeringUniversity of South FloridaTampaFloridaUSA
| | - Richard Czuma
- Department of Psychiatry and Behavioral NeurosciencesUniversity of South FloridaTampaFloridaUSA
| | - Lauren Farley
- Department of Surgery and Division of Vascular SurgeryUniversity of South FloridaTampaFloridaUSA
| | - Alexis Cohen‐Oram
- Department of Psychiatry and Behavioral NeurosciencesUniversity of South FloridaTampaFloridaUSA
| | - Kimberly Hartney
- Department of Psychiatry and Behavioral NeurosciencesUniversity of South FloridaTampaFloridaUSA
| | - Kristina Chechotka
- Department of Psychiatry and Behavioral NeurosciencesUniversity of South FloridaTampaFloridaUSA
| | - F. Andrew Kozel
- Department of Behavioral Sciences and Social MedicineFlorida State UniversityTallahasseeFloridaUSA
| | - Huabei Jiang
- Department of Medical EngineeringUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
11
|
Gupta T, Eckstrand KL, Forbes EE. Annual Research Review: Puberty and the development of anhedonia - considering childhood adversity and inflammation. J Child Psychol Psychiatry 2024; 65:459-480. [PMID: 38391011 PMCID: PMC10939801 DOI: 10.1111/jcpp.13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
Anhedonia, or diminished pleasure and motivation, is a symptom of severe mental illness (e.g., depressive disorder, bipolar disorder, schizophrenia) that emerges during adolescence. Anhedonia is a pernicious symptom that is related to social impairments, treatment resistance, and suicide. As the mechanisms of anhedonia are postulated to include the frontostriatal circuitry and the dopamine neuromodulatory system, the development and plasticity of these systems during the vulnerable period of adolescence, as well as their sensitivity to pubertal hormones, suggest that pubertal maturation could play a role in the development of anhedonia. This review takes a developmental perspective, considering the possibility that anhedonia emerges in the context of pubertal maturation and adolescent development, with childhood adversity and chronic inflammation influencing neural reward systems to accelerate anhedonia's progression. Here, we review the relevant extant literature on the components of this model and suggest directions for future research.
Collapse
Affiliation(s)
- Tina Gupta
- University of Pittsburgh, Department of Psychiatry, Pittsburgh, PA USA
| | | | - Erika E. Forbes
- University of Pittsburgh, Department of Psychiatry, Pittsburgh, PA USA
- University of Pittsburgh, Department of Psychology, Pittsburgh, PA USA
- University of Pittsburgh, Department of Pediatrics, Pittsburgh PA USA
- University of Pittsburgh, Department of Clinical and Translational Science, Pittsburgh PA USA
| |
Collapse
|
12
|
Chu M, Li S, Wang Y, Lui SSY, Chan RCK. The effect of noninvasive brain stimulation on anhedonia in patients with schizophrenia and depression: A systematic review and meta-analysis. Psych J 2024; 13:166-175. [PMID: 38151800 PMCID: PMC10990806 DOI: 10.1002/pchj.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Anhedonia is a transdiagnostic symptom found in patients with schizophrenia and depression. Current pharmacological interventions for anhedonia are unsatisfactory in a considerable proportion of patients. There has been growing interest in applying noninvasive brain stimulation (NIBS) to patients with anhedonia. However, evidence for the efficacy of NIBS for anhedonia remain inconsistent. This study systematically identified all studies that measured anhedonia and applied NIBS in patients with schizophrenia or depression. We conducted a search using the various databases in English (PubMed, EBSCOHost (PsycInfo/PsycArticles), Web of Science) and Chinese (China National Knowledge Infrastructure, Wanfang Data Knowledge Service Platform) languages, and reviewed original research articles on NIBS published from January 1989 to July 2023. Our search had identified 15 articles for quantitative synthesis, with three concerning schizophrenia samples, 11 concerning samples with depression, and one concerning both clinical samples. We conducted a meta-analysis based on the 15 included studies, and the results suggested that NIBS could improve anhedonia symptoms in schizophrenia patients and patients with depression, with a medium-to-large effect size. Our findings are preliminary, given the limited number of included studies. Future NIBS research should measure anhedonia as a primary outcome and should recruit transdiagnostic samples.
Collapse
Affiliation(s)
- Min‐yi Chu
- Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuai‐biao Li
- Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience LaboratoryCAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Simon S. Y. Lui
- Department of Psychiatry, School of Clinical MedicineThe University of Hong KongHong KongChina
| | - Raymond C. K. Chan
- Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Neuropsychology and Applied Cognitive Neuroscience LaboratoryCAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
13
|
Siddiqi SH, Fox MD. Targeting Symptom-Specific Networks With Transcranial Magnetic Stimulation. Biol Psychiatry 2024; 95:502-509. [PMID: 37979642 DOI: 10.1016/j.biopsych.2023.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Increasing evidence suggests that the clinical effects of transcranial magnetic stimulation are target dependent. Within any given symptom, precise targeting of specific brain circuits may improve clinical outcomes. This principle can also be extended across symptoms-stimulation of different circuits may lead to different symptom-level outcomes. This may include targeting different symptoms within the same disorder (such as dysphoria vs. anxiety in patients with major depression) or targeting the same symptom across different disorders (such as primary major depression and depression secondary to stroke, traumatic brain injury, epilepsy, multiple sclerosis, or Parkinson's disease). Some of these symptom-specific changes may be desirable, while others may be undesirable. This review focuses on the conceptual framework through which symptom-specific target circuits may be identified, tested, and implemented.
Collapse
Affiliation(s)
- Shan H Siddiqi
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Department of Neurology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
14
|
Rezaei M, Bagheri MMS. Clinical effects of anodal tDCS and identifying response markers in post-traumatic stress disorder (PTSD): An open-label study. Behav Brain Res 2024; 458:114751. [PMID: 37931705 DOI: 10.1016/j.bbr.2023.114751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a promising treatment for post-traumatic stress disorder (PTSD). However, not all patients respond to this type of treatment. The first aim of present study was to examine efficacy of tDCS for PTSD, depression, anxiety, and anhedonia in patients with PTSD. The second aim of this study was to examine the demographic, clinical, and psychological factors that may predict response to tDCS. In this open-label study, 103 PTSD patients underwent 10 sessions of tDCS (2 mA, 20 min). The anodal and cathodal electrodes were placed over the left dorsolateral prefrontal cortex (DLPFC; F3) and right supra-orbital (FP2) Respectively. Clinical outcome measures included Posttraumatic the Stress Disorder Checklist for DSM-5 (PCL-5), the Beck Depression Inventory (BDI-II), the Beck Anxiety Inventory (BAI), and the Snaith-Hamilton Pleasure Scale (SHAPS). There was an overall significant improvement in symptoms of PTSD, depression, anxiety, and anhedonia from pre- to post-treatment. Results also revealed that non-responders had higher severity at baseline for depression, anxiety, and anhedonia. However, higher severity of depression and anhedonia at baseline predicted response status, with higher severity associated with greater likelihood of non-response. tDCS of the left dLPFC and right supra-orbital appears to have a positive effect in reducing PTSD and related symptoms. These initial results could have an important influence on the adoption of anodal tDCS over the left DLPFC for PTSD, by enabling the early identification of patients who respond to tDCS.
Collapse
Affiliation(s)
- Mehdi Rezaei
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Birjand, Birjand, Iran.
| | | |
Collapse
|
15
|
Goodman MS, Vila-Rodriguez F, Barwick M, Burke MJ, Downar J, Hunter J, Kaster TS, Knyahnytska Y, Kurdyak P, Maunder R, Thorpe K, Trevizol AP, Voineskos D, Zhang W, Blumberger DM. A randomized sham-controlled trial of high-dosage accelerated intermittent theta burst rTMS in major depression: study protocol. BMC Psychiatry 2024; 24:28. [PMID: 38191370 PMCID: PMC10773082 DOI: 10.1186/s12888-023-05470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Intermittent theta burst stimulation (iTBS), a novel form of repetitive transcranial magnetic stimulation (rTMS), can be administered in 1/10th of the time of standard rTMS (~ 3 min vs. 37.5 min) yet achieves similar outcomes in depression. The brief nature of the iTBS protocol allows for the administration of multiple iTBS sessions per day, thus reducing the overall course length to days rather than weeks. This study aims to compare the efficacy and tolerability of active versus sham iTBS using an accelerated regimen in patients with treatment-resistant depression (TRD). As a secondary objective, we aim to assess the safety, tolerability, and treatment response to open-label low-frequency right-sided (1 Hz) stimulation using an accelerated regimen in those who do not respond to the initial week of treatment. METHODS Over three years, approximately 230 outpatients at the Centre for Addiction and Mental Health and University of British Columbia Hospital, meeting diagnostic criteria for unipolar MDD, will be recruited and randomized to a triple blind sham-controlled trial. Patients will receive five consecutive days of active or sham iTBS, administered eight times daily at 1-hour intervals, with each session delivering 600 pulses of iTBS. Those who have not achieved response by the week four follow-up visit will be offered a second course of treatment, regardless of whether they initially received active or sham stimulation. DISCUSSION Broader implementation of conventional iTBS is limited by the logistical demands of the current standard course consisting of 4-6 weeks of daily treatment. If our proposed accelerated iTBS protocol enables patients to achieve remission more rapidly, this would offer major benefits in terms of cost and capacity as well as the time required to achieve clinical response. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04255784.
