1
|
Murphy PR, Krkovic K, Monov G, Kudlek N, Lincoln T, Donner TH. Individual differences in belief updating and phasic arousal are related to psychosis proneness. COMMUNICATIONS PSYCHOLOGY 2024; 2:88. [PMID: 39313542 PMCID: PMC11420346 DOI: 10.1038/s44271-024-00140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Many decisions entail the updating of beliefs about the state of the environment by accumulating noisy sensory evidence. This form of probabilistic reasoning may go awry in psychosis. Computational theory shows that optimal belief updating in environments subject to hidden changes in their state requires a dynamic modulation of the evidence accumulation process. Recent empirical findings implicate transient responses of pupil-linked central arousal systems to individual evidence samples in this modulation. Here, we analyzed behavior and pupil responses during evidence accumulation in a changing environment in a community sample of human participants. We also assessed their subclinical psychotic experiences (psychosis proneness). Participants most prone to psychosis showed overall less flexible belief updating profiles, with diminished behavioral impact of evidence samples occurring late during decision formation. These same individuals also exhibited overall smaller pupil responses and less reliable pupil encoding of computational variables governing the dynamic belief updating. Our findings provide insights into the cognitive and physiological bases of psychosis proneness and open paths to unraveling the pathophysiology of psychotic disorders.
Collapse
Affiliation(s)
- Peter R Murphy
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Psychology, Maynooth University, Co. Kildare, Ireland.
| | - Katarina Krkovic
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Hamburg, Hamburg, Germany
| | - Gina Monov
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Kudlek
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tania Lincoln
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Hamburg, Hamburg, Germany
| | - Tobias H Donner
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Bernstein Center for Computational Neuroscience, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
2
|
Miyata J, Sasamoto A, Ezaki T, Isobe M, Kochiyama T, Masuda N, Mori Y, Sakai Y, Sawamoto N, Tei S, Ubukata S, Aso T, Murai T, Takahashi H. Associations of conservatism and jumping to conclusions biases with aberrant salience and default mode network. Psychiatry Clin Neurosci 2024; 78:322-331. [PMID: 38414202 PMCID: PMC11488637 DOI: 10.1111/pcn.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 12/15/2023] [Accepted: 01/21/2024] [Indexed: 02/29/2024]
Abstract
AIM While conservatism bias refers to the human need for more evidence for decision-making than rational thinking expects, the jumping to conclusions (JTC) bias refers to the need for less evidence among individuals with schizophrenia/delusion compared to healthy people. Although the hippocampus-midbrain-striatal aberrant salience system and the salience, default mode (DMN), and frontoparietal networks ("triple networks") are implicated in delusion/schizophrenia pathophysiology, the associations between conservatism/JTC and these systems/networks are unclear. METHODS Thirty-seven patients with schizophrenia and 33 healthy controls performed the beads task, with large and small numbers of bead draws to decision (DTD) indicating conservatism and JTC, respectively. We performed independent component analysis (ICA) of resting functional magnetic resonance imaging (fMRI) data. For systems/networks above, we investigated interactions between diagnosis and DTD, and main effects of DTD. We similarly applied ICA to structural and diffusion MRI to explore the associations between DTD and gray/white matter. RESULTS We identified a significant main effect of DTD with functional connectivity between the striatum and DMN, which was negatively correlated with delusion severity in patients, indicating that the greater the anti-correlation between these networks, the stronger the JTC and delusion. We further observed the main effects of DTD on a gray matter network resembling the DMN, and a white matter network connecting the functional and gray matter networks (all P < 0.05, family-wise error [FWE] correction). Function and gray/white matter showed no significant interactions. CONCLUSION Our results support the novel association of conservatism and JTC biases with aberrant salience and default brain mode.