Collapse
Affiliation(s)
- Michelle S Goodman
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Melanie Barwick
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Matthew J Burke
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jonathan Downar
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jonathan Hunter
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Mount Sinai Hospital, Toronto, ON, Canada
| | - Tyler S Kaster
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Yuliya Knyahnytska
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Kurdyak
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Canada
| | - Robert Maunder
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Mount Sinai Hospital, Toronto, ON, Canada
| | - Kevin Thorpe
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Applied Health Research Centre, St. Michael's Hospital, Toronto, ON, Canada
| | - Alisson P Trevizol
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Daphne Voineskos
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Wei Zhang
- Centre for Advancing Health Outcomes, St Paul's Hospital, Vancouver, BC, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Downar J, Siddiqi SH, Mitra A, Williams N, Liston C. Mechanisms of Action of TMS in the Treatment of Depression. Curr Top Behav Neurosci 2024; 66:233-277. [PMID: 38844713 DOI: 10.1007/7854_2024_483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Transcranial magnetic stimulation (TMS) is entering increasingly widespread use in treating depression. The most common stimulation target, in the dorsolateral prefrontal cortex (DLPFC), emerged from early neuroimaging studies in depression. Recently, more rigorous casual methods have revealed whole-brain target networks and anti-networks based on the effects of focal brain lesions and focal brain stimulation on depression symptoms. Symptom improvement during therapeutic DLPFC-TMS appears to involve directional changes in signaling between the DLPFC, subgenual and dorsal anterior cingulate cortex, and salience-network regions. However, different networks may be involved in the therapeutic mechanisms for other TMS targets in depression, such as dorsomedial prefrontal cortex or orbitofrontal cortex. The durability of therapeutic effects for TMS involves synaptic neuroplasticity, and specifically may depend upon dopamine acting at the D1 receptor family, as well as NMDA-receptor-dependent synaptic plasticity mechanisms. Although TMS protocols are classically considered 'excitatory' or 'inhibitory', the actual effects in individuals appear quite variable, and might be better understood at the level of populations of synapses rather than individual synapses. Synaptic meta-plasticity may provide a built-in protective mechanism to avoid runaway facilitation or inhibition during treatment, and may account for the relatively small number of patients who worsen rather than improve with TMS. From an ethological perspective, the antidepressant effects of TMS may involve promoting a whole-brain attractor state associated with foraging/hunting behaviors, centered on the rostrolateral periaqueductal gray and salience network, and suppressing an attractor state associated with passive threat defense, centered on the ventrolateral periaqueductal gray and default-mode network.
Collapse
Affiliation(s)
- Jonathan Downar
- Department of Psychiatry, Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Shan H Siddiqi
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA
- Department of Psychiatry, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anish Mitra
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Nolan Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Conor Liston
- Department of Psychiatry, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
17
|
Pouyan N, Younesi Sisi F, Kargar A, Scheidegger M, McIntyre RS, Morrow JD. The effects of Lysergic Acid Diethylamide (LSD) on the Positive Valence Systems: A Research Domain Criteria (RDoC)-Informed Systematic Review. CNS Drugs 2023; 37:1027-1063. [PMID: 37999867 PMCID: PMC10703966 DOI: 10.1007/s40263-023-01044-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND AND OBJECTIVES The renewed interest in psychedelic research provides growing evidence of potentially unique effects on various aspects of reward processing systems. Using the Research Domain Criteria (RDoC) framework, as proposed by the National Institute of Mental Health, we aim to synthesize the existing literature concerning the impact of lysergic acid diethylamide (LSD) on the RDoC's Positive Valence Systems (PVS) domain, and to identify potential avenues for further research. METHODS Two LSD-related terms (lysergic acid diethylamide and LSD) and 13 PVS-related terms (reward, happiness, bliss, motivation, reinforcement learning, operant, conditioning, satisfaction, decision making, habit, valence, affect, mood) were used to search electronic databases such as PubMed, Scopus, PsychINFO, and Web of Science for relevant articles. A manual search of the reference list resulted in nine additional articles. After screening, articles and data were evaluated and included based on their relevance to the objective of investigating the effects of LSD on the PVS. Articles and data were excluded if they did not provide information about the PVS, were observational in nature, lacked comparators or reference groups, or were duplicates. A risk of bias assessment was performed using the National Toxicology Program's Office of Health Assessment and Translation (NTP OHAT) risk of bias (RoB) tool. Data from the included articles were collected and structured based on the RDoC bio-behavioral matrix, specifically focusing on the PVS domain and its three constituent constructs: reward responsiveness, reward learning, and reward valuation. RESULTS We reviewed 28 clinical studies with 477 participants. Lysergic acid diethylamide, assessed at self-report (23 studies), molecular (5 studies), circuit (4 studies), and paradigm (3 studies) levels, exhibited dose-dependent mood improvement (20 short-term and 3 long-term studies). The subjective and neural effects of LSD were linked to the 5-HT2A receptor (molecular). Animal studies (14 studies) suggested LSD could mildly reinforce conditioned place preference without aversion and reduce responsiveness to other rewards. Findings on reward learning were inconsistent but hinted at potential associative learning enhancements. Reward valuation measures indicated potential reductions in effort expenditure for other reinforcers. CONCLUSION Our findings are consistent with our previous work, which indicated classical psychedelics, primarily serotonin 2A receptor agonists, enhanced reward responsiveness in healthy individuals and patient populations. Lysergic acid diethylamide exhibits a unique profile in the reward learning and valuation constructs. Using the RDoC-based framework, we identified areas for future research, enhancing our understanding of the impact of LSD on reward processing. However, applying RDoC to psychedelic research faces limitations due to diverse study designs that were not initially RDoC-oriented. Limitations include subjective outcome measure selection aligned with RDoC constructs and potential bias in synthesizing varied studies. Additionally, some human studies were open-label, introducing potential bias compared to randomized, blinded studies.
Collapse
Affiliation(s)
- Niloufar Pouyan
- Michigan Psychedelic Center (M-PsyC), and Chronic Pain and Fatigue Research Center (CPFRC), University of Michigan Medical School, Ann Arbor, MI, USA.
- Neuroscience Graduate Program, and Program in Biomedical Sciences (PIBS), University of Michigan Medical School, 1135 Catherine Street, Box 5619, 2960 Taubman Health Science Library, Ann Arbor, MI, USA.
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Aracell Zist Darou pharmaceutical, Tehran, Iran.
| | - Farnaz Younesi Sisi
- Yaadmaan Institute for Brain, Cognition and Memory Studies, Tehran, Iran
- Cognitive Neurology and Neuropsychiatry Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Alireza Kargar
- Cognitive Neurology and Neuropsychiatry Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Clinical Pharmacy, School of pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Jonathan D Morrow
- Neuroscience Graduate Program, and Program in Biomedical Sciences (PIBS), University of Michigan Medical School, 1135 Catherine Street, Box 5619, 2960 Taubman Health Science Library, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Ding Y, Ou Y, Yan H, Liu F, Li H, Li P, Xie G, Cui X, Guo W. Uncovering the Neural Correlates of Anhedonia Subtypes in Major Depressive Disorder: Implications for Intervention Strategies. Biomedicines 2023; 11:3138. [PMID: 38137360 PMCID: PMC10740577 DOI: 10.3390/biomedicines11123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Major depressive disorder (MDD) represents a serious public health concern, negatively affecting individuals' quality of life and making a substantial contribution to the global burden of disease. Anhedonia is a core symptom of MDD and is associated with poor treatment outcomes. Variability in anhedonia components within MDD has been observed, suggesting heterogeneity in psychopathology across subgroups. However, little is known about anhedonia subgroups in MDD and their underlying neural correlates across subgroups. To address this question, we employed a hierarchical cluster analysis based on Temporal Experience of Pleasure Scale subscales in 60 first-episode, drug-naive MDD patients and 32 healthy controls. Then we conducted a connectome-wide association study and whole-brain voxel-wise functional analyses for identified subgroups. There were three main findings: (1) three subgroups with different anhedonia profiles were identified using a data mining approach; (2) several parts of the reward network (especially pallidum and dorsal striatum) were associated with anticipatory and consummatory pleasure; (3) different patterns of within- and between-network connectivity contributed to the disparities of anhedonia profiles across three MDD subgroups. Here, we show that anhedonia in MDD is not uniform and can be categorized into distinct subgroups, and our research contributes to the understanding of neural underpinnings, offering potential treatment directions. This work emphasizes the need for tailored approaches in the complex landscape of MDD. The identification of homogeneous, stable, and neurobiologically valid MDD subtypes could significantly enhance our comprehension and management of this multifaceted condition.
Collapse
Affiliation(s)
- Yudan Ding
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.D.); (H.Y.); (G.X.)
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.D.); (H.Y.); (G.X.)
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.D.); (H.Y.); (G.X.)
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China;
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410011, China;
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar 161006, China;
| | - Guangrong Xie
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.D.); (H.Y.); (G.X.)
| | - Xilong Cui
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.D.); (H.Y.); (G.X.)
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.D.); (H.Y.); (G.X.)
| |
Collapse
|
19
|
Stolz LA, Kohn JN, Smith SE, Benster LL, Appelbaum LG. Predictive Biomarkers of Treatment Response in Major Depressive Disorder. Brain Sci 2023; 13:1570. [PMID: 38002530 PMCID: PMC10669981 DOI: 10.3390/brainsci13111570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent, debilitating disorder with a high rate of treatment resistance. One strategy to improve treatment outcomes is to identify patient-specific, pre-intervention factors that can predict treatment success. Neurophysiological measures such as electroencephalography (EEG), which measures the brain's electrical activity from sensors on the scalp, offer one promising approach for predicting treatment response for psychiatric illnesses, including MDD. In this study, a secondary data analysis was conducted on the publicly available Two Decades Brainclinics Research Archive for Insights in Neurophysiology (TDBRAIN) database. Logistic regression modeling was used to predict treatment response, defined as at least a 50% improvement on the Beck's Depression Inventory, in 119 MDD patients receiving repetitive transcranial magnetic stimulation (rTMS). The results show that both age and baseline symptom severity were significant predictors of rTMS treatment response, with older individuals and more severe depression scores associated with decreased odds of a positive treatment response. EEG measures contributed predictive power to these models; however, these improvements in outcome predictability only trended towards statistical significance. These findings provide confirmation of previous demographic and clinical predictors, while pointing to EEG metrics that may provide predictive information in future studies.
Collapse
Affiliation(s)
- Louise A. Stolz
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (L.A.S.); (J.N.K.); (L.L.B.)
| | - Jordan N. Kohn
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (L.A.S.); (J.N.K.); (L.L.B.)
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Sydney E. Smith
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92093, USA;
| | - Lindsay L. Benster
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (L.A.S.); (J.N.K.); (L.L.B.)
- Department Clinical Psychology, San Diego State University, San Diego, CA 92182, USA
| | - Lawrence G. Appelbaum
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (L.A.S.); (J.N.K.); (L.L.B.)
| |
Collapse
|
20
|
Rezaei M, Shariat Bagheri MM, Khazaei S, Garavand H. tDCS efficacy and utility of anhedonia and rumination as clinical predictors of response to tDCS in major depressive disorder (MDD). J Affect Disord 2023; 339:756-762. [PMID: 37481126 DOI: 10.1016/j.jad.2023.07.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 06/14/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Anhedonia and rumination are mental disorders' transdiagnostic features but remain difficult to treat. Transcranial direct current stimulation (tDCS) is a proven treatment for depression, but its effects on anhedonia and rumination and whether anhedonia and rumination can be used as a predictive biomarker of treatment response is not well known. This study aimed to investigate the tDCS efficacy and identify the predictive role of anhedonia and rumination in response to tDCS in patients with MDD. METHODS 182 patients received 10 tDCS sessions delivered at 2 mA to left (anode) dorsolateral prefrontal cortex (DLPFC). Hamilton Rating Scale for Depression (HRSD-17), Snaith-Hamilton Pleasure Scale (SHAPS), and the 10-item Ruminative Response Scale (RRS-10) was administered to patients with MDD before treatment, following it, and after two weeks of tDCS. RESULTS There was an overall significant improvement in anhedonia from pre- to post-treatment. Regression analyses revealed that responders had higher baseline anhedonia and rumination (reflective pondering) scores. We found that the reduction in HRSD scores after tDCS was significantly associated with anhedonia's baseline values while no relation was found between baseline rumination and tDCS treatment response. CONCLUSION These results provide new evidence that pronounced anhedonia may be a significant clinical predictor of response to tDCS. Patients with severe or low baseline rumination had an equal chance of achieving clinical response. Prospective tDCS studies are necessary to validate the predictive value of the derived model.
Collapse
Affiliation(s)
- Mehdi Rezaei
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Birjand, Birjand, Iran.
| | | | - Samaneh Khazaei
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Birjand, Birjand, Iran
| | - Houshang Garavand
- Psychology Department, Faculty of Literature and Humanities, Lorestan University, Khorramabad, Iran
| |
Collapse
|
21
|
Chai Y, Sheline YI, Oathes DJ, Balderston NL, Rao H, Yu M. Functional connectomics in depression: insights into therapies. Trends Cogn Sci 2023; 27:814-832. [PMID: 37286432 PMCID: PMC10476530 DOI: 10.1016/j.tics.2023.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
Depression is a common mental disorder characterized by heterogeneous cognitive and behavioral symptoms. The emerging research paradigm of functional connectomics has provided a quantitative theoretical framework and analytic tools for parsing variations in the organization and function of brain networks in depression. In this review, we first discuss recent progress in depression-associated functional connectome variations. We then discuss treatment-specific brain network outcomes in depression and propose a hypothetical model highlighting the advantages and uniqueness of each treatment in relation to the modulation of specific brain network connectivity and symptoms of depression. Finally, we look to the future promise of combining multiple treatment types in clinical practice, using multisite datasets and multimodal neuroimaging approaches, and identifying biological depression subtypes.
Collapse
Affiliation(s)
- Ya Chai
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; Center for Functional Neuroimaging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yvette I Sheline
- Center for Neuromodulation in Depression and Stress (CNDS), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Desmond J Oathes
- Center for Neuromodulation in Depression and Stress (CNDS), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Brain Science, Translation, Innovation and Modulation Center (brainSTIM), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Nicholas L Balderston
- Center for Neuromodulation in Depression and Stress (CNDS), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hengyi Rao
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; Center for Functional Neuroimaging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Meichen Yu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA.
| |
Collapse
|
22
|
Deng ZD, Robins PL, Dannhauer M, Haugen LM, Port JD, Croarkin PE. Optimizing TMS Coil Placement Approaches for Targeting the Dorsolateral Prefrontal Cortex in Depressed Adolescents: An Electric Field Modeling Study. Biomedicines 2023; 11:2320. [PMID: 37626817 PMCID: PMC10452519 DOI: 10.3390/biomedicines11082320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
High-frequency repetitive transcranial magnetic stimulation (rTMS) to the left dorsolateral prefrontal cortex (L-DLPFC) shows promise as a treatment for treatment-resistant depression in adolescents. Conventional rTMS coil placement strategies include the 5 cm, the Beam F3, and the magnetic resonance imaging (MRI) neuronavigation methods. The purpose of this study was to use electric field (E-field) models to compare the three targeting approaches to a computational E-field optimization coil placement method in depressed adolescents. Ten depressed adolescents (4 females, age: 15.9±1.1) participated in an open-label rTMS treatment study and were offered MRI-guided rTMS five times per week over 6-8 weeks. Head models were generated based on individual MRI images, and E-fields were simulated for the four targeting approaches. Results showed a significant difference in the induced E-fields at the L-DLPFC between the four targeting methods (χ2=24.7, p<0.001). Post hoc pairwise comparisons showed that there was a significant difference between any two of the targeting methods (Holm adjusted p<0.05), with the 5 cm rule producing the weakest E-field (46.0±17.4V/m), followed by the F3 method (87.4±35.4V/m), followed by MRI-guided (112.1±14.6V/m), and followed by the computational approach (130.1±18.1V/m). Variance analysis showed that there was a significant difference in sample variance between the groups (K2=8.0, p<0.05), with F3 having the largest variance. Participants who completed the full course of treatment had median E-fields correlated with depression symptom improvement (r=-0.77, p<0.05). E-field models revealed limitations of scalp-based methods compared to MRI guidance, suggesting computational optimization could enhance dose delivery to the target.
Collapse
Affiliation(s)
- Zhi-De Deng
- Computational Neurostimulation Research Program, Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD 20892, USA; (P.L.R.); (M.D.)
| | - Pei L. Robins
- Computational Neurostimulation Research Program, Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD 20892, USA; (P.L.R.); (M.D.)
| | - Moritz Dannhauer
- Computational Neurostimulation Research Program, Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD 20892, USA; (P.L.R.); (M.D.)
| | - Laura M. Haugen
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - John D. Port
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA;
- Mayo Clinic Depression Center, Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Paul E. Croarkin
- Mayo Clinic Depression Center, Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
23
|
Harkness KL, Chakrabarty T, Rizvi SJ, Mazurka R, Quilty L, Uher R, Milev RV, Frey BN, Parikh SV, Foster JA, Rotzinger S, Kennedy SH, Lam RW. The Differential Relation of Emotional, Physical, and Sexual Abuse Histories to Antidepressant Treatment Remission and Persistence of Anhedonia in Major Depression: A CAN-BIND-1 Report. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2023; 68:586-595. [PMID: 36785892 PMCID: PMC10411366 DOI: 10.1177/07067437231156255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
OBJECTIVE Childhood maltreatment is a potent enviromarker of risk for poor response to antidepressant medication (ADM). However, childhood maltreatment is a heterogeneous construct that includes distinct exposures that have distinct neurobiological and psychological correlates. The purpose of the current study is to examine the differential associations of emotional, physical, and sexual maltreatment to ADM outcome and to examine the unique role of anhedonia in driving poor response in patients with specific maltreatment histories. METHODS In a multicentre clinical trial of major depression, 164 individuals were assessed for childhood emotional, physical, and sexual maltreatment with a contextual interview with independent, standardized ratings. All individuals received 8 weeks of escitalopram, with nonresponders subsequently also receiving augmentation with aripiprazole, with outcomes measured with depression rating scales and an anhedonia scale. RESULTS Greater severity of emotional maltreatment perpetrated by the mother was a significant and direct predictor of lower odds of week 16 remission (odds ratio [OR] = 1.68, P = 0.02). In contrast, the relations of paternal-perpetrated emotional maltreatment and physical maltreatment to week 16 remission were indirect, mediated through greater severity of anhedonia at week 8. CONCLUSIONS We identify emotional maltreatment as a specific early exposure that places patients at the greatest risk for nonremission following pharmacological treatment. Further, we suggest that anhedonia is a key symptom domain driving nonremission in patients with particular maltreatment histories.
Collapse
Affiliation(s)
- Kate L. Harkness
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Trisha Chakrabarty
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Sakina J. Rizvi
- Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Raegan Mazurka
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Lena Quilty
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Roumen V. Milev
- Department of Psychiatry, Queen's University, and Providence Care, Kingston, ON, Canada
| | - Benicio N. Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Mood Disorders Program, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Sagar V. Parikh
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Jane A. Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Susan Rotzinger
- Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Sidney H. Kennedy
- Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Raymond W. Lam
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Schutter DJ, Smits F, Klaus J. Mind matters: A narrative review on affective state-dependency in non-invasive brain stimulation. Int J Clin Health Psychol 2023; 23:100378. [PMID: 36866122 PMCID: PMC9971283 DOI: 10.1016/j.ijchp.2023.100378] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Variability in findings related to non-invasive brain stimulation (NIBS) have increasingly been described as a result of differences in neurophysiological state. Additionally, there is some evidence suggesting that individual differences in psychological states may correlate with the magnitude and directionality of effects of NIBS on the neural and behavioural level. In this narrative review, it is proposed that the assessment of baseline affective states can quantify non-reductive properties which are not readily accessible to neuroscientific methods. Particularly, affective-related states are theorized to correlate with physiological, behavioural and phenomenological effects of NIBS. While further systematic research is needed, baseline psychological states are suggested to provide a complementary cost-effective source of information for understanding variability in NIBS outcomes. Implementing measures of psychological state may potentially contribute to increasing the sensitivity and specificity of results in experimental and clinical NIBS studies.
Collapse
Affiliation(s)
- Dennis J.L.G. Schutter
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Fenne Smits
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
- Brain Research & Innovation Centre, Ministry of Defence, Utrecht, the Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, The Netherlands
| | - Jana Klaus
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
25
|
Flint J. The genetic basis of major depressive disorder. Mol Psychiatry 2023; 28:2254-2265. [PMID: 36702864 PMCID: PMC10611584 DOI: 10.1038/s41380-023-01957-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023]
Abstract
The genetic dissection of major depressive disorder (MDD) ranks as one of the success stories of psychiatric genetics, with genome-wide association studies (GWAS) identifying 178 genetic risk loci and proposing more than 200 candidate genes. However, the GWAS results derive from the analysis of cohorts in which most cases are diagnosed by minimal phenotyping, a method that has low specificity. I review data indicating that there is a large genetic component unique to MDD that remains inaccessible to minimal phenotyping strategies and that the majority of genetic risk loci identified with minimal phenotyping approaches are unlikely to be MDD risk loci. I show that inventive uses of biobank data, novel imputation methods, combined with more interviewer diagnosed cases, can identify loci that contribute to the episodic severe shifts of mood, and neurovegetative and cognitive changes that are central to MDD. Furthermore, new theories about the nature and causes of MDD, drawing upon advances in neuroscience and psychology, can provide handles on how best to interpret and exploit genetic mapping results.