Collapse
Grants
- Kyoto University
- JP18dm0307008 Japan Agency for Medical Research and Development
- JP21uk1024002 Japan Agency for Medical Research and Development
- JPMJMS2021 Japan Science and Technology Agency
- Novartis Pharma Research Grant
- SENSHIN Medical Research Foundation
- JP17H04248 Japan Society for the Promotion of Science and Ministry of Education, Culture, Sports, Science and Technology KAKENHI
- JP18H05130 Japan Society for the Promotion of Science and Ministry of Education, Culture, Sports, Science and Technology KAKENHI
- JP19H03583 Japan Society for the Promotion of Science and Ministry of Education, Culture, Sports, Science and Technology KAKENHI
- JP20H05064 Japan Society for the Promotion of Science and Ministry of Education, Culture, Sports, Science and Technology KAKENHI
- JP20K21567 Japan Society for the Promotion of Science and Ministry of Education, Culture, Sports, Science and Technology KAKENHI
- JP21K07544 Japan Society for the Promotion of Science and Ministry of Education, Culture, Sports, Science and Technology KAKENHI
- JP26461767 Japan Society for the Promotion of Science and Ministry of Education, Culture, Sports, Science and Technology KAKENHI
- Takeda Science Foundation
- Uehara Memorial Foundation
- Kyoto University
- Japan Agency for Medical Research and Development
- Japan Science and Technology Agency
- SENSHIN Medical Research Foundation
- Takeda Science Foundation
- Uehara Memorial Foundation
Collapse
Affiliation(s)
- Jun Miyata
- Department of Psychiatry, Graduate School of MedicineKyoto UniversityKyotoJapan
- Department of PsychiatryAichi Medical UniversityAichiJapan
| | - Akihiko Sasamoto
- Department of Psychiatry, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Takahiro Ezaki
- PRESTO, Japan Science and Technology AgencySaitamaJapan
- Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Masanori Isobe
- Department of Psychiatry, Graduate School of MedicineKyoto UniversityKyotoJapan
| | | | - Naoki Masuda
- Department of MathematicsState University of New York at BuffaloBuffaloNew YorkUSA
- Computational and Data‐Enabled Science and Engineering ProgramState University of New York at BuffaloBuffaloNew YorkUSA
| | - Yasuo Mori
- Department of Psychiatry, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yuki Sakai
- ATR Brain Information Communication Research Laboratory GroupKyotoJapan
| | - Nobukatsu Sawamoto
- Department of Human Health Sciences, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Shisei Tei
- Department of Psychiatry, Graduate School of MedicineKyoto UniversityKyotoJapan
- School of Human and Social SciencesTokyo International UniversityTokyoJapan
| | - Shiho Ubukata
- Department of Psychiatry, Graduate School of MedicineKyoto UniversityKyotoJapan
- Medical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Toshihiko Aso
- Laboratory for Brain Connectomics ImagingRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hidehiko Takahashi
- Department of Psychiatry, Graduate School of MedicineKyoto UniversityKyotoJapan
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
3
|
Gawęda Ł, Kowalski J, Aleksandrowicz A, Bagrowska P, Dąbkowska M, Pionke-Ubych R. A systematic review of performance-based assessment studies on cognitive biases in schizophrenia spectrum psychoses and clinical high-risk states: A summary of 40 years of research. Clin Psychol Rev 2024; 108:102391. [PMID: 38301343 DOI: 10.1016/j.cpr.2024.102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
Cognitive models of psychosis have stimulated empirical studies on cognitive biases involved in schizophrenia spectrum psychoses and their symptoms. This systematic review aimed to summarize the studies on the role of cognitive biases as assessed in different performance-based tasks in schizophrenia spectrum psychoses and clinical high-risk states. We focused on five cognitive biases linked to psychosis, i.e., aberrant salience, attentional biases, source monitoring biases, jumping to conclusions, and bias against disconfirmatory evidence. We identified N = 324 studies published in N = 308 articles fulfilling inclusion criteria. Most studies have been cross-sectional and confirmed that the schizophrenia spectrum psychoses are related to exaggerated cognitive biases compared to healthy controls. On the contrary, less evidence suggests a higher tendency for cognitive biases in the UHR sample. The only exceptions were source monitoring and jumping to conclusions, which were confirmed to be exaggerated in both clinical groups. Hallucinations and delusions were the most frequent symptoms studied in the context of cognitive biases. Based on the findings, we presented a hypothetical model on the role of interactions between cognitive biases or additive effects of biases in shaping the risk of psychosis. Future research is warranted for further development of cognitive models for psychosis.