Collapse
Affiliation(s)
- Jonathan Flint
- Department of Psychiatry and Biobehavioral Sciences, Billy and Audrey Wilder Endowed Chair in Psychiatry and Neuroscience, Center for Neurobehavioral Genetics, 695 Charles E. Young Drive South, 3357B Gonda, Box 951761, Los Angeles, CA, 90095-1761, USA.
| |
Collapse
|
26
|
Shamabadi A, Karimi H, Cattarinussi G, Moghaddam HS, Akhondzadeh S, Sambataro F, Schiena G, Delvecchio G. Neuroimaging Correlates of Treatment Response to Transcranial Magnetic Stimulation in Bipolar Depression: A Systematic Review. Brain Sci 2023; 13:brainsci13050801. [PMID: 37239273 DOI: 10.3390/brainsci13050801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has become a promising strategy for bipolar disorder (BD). This study reviews neuroimaging findings, indicating functional, structural, and metabolic brain changes associated with TMS in BD. Web of Science, Embase, Medline, and Google Scholar were searched without any restrictions for studies investigating neuroimaging biomarkers, through structural magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), functional MRI (fMRI), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), and single photon emission computed tomography (SPECT), in association with response to TMS in patients with BD. Eleven studies were included (fMRI = 4, MRI = 1, PET = 3, SPECT = 2, and MRS = 1). Important fMRI predictors of response to repetitive TMS (rTMS) included higher connectivity of emotion regulation and executive control regions. Prominent MRI predictors included lower ventromedial prefrontal cortex connectivity and lower superior frontal and caudal middle frontal volumes. SPECT studies found hypoconnectivity of the uncus/parahippocampal cortex and right thalamus in non-responders. The post-rTMS changes using fMRI mostly showed increased connectivity among the areas neighboring the coil. Increased blood perfusion was reported post-rTMS in PET and SPECT studies. Treatment response comparison between unipolar depression and BD revealed almost equal responses. Neuroimaging evidence suggests various correlates of response to rTMS in BD, which needs to be further replicated in future studies.
Collapse
Affiliation(s)
- Ahmad Shamabadi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran M9HV+R6Q, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran P94V+8MF, Iran
| | - Hanie Karimi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran M9HV+R6Q, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran P94V+8MF, Iran
| | - Giulia Cattarinussi
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, 35131 Padua, Italy
| | - Hossein Sanjari Moghaddam
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran M9HV+R6Q, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran M9HV+R6Q, Iran
| | - Fabio Sambataro
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, 35131 Padua, Italy
| | - Giandomenico Schiena
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
27
|
Zangen A, Zibman S, Tendler A, Barnea-Ygael N, Alyagon U, Blumberger DM, Grammer G, Shalev H, Gulevski T, Vapnik T, Bystritsky A, Filipčić I, Feifel D, Stein A, Deutsch F, Roth Y, George MS. Pursuing personalized medicine for depression by targeting the lateral or medial prefrontal cortex with Deep TMS. JCI Insight 2023; 8:165271. [PMID: 36692954 PMCID: PMC9977507 DOI: 10.1172/jci.insight.165271] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUNDMajor depressive disorder (MDD) can benefit from novel interventions and personalization. Deep transcranial magnetic stimulation (Deep TMS) targeting the lateral prefrontal cortex (LPFC) using the H1 coil was FDA cleared for treatment of MDD. However, recent preliminary data indicate that targeting the medial prefrontal cortex (MPFC) using the H7 coil might induce outcomes that are as good or even better. Here, we explored whether Deep TMS targeting the MPFC is noninferior to targeting the LPFC and whether electrophysiological or clinical markers for patient selection can be identified.METHODSThe present prospective, multicenter, randomized study enrolled 169 patients with MDD for whom antidepressants failed in the current episode. Patients were randomized to receive 24 Deep TMS sessions over 6 weeks, using either the H1 coil or the H7 coil. The primary efficacy endpoint was the change from baseline to week 6 in Hamilton Depression Rating Scale scores.RESULTSClinical efficacy and safety profiles were similar and not significantly different between groups, with response rates of 60.9% for the H1 coil and 64.2% for the H7 coil. Moreover, brain activity measured by EEG during the first treatment session correlated with clinical outcomes in a coil-specific manner, and a cluster of baseline clinical symptoms was found to potentially distinguish between patients who can benefit from each Deep TMS target.CONCLUSIONThis study provides a treatment option for MDD, using the H7 coil, and initial guidance to differentiate between patients likely to respond to LPFC versus MPFC stimulation targets, which require further validation studies.TRIAL REGISTRATIONClinicalTrials.gov NCT03012724.FUNDINGBrainsWay Ltd.
Collapse
Affiliation(s)
| | - Samuel Zibman
- Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Aron Tendler
- Advanced Mental Health Care Inc., Royal Palm Beach, Florida, USA
| | | | - Uri Alyagon
- Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | | - Hadar Shalev
- Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Psychiatry, Soroka Medical Center, Beer-Sheva, Israel
| | | | - Tanya Vapnik
- Pacific Institute of Medical Research, Los Angeles, California, USA
| | | | - Igor Filipčić
- Psychiatric Hospital Sveti Ivan and School of Medicine, University of Zagreb, Zagreb, Croatia
| | - David Feifel
- Kadima Neuropsychiatry Institute, La Jolla, California, USA
| | - Ahava Stein
- A. Stein - Regulatory Affairs Consulting Ltd, Kfar Saba, Israel
| | | | - Yiftach Roth
- Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mark S George
- Medical University of South Carolina, Columbia, South Carolina, USA.,Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
28
|
Deng ZD, Robins PL, Dannhauer M, Haugen LM, Port JD, Croarkin PE. Comparison of coil placement approaches targeting dorsolateral prefrontal cortex in depressed adolescents receiving repetitive transcranial magnetic stimulation: an electric field modeling study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.06.23285526. [PMID: 36798297 PMCID: PMC9934718 DOI: 10.1101/2023.02.06.23285526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Background A promising treatment option for adolescents with treatment-resistant depression is high-frequency repetitive transcranial magnetic stimulation (rTMS) delivered to the left dorsolateral prefrontal cortex (L-DLPFC). Conventional coil placement strategies for rTMS in adults include the 5-cm rule, the Beam F3 method, and the magnetic resonance imaging (MRI) neuronavigation method. The purpose of this study was to compare the three targeting approaches to a computational E-field optimization coil placement method in depressed adolescents. Methods Ten consenting and assenting depressed adolescents (4 females, age: 15.9 ± 1.1) participated in an open-label rTMS treatment study. Participants were offered MRI-guided rTMS 5 times per week over 6-8 weeks. To compute the induced E-field, a head model was generated based on MRI images, and a figure-8 TMS coil (Neuronetics) was placed over the L-DLPFC using the four targeting approaches. Results Results show that there was a significant difference in the induced E-field at the L-DLPFC between the four targeting methods ( χ 2 = 24.7, p < 0.001). Post hoc pairwise comparisons show that there was a significant difference between any two of the targeting methods (Holm adjusted p < 0.05), with the 5-cm rule producing the weakest E-field (46.0 ± 17.4 V/m), followed by the F3 method (87.4 ± 35.4 V/m), followed by the MRI-guided (112.1 ± 14.6 V/m), and followed by the computationally optimized method (130.1 ± 18.1 V/m). The Bartlett test of homogeneity of variances show that there was a significant difference in sample variance between the groups ( K 2 = 8.0, p < 0.05), with F3 having the largest variance. In participants who completed the full course of treatment, the median E-field strength in the L-DLPFC was correlated with the change in depression severity ( r = - 0.77, p < 0.05). Conclusions The E-field models revealed inadequacies of scalp-based targeting methods compared to MRI-guidance. Computational optimization may further enhance E-field dose delivery to the treatment target.
Collapse
|
29
|
Arnsten AFT, Joyce MKP, Roberts AC. The Aversive Lens: Stress effects on the prefrontal-cingulate cortical pathways that regulate emotion. Neurosci Biobehav Rev 2023; 145:105000. [PMID: 36529312 PMCID: PMC9898199 DOI: 10.1016/j.neubiorev.2022.105000] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
ARNSTEN, A.F.T., M.K.P. Joyce and A.C. Roberts. The Aversive Lens: Stress effects on the prefrontal-cingulate cortical pathways that regulate emotion. NEUROSCI BIOBEHAV REV XXX-XXX, 2022. The symptoms of major-depressive-disorder include psychic pain and anhedonia, i.e. seeing the world through an "aversive lens". The neurobiology underlying this shift in worldview is emerging. Here these data are reviewed, focusing on how activation of subgenual cingulate (BA25) induces an "aversive lens", and how higher prefrontal cortical (PFC) areas (BA46/10/32) provide top-down regulation of BA25 but are weakened by excessive dopamine and norepinephrine release during stress exposure, and dendritic spine loss with chronic stress exposure. These changes may generate an attractor state, which maintains the brain under the control of BA25, requiring medication or neuromodulatory treatments to return connectivity to a more flexible state. In line with this hypothesis, effective anti-depressant treatments reduce the activity of BA25 and restore top-down regulation by higher circuits, e.g. as seen with SSRI medications, ketamine, deep brain stimulation of BA25, or rTMS to strengthen dorsolateral PFC. This research has special relevance in an era of chronic stress caused by the COVID19 pandemic, political unrest and threat of climate change.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Mary Kate P Joyce
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Angela C Roberts
- Department Physiology, Development and Neuroscience, and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
30
|
Alexander L, Wood CM, Roberts AC. The ventromedial prefrontal cortex and emotion regulation: lost in translation? J Physiol 2023; 601:37-50. [PMID: 35635793 PMCID: PMC10084434 DOI: 10.1113/jp282627] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/13/2022] [Indexed: 01/03/2023] Open
Abstract
Neuroimaging studies implicate the ventromedial prefrontal cortex (vmPFC) in a wide range of emotional and cognitive functions, and changes in activity within vmPFC have been linked to the aetiology and successful treatment of depression. However, this is a large, structurally heterogeneous region and the extent to which this structural heterogeneity reflects functional heterogeneity remains unclear. Causal studies in animals should help address this question but attempts to map findings from vmPFC studies in rodents onto human imaging studies highlight cross-species discrepancies between structural homology and functional analogy. Bridging this gap, recent studies in marmosets - a species of new world monkey in which the overall organization of vmPFC is more like humans than that of rodents - have revealed that over-activation of the caudal subcallosal region of vmPFC, area 25, but not neighbouring area 32, heightens reactivity to negatively valenced stimuli whilst blunting responsivity to positively valenced stimuli. These co-occurring states resemble those seen in depressed patients, which are associated with increased activity in caudal subcallosal regions. In contrast, only reward blunting but not heightening of threat reactivity is seen following over-activation of the structurally homologous region in rodents. To further advance understanding of the role of vmPFC in the aetiology and treatment of depression, future work should focus on the behaviourally specific networks by which vmPFC regions have their effects, together with characterization of cross-species similarities and differences in function.