Collapse
Affiliation(s)
- Łukasz Gawęda
- Experimental Psychopathology Lab, Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland.
| | - Joachim Kowalski
- Experimental Psychopathology Lab, Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| | - Adrianna Aleksandrowicz
- Experimental Psychopathology Lab, Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| | - Paulina Bagrowska
- Experimental Psychopathology Lab, Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Dąbkowska
- Experimental Psychopathology Lab, Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| | - Renata Pionke-Ubych
- Experimental Psychopathology Lab, Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Cai XL, Pu CC, Zhou SZ, Wang Y, Huang J, Lui SSY, Møller A, Cheung EFC, Madsen KH, Xue R, Yu X, Chan RCK. Anterior cingulate glutamate levels associate with functional activation and connectivity during sensory integration in schizophrenia: a multimodal 1H-MRS and fMRI study. Psychol Med 2023; 53:4904-4914. [PMID: 35791929 DOI: 10.1017/s0033291722001817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Glutamatergic dysfunction has been implicated in sensory integration deficits in schizophrenia, yet how glutamatergic function contributes to behavioural impairments and neural activities of sensory integration remains unknown. METHODS Fifty schizophrenia patients and 43 healthy controls completed behavioural assessments for sensory integration and underwent magnetic resonance spectroscopy (MRS) for measuring the anterior cingulate cortex (ACC) glutamate levels. The correlation between glutamate levels and behavioural sensory integration deficits was examined in each group. A subsample of 20 pairs of patients and controls further completed an audiovisual sensory integration functional magnetic resonance imaging (fMRI) task. Blood Oxygenation Level Dependent (BOLD) activation and task-dependent functional connectivity (FC) were assessed based on fMRI data. Full factorial analyses were performed to examine the Group-by-Glutamate Level interaction effects on fMRI measurements (group differences in correlation between glutamate levels and fMRI measurements) and the correlation between glutamate levels and fMRI measurements within each group. RESULTS We found that schizophrenia patients exhibited impaired sensory integration which was positively correlated with ACC glutamate levels. Multimodal analyses showed significantly Group-by-Glutamate Level interaction effects on BOLD activation as well as task-dependent FC in a 'cortico-subcortical-cortical' network (including medial frontal gyrus, precuneus, ACC, middle cingulate gyrus, thalamus and caudate) with positive correlations in patients and negative in controls. CONCLUSIONS Our findings indicate that ACC glutamate influences neural activities in a large-scale network during sensory integration, but the effects have opposite directionality between schizophrenia patients and healthy people. This implicates the crucial role of glutamatergic system in sensory integration processing in schizophrenia.
Collapse
Affiliation(s)
- Xin-Lu Cai
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
| | - Cheng-Cheng Pu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Shu-Zhe Zhou
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jia Huang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Simon S Y Lui
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Arne Møller
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
- Centre of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Eric F C Cheung
- Castle Peak Hospital, Hong Kong Special Administrative Region, China
| | - Kristoffer H Madsen
- Sino-Danish Centre for Education and Research, Beijing, China
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Amager and Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rong Xue
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Department of Diagnostic Radiology, the University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
5
|
McEwan F, Glazier JD, Hager R. The impact of maternal immune activation on embryonic brain development. Front Neurosci 2023; 17:1146710. [PMID: 36950133 PMCID: PMC10025352 DOI: 10.3389/fnins.2023.1146710] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The adult brain is a complex structure with distinct functional sub-regions, which are generated from an initial pool of neural epithelial cells within the embryo. This transition requires a number of highly coordinated processes, including neurogenesis, i.e., the generation of neurons, and neuronal migration. These take place during a critical period of development, during which the brain is particularly susceptible to environmental insults. Neurogenesis defects have been associated with the pathogenesis of neurodevelopmental disorders (NDDs), such as autism spectrum disorder and schizophrenia. However, these disorders have highly complex multifactorial etiologies, and hence the underlying mechanisms leading to aberrant neurogenesis continue to be the focus of a significant research effort and have yet to be established. Evidence from epidemiological studies suggests that exposure to maternal infection in utero is a critical risk factor for NDDs. To establish the biological mechanisms linking maternal immune activation (MIA) and altered neurodevelopment, animal models have been developed that allow experimental manipulation and investigation of different developmental stages of brain development following exposure to MIA. Here, we review the changes to embryonic brain development focusing on neurogenesis, neuronal migration and cortical lamination, following MIA. Across published studies, we found evidence for an acute proliferation defect in the embryonic MIA brain, which, in most cases, is linked to an acceleration in neurogenesis, demonstrated by an increased proportion of neurogenic to proliferative divisions. This is accompanied by disrupted cortical lamination, particularly in the density of deep layer neurons, which may be a consequence of the premature neurogenic shift. Although many aspects of the underlying pathways remain unclear, an altered epigenome and mitochondrial dysfunction are likely mechanisms underpinning disrupted neurogenesis in the MIA model. Further research is necessary to delineate the causative pathways responsible for the variation in neurogenesis phenotype following MIA, which are likely due to differences in timing of MIA induction as well as sex-dependent variation. This will help to better understand the underlying pathogenesis of NDDs, and establish therapeutic targets.