Collapse
Affiliation(s)
- Laith Alexander
- St Thomas’ HospitalLondonUK
- Department of Psychological MedicineSchool of Academic PsychiatryInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Christian M. Wood
- Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUK
- Behavioural and Clinical Neuroscience InstituteUniversity of CambridgeCambridgeUK
| | - Angela C. Roberts
- Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUK
- Behavioural and Clinical Neuroscience InstituteUniversity of CambridgeCambridgeUK
| |
Collapse
|
31
|
Luo L, You W, DelBello MP, Gong Q, Li F. Recent advances in psychoradiology. Phys Med Biol 2022; 67. [PMID: 36279868 DOI: 10.1088/1361-6560/ac9d1e] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022]
Abstract
Abstract
Psychiatry, as a field, lacks objective markers for diagnosis, progression, treatment planning, and prognosis, in part due to difficulties studying the brain in vivo, and diagnoses are based on self-reported symptoms and observation of patient behavior and cognition. Rapid advances in brain imaging techniques allow clinical investigators to noninvasively quantify brain features at the structural, functional, and molecular levels. Psychoradiology is an emerging discipline at the intersection of psychiatry and radiology. Psychoradiology applies medical imaging technologies to psychiatry and promises not only to improve insight into structural and functional brain abnormalities in patients with psychiatric disorders but also to have potential clinical utility. We searched for representative studies related to recent advances in psychoradiology through May 1, 2022, and conducted a selective review of 165 references, including 75 research articles. We summarize the novel dynamic imaging processing methods to model brain networks and present imaging genetics studies that reveal the relationship between various neuroimaging endophenotypes and genetic markers in psychiatric disorders. Furthermore, we survey recent advances in psychoradiology, with a focus on future psychiatric diagnostic approaches with dimensional analysis and a shift from group-level to individualized analysis. Finally, we examine the application of machine learning in psychoradiology studies and the potential of a novel option for brain stimulation treatment based on psychoradiological findings in precision medicine. Here, we provide a summary of recent advances in psychoradiology research, and we hope this review will help guide the practice of psychoradiology in the scientific and clinical fields.
Collapse
|
32
|
Sheen JZ, Miron JP, Mansouri F, Dunlop K, Russell T, Zhou R, Hyde M, Fox L, Voetterl H, Daskalakis ZJ, Griffiths JD, Blumberger DM, Downar J. Cardiovascular biomarkers of response to accelerated low frequency repetitive transcranial magnetic stimulation in major depression. J Affect Disord 2022; 318:167-174. [PMID: 36055538 DOI: 10.1016/j.jad.2022.08.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/04/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) is an effective and safe treatment for major depressive disorder (MDD). rTMS is in need of a reliable biomarker of treatment response. High frequency (HF) dorsolateral prefrontal cortex (DLPFC) rTMS has been reported to induce significant changes in the cardiac activity of MDD patients. Low frequency DLPFC rTMS has many advantages over HF-DLPFC rTMS and thus this study aims to further investigate the effect of low frequency 1 Hz right hemisphere (R)-DLPFC rTMS on the cardiac activity of MDD patients, as well as the potential of using electrocardiogram (ECG) parameters as biomarkers of treatment outcome. METHODS Baseline ECG sessions were performed for 19 MDD patients. All patients then underwent 40 sessions of accelerated 1 Hz R-DLPFC rTMS one week after the baseline session. RESULTS Heart rate (HR) significantly decreased from the resting period to the first and third minute of the 1 Hz R-DLPFC rTMS period. Resting HR was found to have a significant negative association with treatment outcome. Prior to Bonferroni correction, HR during stimulation and the degree of rTMS-induced HR reduction were significantly negatively associated with treatment outcome. No significant changes were observed for the heart rate variability (HRV) parameters. LIMITATIONS Sample size (n = 19); the use of electroencephalography equipment for ECG; lack of respiration monitoring; relatively short recording duration for HRV parameters. CONCLUSION This novel study provides further preliminary evidence that ECG may be utilized as a biomarker of rTMS treatment response in MDD. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04376697.
Collapse
Affiliation(s)
- Jack Z Sheen
- Institute of Medical Science, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, Canada
| | - Jean-Philippe Miron
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada; Centre Hospitalier de l'Université de Montréal (CHUM), Centre de Recherche du CHUM (CRCHUM), Canada; Département de Psychiatrie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Farrokh Mansouri
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Katharine Dunlop
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, USA; Centre for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, USA
| | - Thomas Russell
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Ryan Zhou
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Molly Hyde
- Institute of Medical Science, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, Canada
| | - Linsay Fox
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Helena Voetterl
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Zafiris J Daskalakis
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - John D Griffiths
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada; Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Canada
| | - Daniel M Blumberger
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada
| | - Jonathan Downar
- Institute of Medical Science, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada.
| |
Collapse
|
33
|
Fang Z, Mu Q, Wu C, Jia L, Wang Z, Hu S, Xu Y, Huang M, Lu S. The impacts of anhedonia on brain functional alterations in patients with major depressive disorder: A resting-state functional magnetic resonance imaging study of regional homogeneity. J Psychiatr Res 2022; 156:84-90. [PMID: 36244202 DOI: 10.1016/j.jpsychires.2022.10.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Anhedonia, as one of the core manifestations of major depressive disorder (MDD), has an effect on prognosis of the disease. However, the neuropathology of MDD is complex and the neural basis of anhedonia remains unclear. The aim of the present study was to investigate the impacts of anhedonia on brain functional alterations in patients with MDD. METHODS A total of 62 individuals including MDD patients with anhedonia (n = 22), MDD patients without anhedonia (n = 20), and healthy controls (HCs, n = 20) were recruited. All participants underwent resting-state functional magnetic resonance imaging scanning and intrinsic brain function was explored by using regional homogeneity (ReHo) method. A two-sample t-test was performed to explore ReHo differences between MDD patients and HCs, then analysis of variance (ANOVA) was introduced to obtain brain regions with significant differences among three groups, and finally post hoc tests were calculated for inter-group comparisons. Correlations between ReHo values of each survived area and clinical characteristics in MDD patients were further analyzed. RESULTS Compared with HCs, MDD showed increased ReHo in the left superior temporal gyrus (STG) and bilateral inferior frontal gyrus (IFG), as well as decreased ReHo in the left superior frontal gyrus (SFG). Interestingly, this relationship was attenuated and no longer significant after consideration for the effect of anhedonia in MDD patients. MDD patients with anhedonia were more likely to exhibit decreased ReHo in the left SFG and left middle cingulate gyrus (MCG) when comparing to HCs. No significant difference was found between MDD patients without anhedonia and HCs, either the two groups of MDD patients. There was no significant association between ReHo values of each survived area and clinical characteristics in MDD patients. CONCLUSIONS The present results suggest that the impacts of anhedonia on brain functional alterations in MDD should be emphasized and disturbed intrinsic brain function in the frontal-limbic regions may be associated with anhedonia in MDD patients.
Collapse
Affiliation(s)
- Zhe Fang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China; Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingli Mu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China; Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Congchong Wu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China; Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lili Jia
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China; Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Clinical Psychology, The Fifth Peoples' Hospital of Lin'an District, Hangzhou, Zhejiang, China
| | - Zheng Wang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China.
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China.
| | - Shaojia Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
34
|
Liebenow B, Jones R, DiMarco E, Trattner JD, Humphries J, Sands LP, Spry KP, Johnson CK, Farkas EB, Jiang A, Kishida KT. Computational reinforcement learning, reward (and punishment), and dopamine in psychiatric disorders. Front Psychiatry 2022; 13:886297. [PMID: 36339844 PMCID: PMC9630918 DOI: 10.3389/fpsyt.2022.886297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
In the DSM-5, psychiatric diagnoses are made based on self-reported symptoms and clinician-identified signs. Though helpful in choosing potential interventions based on the available regimens, this conceptualization of psychiatric diseases can limit basic science investigation into their underlying causes. The reward prediction error (RPE) hypothesis of dopamine neuron function posits that phasic dopamine signals encode the difference between the rewards a person expects and experiences. The computational framework from which this hypothesis was derived, temporal difference reinforcement learning (TDRL), is largely focused on reward processing rather than punishment learning. Many psychiatric disorders are characterized by aberrant behaviors, expectations, reward processing, and hypothesized dopaminergic signaling, but also characterized by suffering and the inability to change one's behavior despite negative consequences. In this review, we provide an overview of the RPE theory of phasic dopamine neuron activity and review the gains that have been made through the use of computational reinforcement learning theory as a framework for understanding changes in reward processing. The relative dearth of explicit accounts of punishment learning in computational reinforcement learning theory and its application in neuroscience is highlighted as a significant gap in current computational psychiatric research. Four disorders comprise the main focus of this review: two disorders of traditionally hypothesized hyperdopaminergic function, addiction and schizophrenia, followed by two disorders of traditionally hypothesized hypodopaminergic function, depression and post-traumatic stress disorder (PTSD). Insights gained from a reward processing based reinforcement learning framework about underlying dopaminergic mechanisms and the role of punishment learning (when available) are explored in each disorder. Concluding remarks focus on the future directions required to characterize neuropsychiatric disorders with a hypothesized cause of underlying dopaminergic transmission.
Collapse
Affiliation(s)
- Brittany Liebenow
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Rachel Jones
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Emily DiMarco
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Jonathan D. Trattner
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Joseph Humphries
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - L. Paul Sands
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Kasey P. Spry
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Christina K. Johnson
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Evelyn B. Farkas
- Georgia State University Undergraduate Neuroscience Institute, Atlanta, GA, United States
| | - Angela Jiang
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Kenneth T. Kishida
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
35
|
Talishinsky A, Downar J, Vértes PE, Seidlitz J, Dunlop K, Lynch CJ, Whalley H, McIntosh A, Vila-Rodriguez F, Daskalakis ZJ, Blumberger DM, Liston C. Regional gene expression signatures are associated with sex-specific functional connectivity changes in depression. Nat Commun 2022; 13:5692. [PMID: 36171190 PMCID: PMC9519925 DOI: 10.1038/s41467-022-32617-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
The neural substrates of depression may differ in men and women, but the underlying mechanisms are incompletely understood. Here, we show that depression is associated with sex-specific patterns of abnormal functional connectivity in the default mode network and in five regions of interest with sexually dimorphic transcriptional effects. Regional differences in gene expression in two independent datasets explained the neuroanatomical distribution of abnormal connectivity. These gene sets varied by sex and were strongly enriched for genes implicated in depression, synapse function, immune signaling, and neurodevelopment. In an independent sample, we confirmed the prediction that individual differences in default mode network connectivity are explained by inferred brain expression levels for six depression-related genes, including PCDH8, a brain-specific protocadherin integral membrane protein implicated in activity-related synaptic reorganization. Together, our results delineate both shared and sex-specific changes in the organization of depression-related functional networks, with implications for biomarker development and fMRI-guided therapeutic neuromodulation.
Collapse
Affiliation(s)
- Aleksandr Talishinsky
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan Downar
- Krembil Research Institute and Centre for Mental Health, University Health Network, Toronto, ON, USA.
- Department of Psychiatry, University of Toronto, Toronto, ON, USA.
| | - Petra E Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Katharine Dunlop
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Charles J Lynch
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Heather Whalley
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrew McIntosh
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Lab and Department of Psychiatry, University of British Columbia, Vancouver, BC, USA
| | | | - Daniel M Blumberger
- Department of Psychiatry, University of Toronto, Toronto, ON, USA
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
36
|
Shirakawa Y, Yamazaki R, Kita Y, Kitamura Y, Okumura Y, Inoue Y, Matsuda Y, Kodaka F, Shigeta M, Kito S. Repetitive transcranial magnetic stimulation decreased effortful frontal activity for shifting in patients with major depressive disorder. Neuroreport 2022; 33:470-475. [PMID: 35775324 DOI: 10.1097/wnr.0000000000001806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Patients with major depressive disorder (MDD) exhibit several clinical symptoms including difficulties in flexible thinking. Flexible thinking mainly relies on a cognitive ability called shifting; however, the mechanisms underlying shifting in patients with MDD have not yet been clarified. Therefore, we conducted a preliminary intervention study to clarify the association between depression and shifting ability. We examined the hemodynamic responses in the frontal regions during the shifting task using functional near-infrared spectroscopy (fNIRS) in 21 patients with MDD who were treated using high-frequency repetitive transcranial magnetic stimulation (rTMS). Behavioral performance on the shifting task did not change between pre- and posttreatments, whereas patients who responded well to rTMS treatment showed a significant decrease in hemodynamic responses posttreatment. On the other hand, the poor responders did not show significant changes in the hemodynamic responses between pre- and posttreatments. These results suggest that the good responders were successfully remedied with rTMS treatment and did not need effortful activity in frontal regions for shifting, which made their brain activity more efficient.
Collapse
Affiliation(s)
- Yuka Shirakawa
- Department of Psychology, Faculty of Letters, Keio University
- Japan Society for the Promotion of Science
| | - Ryuichi Yamazaki
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | - Yosuke Kita
- Department of Psychology, Faculty of Letters, Keio University
- Cognitive Brain Research Unit (CBRU), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Yuzuki Kitamura
- Department of Design, Graduate School of Design, Kyushu University, Fukuoka
| | - Yasuko Okumura
- Department of Psychology, Faculty of Letters, Keio University
| | - Yuki Inoue
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuki Matsuda
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | - Fumitoshi Kodaka
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Shigeta
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinsuke Kito
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
- Department of Psychiatry, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
37
|
Ryan J, Pouliot JJ, Hajcak G, Nee DE. Manipulating Reward Sensitivity Using Reward Circuit-Targeted Transcranial Magnetic Stimulation. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:833-840. [PMID: 35272094 DOI: 10.1016/j.bpsc.2022.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/06/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The reward circuit is important for motivation and learning, and dysregulations of the reward circuit are prominent in anhedonic depression. Noninvasive interventions that can selectively target the reward circuit may hold promise for the treatment of anhedonia. METHODS We tested a novel transcranial magnetic stimulation intervention for modulating the reward circuit. A total of 35 healthy individuals participated in a crossover controlled study targeting the reward circuit or a control site with intermittent theta burst stimulation (iTBS), an excitatory form of transcranial magnetic stimulation. Individual reward circuit targets were defined based upon functional magnetic resonance imaging functional connectivity with the ventral striatum, yielding targets in the rostromedial prefrontal cortex (rmPFC). Reward circuit function was assessed at baseline using functional magnetic resonance imaging, and reward circuit modulation was assessed using an event-related potential referred to as the reward positivity, which has been shown to reliably track reward sensitivity, as well as individual differences in depression and risk for depression. RESULTS Relative to control iTBS, rmPFC iTBS enhanced the reward positivity. This effect was moderated by reward function, suggesting greater enhancements in individuals with lower reward function. This effect was also moderated by rmPFC-ventral striatum connectivity insofar as iTBS reached the rmPFC, suggesting that efficacy relies jointly on the strength of the rmPFC-ventral striatum pathway and ability of transcranial magnetic stimulation to target the rmPFC. CONCLUSIONS These data suggest that the reward circuit can be modulated by rmPFC iTBS, and amenability to such modulations is related to measures of reward circuit function. This provides the first step toward a novel noninvasive treatment of disorders of the reward circuit.
Collapse
Affiliation(s)
- Jon Ryan
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida; Department of Psychology, Florida State University, Tallahassee, Florida
| | - Jourdan J Pouliot
- Department of Psychology, University of Florida, Gainesville, Florida
| | - Greg Hajcak
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida; Department of Psychology, Florida State University, Tallahassee, Florida
| | - Derek Evan Nee
- Department of Psychology, Florida State University, Tallahassee, Florida.
| |
Collapse
|
38
|
Affiliation(s)
- Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh
| |
Collapse
|
39
|
Reduced nucleus accumbens functional connectivity in reward network and default mode network in patients with recurrent major depressive disorder. Transl Psychiatry 2022; 12:236. [PMID: 35668086 PMCID: PMC9170720 DOI: 10.1038/s41398-022-01995-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
The nucleus accumbens (NAc) is considered a hub of reward processing and a growing body of evidence has suggested its crucial role in the pathophysiology of major depressive disorder (MDD). However, inconsistent results have been reported by studies on reward network-focused resting-state functional MRI (rs-fMRI). In this study, we examined functional alterations of the NAc-based reward circuits in patients with MDD via meta- and mega-analysis. First, we performed a coordinated-based meta-analysis with a new SDM-PSI method for all up-to-date rs-fMRI studies that focused on the reward circuits of patients with MDD. Then, we tested the meta-analysis results in the REST-meta-MDD database which provided anonymous rs-fMRI data from 186 recurrent MDDs and 465 healthy controls. Decreased functional connectivity (FC) within the reward system in patients with recurrent MDD was the most robust finding in this study. We also found disrupted NAc FCs in the DMN in patients with recurrent MDD compared with healthy controls. Specifically, the combination of disrupted NAc FCs within the reward network could discriminate patients with recurrent MDD from healthy controls with an optimal accuracy of 74.7%. This study confirmed the critical role of decreased FC in the reward network in the neuropathology of MDD. Disrupted inter-network connectivity between the reward network and DMN may also have contributed to the neural mechanisms of MDD. These abnormalities have potential to serve as brain-based biomarkers for individual diagnosis to differentiate patients with recurrent MDD from healthy controls.
Collapse
|
40
|
Caparelli EC, Schleyer B, Zhai T, Gu H, Abulseoud OA, Yang Y. High-Frequency Transcranial Magnetic Stimulation Combined With Functional Magnetic Resonance Imaging Reveals Distinct Activation Patterns Associated With Different Dorsolateral Prefrontal Cortex Stimulation Sites. Neuromodulation 2022; 25:633-643. [PMID: 35418339 DOI: 10.1016/j.neurom.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Transcranial magnetic stimulation (TMS) has been extensively used for the treatment of depression, obsessive-compulsive disorder, and certain neurologic disorders. Despite having promising treatment efficacy, the fundamental neural mechanisms of TMS remain understudied. MATERIALS AND METHODS In this study, 15 healthy adult participants received simultaneous TMS and functional magnetic resonance imaging to map the modulatory effect of TMS when it was applied over three different sites in the dorsolateral prefrontal cortex. Independent component analysis (ICA) was used to identify the networks affected by TMS when applied over the different sites. The standard general linear model (GLM) analysis was used for comparison. RESULTS ICA showed that TMS affected the stimulation sites as well as remote brain areas, some areas/networks common across all TMS sites, and other areas/networks specific to each TMS site. In particular, TMS site and laterality differences were observed at the left executive control network. In addition, laterality differences also were observed at the dorsal anterior cingulate cortex and dorsolateral/dorsomedial prefrontal cortex. In contrast with the ICA findings, the GLM-based results mainly showed activation of auditory cortices regardless of the TMS sites. CONCLUSIONS Our findings support the notion that TMS could act through a top-down mechanism, indirectly modulating deep subcortical nodes by directly stimulating cortical regions. CLINICAL TRIAL REGISTRATION The Clinicaltrials.gov registration number for the study is NCT03394066.