Collapse
|
6
|
Hauke DJ, Roth V, Karvelis P, Adams RA, Moritz S, Borgwardt S, Diaconescu AO, Andreou C. Increased Belief Instability in Psychotic Disorders Predicts Treatment Response to Metacognitive Training. Schizophr Bull 2022; 48:826-838. [PMID: 35639557 PMCID: PMC9212107 DOI: 10.1093/schbul/sbac029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND HYPOTHESIS In a complex world, gathering information and adjusting our beliefs about the world is of paramount importance. The literature suggests that patients with psychotic disorders display a tendency to draw early conclusions based on limited evidence, referred to as the jumping-to-conclusions bias, but few studies have examined the computational mechanisms underlying this and related belief-updating biases. Here, we employ a computational approach to understand the relationship between jumping-to-conclusions, psychotic disorders, and delusions. STUDY DESIGN We modeled probabilistic reasoning of 261 patients with psychotic disorders and 56 healthy controls during an information sampling task-the fish task-with the Hierarchical Gaussian Filter. Subsequently, we examined the clinical utility of this computational approach by testing whether computational parameters, obtained from fitting the model to each individual's behavior, could predict treatment response to Metacognitive Training using machine learning. STUDY RESULTS We observed differences in probabilistic reasoning between patients with psychotic disorders and healthy controls, participants with and without jumping-to-conclusions bias, but not between patients with low and high current delusions. The computational analysis suggested that belief instability was increased in patients with psychotic disorders. Jumping-to-conclusions was associated with both increased belief instability and greater prior uncertainty. Lastly, belief instability predicted treatment response to Metacognitive Training at the individual level. CONCLUSIONS Our results point towards increased belief instability as a key computational mechanism underlying probabilistic reasoning in psychotic disorders. We provide a proof-of-concept that this computational approach may be useful to help identify suitable treatments for individual patients with psychotic disorders.
Collapse
Affiliation(s)
- D J Hauke
- To whom correspondence should be addressed; 250 College St., 12th Floor, Toronto, ON M5T 1R8, Canada; tel: +1 (416) 535-8501 ext. 30585, fax: +1 416-583-1207, e-mail:
| | - V Roth
- Department of Mathematics and Computer Science, University of Basel, Basel, Switzerland
| | - P Karvelis
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - R A Adams
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK,Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - S Moritz
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - S Borgwardt
- Department of Psychiatry and Psychotherapy, Translational Psychiatry Unit, University of Lübeck, Lübeck, Germany,Center of Brain, Behaviour and Metabolism, University of Lübeck, Lübeck, Germany
| | | | | |
Collapse
|
7
|
Salvador A, Arnal LH, Vinckier F, Domenech P, Gaillard R, Wyart V. Premature commitment to uncertain decisions during human NMDA receptor hypofunction. Nat Commun 2022; 13:338. [PMID: 35039498 PMCID: PMC8763907 DOI: 10.1038/s41467-021-27876-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/21/2021] [Indexed: 11/15/2022] Open
Abstract
Making accurate decisions based on unreliable sensory evidence requires cognitive inference. Dysfunction of n-methyl-d-aspartate (NMDA) receptors impairs the integration of noisy input in theoretical models of neural circuits, but whether and how this synaptic alteration impairs human inference and confidence during uncertain decisions remains unknown. Here we use placebo-controlled infusions of ketamine to characterize the causal effect of human NMDA receptor hypofunction on cognitive inference and its neural correlates. At the behavioral level, ketamine triggers inference errors and elevated decision uncertainty. At the neural level, ketamine is associated with imbalanced coding of evidence and premature response preparation in electroencephalographic (EEG) activity. Through computational modeling of inference and confidence, we propose that this specific pattern of behavioral and neural impairments reflects an early commitment to inaccurate decisions, which aims at resolving the abnormal uncertainty generated by NMDA receptor hypofunction.
Collapse
Affiliation(s)
- Alexandre Salvador
- Laboratoire de Neurosciences Cognitives et Computationnelles, Institut National de la Santé et de la Recherche Médicale, Paris, France
- Département d'Études Cognitives, École Normale Supérieure, Université PSL, Paris, France
- Université de Paris, Paris, France
- Département de Psychiatrie, Service Hospitalo-Universitaire, GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Luc H Arnal
- Institut de l'Audition, Inserm unit 1120, Institut Pasteur, Paris, France
| | - Fabien Vinckier
- Université de Paris, Paris, France
- Département de Psychiatrie, Service Hospitalo-Universitaire, GHU Paris Psychiatrie et Neurosciences, Paris, France
- Équipe Motivation, Cerveau et Comportement, Institut du Cerveau, Sorbonne Université, Paris, France
| | - Philippe Domenech
- Équipe Neurophysiologie des Comportements Répétitifs, Institut du Cerveau, Sorbonne Université, Paris, France
- Département Médico-Universitaire de Psychiatrie et d'Addictologie, CHU AP-HP Henri Mondor, Université Paris-Est Créteil, Créteil, France
| | - Raphaël Gaillard
- Université de Paris, Paris, France
- Département de Psychiatrie, Service Hospitalo-Universitaire, GHU Paris Psychiatrie et Neurosciences, Paris, France
- Unité de Neuropathologie Expérimentale, Département de Santé Globale, Institut Pasteur, Paris, France
| | - Valentin Wyart
- Laboratoire de Neurosciences Cognitives et Computationnelles, Institut National de la Santé et de la Recherche Médicale, Paris, France.
- Département d'Études Cognitives, École Normale Supérieure, Université PSL, Paris, France.
| |
Collapse
|
8
|
Strube W, Cimpianu CL, Ulbrich M, Öztürk ÖF, Schneider-Axmann T, Falkai P, Marshall L, Bestmann S, Hasan A. Unstable Belief Formation and Slowed Decision-making: Evidence That the Jumping-to-Conclusions Bias in Schizophrenia Is Not Linked to Impulsive Decision-making. Schizophr Bull 2021; 48:347-358. [PMID: 34554260 PMCID: PMC8886605 DOI: 10.1093/schbul/sbab108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Jumping-to-conclusions (JTC) is a prominent reasoning bias in schizophrenia (SCZ). While it has been linked to not only psychopathological abnormalities (delusions and impulsive decision-making) but also unstable belief formation, its origin remains unclear. We here directly test to which extend JTC is associated with delusional ideation, impulsive decision-making, and unstable belief formation. METHODS In total, 45 SCZ patients were compared with matched samples of 45 patients with major depressive disorder (MDD) and 45 healthy controls (HC) as delusions and JTC also occur in other mental disorders and the general population. Participants performed a probabilistic beads task. To test the association of JTC with measures of delusions (Positive and Negative Syndrome Scale [PANSS]positive, PANSSpositive-factor, and Peter Delusions Inventory [PDI]), Bayesian linear regressions were computed. For the link between JTC and impulsive decision-making and unstable beliefs, we conducted between-group comparisons of "draws to decision" (DTD), "decision times" (DT), and "disconfirmatory evidence scores" (DES). RESULTS Bayesian regression obtained no robust relationship between PDI and DTD (all |R2adj| ≤ .057, all P ≥ .022, all Bayes Factors [BF01] ≤ 0.046; α adj = .00833). Compared with MDD and HC, patients with SCZ needed more time to decide (significantly higher DT in ambiguous trials: all P ≤ .005, r2 ≥ .216; numerically higher DT in other trials). Further, SCZ had unstable beliefs about the correct source jar whenever unexpected changes in bead sequences (disconfirmatory evidence) occurred (compared with MDD: all P ≤ .004 and all r2 ≥ .232; compared with HC: numerically higher DES). No significant correlation was observed between DT and DTD (all P ≥ .050). CONCLUSIONS Our findings point toward a relationship of JTC with unstable belief formation and do not support the assumption that JTC is associated with impulsive decision-making.