Collapse
Affiliation(s)
- Elisabeth C Caparelli
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA.
| | - Brooke Schleyer
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; Department of Psychology, College of Liberal Arts, Temple University, Philadelphia, PA, USA
| | - Tianye Zhai
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Hong Gu
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Osama A Abulseoud
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; Department of Psychiatry and Psychology, Mayo Clinic, Phoenix, AZ, USA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
41
|
Siddiqi SH, Kording KP, Parvizi J, Fox MD. Causal mapping of human brain function. Nat Rev Neurosci 2022; 23:361-375. [PMID: 35444305 PMCID: PMC9387758 DOI: 10.1038/s41583-022-00583-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 12/11/2022]
Abstract
Mapping human brain function is a long-standing goal of neuroscience that promises to inform the development of new treatments for brain disorders. Early maps of human brain function were based on locations of brain damage or brain stimulation that caused a functional change. Over time, this approach was largely replaced by technologies such as functional neuroimaging, which identify brain regions in which activity is correlated with behaviours or symptoms. Despite their advantages, these technologies reveal correlations, not causation. This creates challenges for interpreting the data generated from these tools and using them to develop treatments for brain disorders. A return to causal mapping of human brain function based on brain lesions and brain stimulation is underway. New approaches can combine these causal sources of information with modern neuroimaging and electrophysiology techniques to gain new insights into the functions of specific brain areas. In this Review, we provide a definition of causality for translational research, propose a continuum along which to assess the relative strength of causal information from human brain mapping studies and discuss recent advances in causal brain mapping and their relevance for developing treatments.
Collapse
Affiliation(s)
- Shan H Siddiqi
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Konrad P Kording
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Josef Parvizi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Mehta S, Downar J, Mulsant BH, Voineskos D, Daskalakis ZJ, Weissman CR, Vila-Rodriguez F, Blumberger DM. Effect of high frequency versus theta-burst repetitive transcranial magnetic stimulation on suicidality in patients with treatment-resistant depression. Acta Psychiatr Scand 2022; 145:529-538. [PMID: 35188677 PMCID: PMC9007836 DOI: 10.1111/acps.13412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/08/2022] [Accepted: 02/01/2022] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate the effect of 10 Hz repetitive transcranial magnetic stimulation (rTMS) and intermittent theta-burst stimulation (iTBS) on suicidality in patients with treatment-resistant depression (TRD). METHODS We used data from a three-site randomized clinical trial comparing 10 Hz rTMS and iTBS applied to the left dorsolateral prefrontal cortex (DLPFC) in patients with TRD. We compared the effect of 10Hz rTMS and iTBS on suicidality as measured by the suicide item of the Hamilton Depression Rating Scale 17-item (HDRS-17). RESULTS Suicidality remitted in 71 (43.7%) participants randomized to 10Hz stimulation and 91 (49.1%) participants randomized to iTBS, without a significant difference between the proportions in the two groups (Χ2 = 0.674, df = 1, p = 0.4117). There was a significant correlation between change in suicidality and change in depression severity for both modalities (10 Hz, Pearson's r = 0.564; iTBS, Pearson's r = 0.502), with a significantly larger decrease in depression severity for those in whom suicidality remitted compared to those in whom it did not (t = 10.912, df = 276.8, p < 0.001). CONCLUSIONS Both 10 Hz and iTBS rTMS were effective in reducing suicidality in TRD. Future trials of iTBS for depression should include discrete measures of suicidality.
Collapse
Affiliation(s)
- Shobha Mehta
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M5J 1H4, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada
| | - Jonathan Downar
- Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada,Centre for Mental Health and Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Benoit H. Mulsant
- Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Daphne Voineskos
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M5J 1H4, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Zafiris J. Daskalakis
- Department of Psychiatry, University of California San Diego, La Jolla, California, 92093-0021, United States
| | - Cory R. Weissman
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M5J 1H4, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada
| | - Fidel Vila-Rodriguez
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada,Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Vancouver, British Columbia, V6T 2A1, Canada
| | - Daniel M. Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M5J 1H4, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| |
Collapse
|
43
|
Oliver LD, Hawco C, Viviano JD, Voineskos AN. From the Group to the Individual in Schizophrenia Spectrum Disorders: Biomarkers of Social Cognitive Impairments and Therapeutic Translation. Biol Psychiatry 2022; 91:699-708. [PMID: 34799097 DOI: 10.1016/j.biopsych.2021.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/11/2021] [Accepted: 09/11/2021] [Indexed: 12/23/2022]
Abstract
People with schizophrenia spectrum disorders (SSDs) often experience persistent social cognitive impairments, associated with poor functional outcome. There are currently no approved treatment options for these debilitating symptoms, highlighting the need for novel therapeutic strategies. Work to date has elucidated differential social processes and underlying neural circuitry affected in SSDs, which may be amenable to modulation using neurostimulation. Further, advances in functional connectivity mapping and electric field modeling may be used to identify individualized treatment targets to maximize the impact of brain stimulation on social cognitive networks. Here, we review literature supporting a roadmap for translating functional connectivity biomarker discovery to individualized treatment development for social cognitive impairments in SSDs. First, we outline the relevance of social cognitive impairments in SSDs. We review machine learning approaches for dimensional brain-behavior biomarker discovery, emphasizing the importance of individual differences. We synthesize research showing that brain stimulation techniques, such as repetitive transcranial magnetic stimulation, can be used to target relevant networks. Further, functional connectivity-based individualized targeting may enhance treatment response. We then outline recent approaches to account for neuroanatomical variability and optimize coil positioning to individually maximize target engagement. Overall, the synthesized literature provides support for the utility and feasibility of this translational approach to precision treatment. The proposed roadmap to translate biomarkers of social cognitive impairments to individualized treatment is currently under evaluation in precision-guided trials. Such a translational approach may also be applicable across conditions and generalizable for the development of individualized neurostimulation targeting other behavioral deficits.
Collapse
Affiliation(s)
- Lindsay D Oliver
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Joseph D Viviano
- Mila-Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
44
|
Starosta M, Cichoń N, Saluk-Bijak J, Miller E. Benefits from Repetitive Transcranial Magnetic Stimulation in Post-Stroke Rehabilitation. J Clin Med 2022; 11:jcm11082149. [PMID: 35456245 PMCID: PMC9030945 DOI: 10.3390/jcm11082149] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Stroke is an acute neurovascular central nervous system (CNS) injury and one of the main causes of long-term disability and mortality. Post-stroke rehabilitation as part of recovery is focused on relearning lost skills and regaining independence as much as possible. Many novel strategies in neurorehabilitation have been introduced. This review focuses on current evidence of the effectiveness of repetitive transcranial magnetic stimulation (rTMS), a noninvasive brain stimulation (NIBS), in post-stroke rehabilitation. Moreover, we present the effects of specific interventions, such as low-frequency or high-frequency rTMS therapy, on motor function, cognitive function, depression, and aphasia in post-stroke patients. Collected data suggest that high-frequency stimulation (5 Hz and beyond) produces an increase in cortical excitability, whereas low-frequency stimulation (≤1 Hz) decreases cortical excitability. Accumulated data suggest that rTMS is safe and can be used to modulate cortical excitability, which may improve overall performance. Side effects such as tingling sensation on the skin of the skull or headache are possible. Serious side effects such as epileptic seizures can be avoided by adhering to international safety guidelines. We reviewed clinical studies that present promising results in general recovery and stimulating neuroplasticity. This article is an overview of the current rTMS state of knowledge related to benefits in stroke, as well as its cellular and molecular mechanisms. In the stroke rehabilitation literature, there is a key methodological problem of creating double-blinding studies, which are very often impossible to conduct.
Collapse
Affiliation(s)
- Michał Starosta
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland;
- Correspondence:
| | - Natalia Cichoń
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Elżbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland;
| |
Collapse
|
45
|
Large-scale structural network change correlates with clinical response to rTMS in depression. Neuropsychopharmacology 2022; 47:1096-1105. [PMID: 35110687 PMCID: PMC8938539 DOI: 10.1038/s41386-021-01256-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/06/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Abstract
Response to repetitive transcranial magnetic stimulation (rTMS) among individuals with major depressive disorder (MDD) varies widely. The neural mechanisms underlying rTMS are thought to involve changes in large-scale networks. Whether structural network integrity and plasticity are associated with response to rTMS therapy is unclear. Structural MRIs were acquired from a series of 70 adult healthy controls and 268 persons with MDD who participated in two arms of a large randomized, non-inferiority trial, THREE-D, comparing intermittent theta-burst stimulation to high-frequency rTMS of the left dorsolateral prefrontal cortex (DLPFC). Patients were grouped according to percentage improvement on the 17-item Hamilton Depression Rating Score at treatment completion. For the entire sample and then for each treatment arm, multivariate analyses were used to characterize structural covariance networks (SCN) from cortical gray matter thickness, volume, and surface area maps from T1-weighted MRI. The association between SCNs and clinical improvement was assessed. For both study arms, cortical thickness and volume SCNs distinguished healthy controls from MDD (p = 0.005); however, post-hoc analyses did not reveal a significant association between pre-treatment SCN expression and clinical improvement. We also isolated an anticorrelated SCN between the left DLPFC rTMS target site and the subgenual anterior cingulate cortex across cortical measures (p = 0.0004). Post-treatment change in cortical thickness SCN architecture was associated with clinical improvement in treatment responders (p = 0.001), but not in non-responders. Structural network changes may underpin clinical response to rTMS, and SCNs are useful for understanding the pathophysiology of depression and neural mechanisms of plasticity and response to circuit-based treatments.
Collapse
|
46
|
Yang C, Hu Y, Talishinsky AD, Potter CT, Calva CB, Ramsey LA, Kesner AJ, Don RF, Junn S, Tan A, Pierce AF, Nicolas C, Arima Y, Lee SC, Su C, Coudriet JM, Mejia-Aponte CA, Wang DV, Lu H, Yang Y, Ikemoto S. Medial prefrontal cortex and anteromedial thalamus interaction regulates goal-directed behavior and dopaminergic neuron activity. Nat Commun 2022; 13:1386. [PMID: 35296648 PMCID: PMC8927595 DOI: 10.1038/s41467-022-28892-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 02/10/2022] [Indexed: 12/27/2022] Open
Abstract
The prefrontal cortex is involved in goal-directed behavior. Here, we investigate circuits of the PFC regulating motivation, reinforcement, and its relationship to dopamine neuron activity. Stimulation of medial PFC (mPFC) neurons in mice activated many downstream regions, as shown by fMRI. Axonal terminal stimulation of mPFC neurons in downstream regions, including the anteromedial thalamic nucleus (AM), reinforced behavior and activated midbrain dopaminergic neurons. The stimulation of AM neurons projecting to the mPFC also reinforced behavior and activated dopamine neurons, and mPFC and AM showed a positive-feedback loop organization. We also found using fMRI in human participants watching reinforcing video clips that there is reciprocal excitatory functional connectivity, as well as co-activation of the two regions. Our results suggest that this cortico-thalamic loop regulates motivation, reinforcement, and dopaminergic neuron activity.