Collapse
Affiliation(s)
- Wolfgang Strube
- Department of Psychiatry and Psychotherapy, Ludwig Maximillian University, Munich,Germany,Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Medical Faculty, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany,To whom correspondence should be addressed; BKH Augsburg, Dr. Mack-Straße 1, D-86156 Augsburg, Germany; tel: +49-821-4803-1011, fax: +49-821-4803-1012, e-mail:
| | - Camelia Lucia Cimpianu
- Department of Psychiatry and Psychotherapy, Ludwig Maximillian University, Munich,Germany
| | - Miriam Ulbrich
- Department of Psychiatry and Psychotherapy, Ludwig Maximillian University, Munich,Germany
| | - Ömer Faruk Öztürk
- Department of Psychiatry and Psychotherapy, Ludwig Maximillian University, Munich,Germany,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | | | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig Maximillian University, Munich,Germany
| | - Louise Marshall
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Sven Bestmann
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK,Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Medical Faculty, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| |
Collapse
|
9
|
Patrono E, Svoboda J, Stuchlík A. Schizophrenia, the gut microbiota, and new opportunities from optogenetic manipulations of the gut-brain axis. Behav Brain Funct 2021; 17:7. [PMID: 34158061 PMCID: PMC8218443 DOI: 10.1186/s12993-021-00180-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022] Open
Abstract
Schizophrenia research arose in the twentieth century and is currently rapidly developing, focusing on many parallel research pathways and evaluating various concepts of disease etiology. Today, we have relatively good knowledge about the generation of positive and negative symptoms in patients with schizophrenia. However, the neural basis and pathophysiology of schizophrenia, especially cognitive symptoms, are still poorly understood. Finding new methods to uncover the physiological basis of the mental inabilities related to schizophrenia is an urgent task for modern neuroscience because of the lack of specific therapies for cognitive deficits in the disease. Researchers have begun investigating functional crosstalk between NMDARs and GABAergic neurons associated with schizophrenia at different resolutions. In another direction, the gut microbiota is getting increasing interest from neuroscientists. Recent findings have highlighted the role of a gut-brain axis, with the gut microbiota playing a crucial role in several psychopathologies, including schizophrenia and autism. There have also been investigations into potential therapies aimed at normalizing altered microbiota signaling to the enteric nervous system (ENS) and the central nervous system (CNS). Probiotics diets and fecal microbiota transplantation (FMT) are currently the most common therapies. Interestingly, in rodent models of binge feeding, optogenetic applications have been shown to affect gut colony sensitivity, thus increasing colonic transit. Here, we review recent findings on the gut microbiota–schizophrenia relationship using in vivo optogenetics. Moreover, we evaluate if manipulating actors in either the brain or the gut might improve potential treatment research. Such research and techniques will increase our knowledge of how the gut microbiota can manipulate GABA production, and therefore accompany changes in CNS GABAergic activity.
Collapse
Affiliation(s)
- Enrico Patrono
- Institute of Physiology of the Czech Academy of Sciences, Videnska, 1830, Prague, 142 20, Czech Republic.
| | - Jan Svoboda
- Institute of Physiology of the Czech Academy of Sciences, Videnska, 1830, Prague, 142 20, Czech Republic
| | - Aleš Stuchlík
- Institute of Physiology of the Czech Academy of Sciences, Videnska, 1830, Prague, 142 20, Czech Republic.
| |
Collapse
|
10
|
Mathalon DH. Challenges Associated With Neuropharmacological Challenge Studies. Biol Psychiatry 2020; 88:670-672. [PMID: 33032692 DOI: 10.1016/j.biopsych.2020.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel H Mathalon
- San Francisco Veterans Affairs Health Care System and the Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California.
| |
Collapse
|