Collapse
Affiliation(s)
- Chen Yang
- Neurocircuitry of Motivation Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No.1, Xinsi Road, 710038, Xi'an, Shaanxi, P. R. China
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, 310028, Hangzhou, P. R. China
- MR Imaging and Spectroscopy Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Aleksandr D Talishinsky
- Neurocircuitry of Motivation Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Christian T Potter
- Neurocircuitry of Motivation Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Coleman B Calva
- Neurocircuitry of Motivation Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Leslie A Ramsey
- Ex Vivo Electrophysiology Core, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Andrew J Kesner
- Neurocircuitry of Motivation Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Reuben F Don
- Neurocircuitry of Motivation Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Sue Junn
- Neurocircuitry of Motivation Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Aaron Tan
- Neurocircuitry of Motivation Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Anne F Pierce
- Neurocircuitry of Motivation Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Céline Nicolas
- Neurocircuitry of Motivation Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yosuke Arima
- Neurocircuitry of Motivation Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Seung-Chan Lee
- Neurocircuitry of Motivation Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Conghui Su
- Department of Psychology and Behavioral Sciences, Zhejiang University, 310028, Hangzhou, P. R. China
| | - Jensine M Coudriet
- Neurocircuitry of Motivation Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Carlos A Mejia-Aponte
- Histology Core, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Dong V Wang
- Neurocircuitry of Motivation Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Hanbing Lu
- MR Imaging and Spectroscopy Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yihong Yang
- MR Imaging and Spectroscopy Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Satoshi Ikemoto
- Neurocircuitry of Motivation Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
47
|
Zou L, Wu X, Tao S, Yang Y, Zhang Q, Hong X, Xie Y, Li T, Zheng S, Tao F. Functional connectivity between the parahippocampal gyrus and the middle temporal gyrus moderates the relationship between problematic mobile phone use and depressive symptoms: Evidence from a longitudinal study. J Behav Addict 2022; 11:40-48. [PMID: 35049522 PMCID: PMC9109627 DOI: 10.1556/2006.2021.00090] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/11/2021] [Accepted: 12/28/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND AND AIM Problematic mobile phone use (PMPU) is prevalent and increases the risk for a variety of health problems. However, few studies have explored the neural mechanisms that might render adolescents more or less vulnerable. Here, we aimed to identify whether PMPU is associated with depressive symptoms and whether this relationship is moderated by intrinsic functional connectivity (iFC) which is associated with PMPU. METHODS In this longitudinal study, we included 238 students (mean age = 19.05, SD = 0.81) that came from a university in Hefei, China. They all finished MRI scans at baseline and completed questionnaires both at baseline and 1 year later. A self-rating questionnaire for adolescent problematic mobile phone use and depression anxiety stress scale-21 were used to assess PMPU and depressive symptoms. We first assessed the relationship between PMPU and depressive symptoms using an autoregressive cross-lagged model. Then, we detected the brain regions that were associated with PMPU. Moreover, the neuroimaging results were extracted to explore whether the iFC of these brain regions moderated the relationship between PMPU and depression. RESULTS Consistent with our hypotheses, PMPU was positively associated with depressive symptoms, and the relationship between PMPU and depressive symptoms was moderated by iFC of the left parahippocampal gyrus-right middle temporal gyrus both at baseline and after 1 year (β = 0.554, P = 0.003; β = 0.463, P = 0.016, respectively). CONCLUSIONS These results advance the understanding of PMPU and suggest that iFC of the left parahippocampal gyrus-right middle temporal gyrus may be a neurobiological contributor to its relationship with depressive symptoms.
Collapse
Affiliation(s)
- Liwei Zou
- Department of Radiology, the Second Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China,MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China,Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China,MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China,Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shuman Tao
- Department of Nephrology, the Second Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China
| | - Yajuan Yang
- School of Nursing, Anhui Medical University, No 15 Feicui Road, Hefei, 230601, Anhui, China
| | - Qingjun Zhang
- Ping An Healthcare Diagnostics Center, Hefei, 230000, Anhui, China
| | - Xuedong Hong
- Ping An Healthcare Diagnostics Center, Hefei, 230000, Anhui, China
| | - Yang Xie
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China,MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China,Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tingting Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China,MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China,Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Suisheng Zheng
- Ping An Healthcare Diagnostics Center, Hefei, 230000, Anhui, China,Corresponding authors. E-mail: ,
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China,MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China,Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China,Corresponding authors. E-mail: ,
| |
Collapse
|
48
|
Regenold WT, Deng ZD, Lisanby SH. Noninvasive neuromodulation of the prefrontal cortex in mental health disorders. Neuropsychopharmacology 2022; 47:361-372. [PMID: 34272471 PMCID: PMC8617166 DOI: 10.1038/s41386-021-01094-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
More than any other brain region, the prefrontal cortex (PFC) gives rise to the singularity of human experience. It is therefore frequently implicated in the most distinctly human of all disorders, those of mental health. Noninvasive neuromodulation, including electroconvulsive therapy (ECT), repetitive transcranial magnetic stimulation (rTMS), and transcranial direct current stimulation (tDCS) among others, can-unlike pharmacotherapy-directly target the PFC and its neural circuits. Direct targeting enables significantly greater on-target therapeutic effects compared with off-target adverse effects. In contrast to invasive neuromodulation approaches, such as deep-brain stimulation (DBS), noninvasive neuromodulation can reversibly modulate neural activity from outside the scalp. This combination of direct targeting and reversibility enables noninvasive neuromodulation to iteratively change activity in the PFC and its neural circuits to reveal causal mechanisms of both disease processes and healthy function. When coupled with neuronavigation and neurophysiological readouts, noninvasive neuromodulation holds promise for personalizing PFC neuromodulation to relieve symptoms of mental health disorders by optimizing the function of the PFC and its neural circuits. ClinicalTrials.gov Identifier: NCT03191058.
Collapse
Affiliation(s)
- William T. Regenold
- grid.416868.50000 0004 0464 0574Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD USA
| | - Zhi-De Deng
- grid.416868.50000 0004 0464 0574Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD USA
| | - Sarah H. Lisanby
- grid.416868.50000 0004 0464 0574Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD USA
| |
Collapse
|
49
|
Zhou B, Chen Y, Zheng R, Jiang Y, Li S, Wei Y, Zhang M, Gao X, Wen B, Han S, Cheng J. Alterations of Static and Dynamic Functional Connectivity of the Nucleus Accumbens in Patients With Major Depressive Disorder. Front Psychiatry 2022; 13:877417. [PMID: 35615457 PMCID: PMC9124865 DOI: 10.3389/fpsyt.2022.877417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is associated with dysfunction of the reward system. As an important node in the reward system, the resting-state functional connectivity of the nucleus accumbens (NAc) is related to the etiology of MDD. However, an increasing number of recent studies propose that brain activity is dynamic over time, no study to date has examined whether the NAc dynamic functional connectivity (DFC) is changed in patients with MDD. Moreover, few studies have examined the impact of the clinical characteristics of patients with MDD. METHODS A total of 220 MDD patients and 159 healthy controls (HCs), group-matched for age, sex, and education level, underwent resting-state functional magnetic resonance imagining (rs-fMRI) scans. Seed-based resting-state functional connectivity (RSFC) and DFC of the NAc were conducted. Two sample t-tests were performed to alter RSFC/DFC of NAc. In addition, we examined the association between altered RSFC/DFC and depressive severity using Pearson correlation. Finally, we divided patients with MDD into different subgroups according to clinical characteristics and tested whether there were differences between the subgroups. RESULTS Compared with the HCs, MDD patients show reduced the NAc-based RSFC with the dorsolateral prefrontal cortex (DLPFC), hippocampus, middle temporal gyrus (MTG), inferior temporal gyrus (ITG), precuneus, and insula, and patients with MDD show reduced the NAc-based DFC with the DLPFC, ventromedial prefrontal cortex (VMPFC), ventrolateral prefrontal cortex (VLPFC), MTG, ITG, and insula. MDD severity was associated with RSFC between the NAc and precentral gyrus (r = 0.288, p = 0.002, uncorrected) and insula (r = 0.272, p = 0.003, uncorrected). CONCLUSION This study demonstrates abnormal RSFC and DFC between the NAc and distributed cerebral regions in MDD patients, characterized by decreased RSFC and DFC of the NAc connecting with the reward, executive, default-mode, and salience network. Our results expand previous descriptions of the NAc RSFC abnormalities in MDD, and the altered RSFC/DFC may reflect the disrupted function of the NAc.
Collapse
Affiliation(s)
- Bingqian Zhou
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Jiang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuying Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - MengZhe Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - XinYu Gao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
50
|
Abstract
Anhedonia is a hallmark feature of depression and is highly prevalent among individuals with mood disorders. The history and neurobiology of anhedonia has been most extensively studied in the context of unipolar Major Depressive Disorder (MDD), with converging lines of evidence indicating that marked anhedonia heralds a more chronic and treatment-refractory illness course. Furthermore, findings from neuroimaging studies suggest that anhedonia in MDD is associated with aberrant reward-related activation in key brain reward regions, particularly blunted reward anticipation-related activation in the ventral striatum. However, the ongoing clinical challenge of treating anhedonia in the context of Bipolar Disorder (BD) also highlights important gaps in our understanding of anhedonia's prevalence, severity, and pathophysiology along the entire mood disorder spectrum. In addition, although current theoretical models posit a key role for reward hyposensitivity in BD depression, unlike studies in MDD, studies in BD do not clearly show evidence for reduced reward-related activation in striatal or other brain regions. Although further research is needed, the evidence to date hints at a divergent pathophysiology for anhedonia in unipolar and bipolar mood disorders, which, if better understood, could lead to significant improvements in the diagnosis and treatment of MDD and BD.
Collapse
Affiliation(s)
- Alexis E Whitton
- Black Dog Institute, University of New South Wales, Sydney, NSW, Australia
| | - Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital & Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|