1
|
Spann MN, Scheinost D. Applying fetal, infant, and toddler (FIT) neuroimaging to understand mental health. Neuropsychopharmacology 2024; 50:310-311. [PMID: 39117902 PMCID: PMC11525938 DOI: 10.1038/s41386-024-01957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Affiliation(s)
- Marisa N Spann
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
| | - Dustin Scheinost
- Departments of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA.
- Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, 06520, USA.
- Department of Statistics and Data Science, Yale University, New Haven, CT, 06511, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, 06506, USA.
| |
Collapse
|
2
|
Scheinost D, Pollatou A, Dufford AJ, Jiang R, Farruggia MC, Rosenblatt M, Peterson H, Rodriguez RX, Dadashkarimi J, Liang Q, Dai W, Foster ML, Camp CC, Tejavibulya L, Adkinson BD, Sun H, Ye J, Cheng Q, Spann MN, Rolison M, Noble S, Westwater ML. Machine Learning and Prediction in Fetal, Infant, and Toddler Neuroimaging: A Review and Primer. Biol Psychiatry 2023; 93:893-904. [PMID: 36759257 PMCID: PMC10259670 DOI: 10.1016/j.biopsych.2022.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/10/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022]
Abstract
Predictive models in neuroimaging are increasingly designed with the intent to improve risk stratification and support interventional efforts in psychiatry. Many of these models have been developed in samples of children school-aged or older. Nevertheless, despite growing evidence that altered brain maturation during the fetal, infant, and toddler (FIT) period modulates risk for poor mental health outcomes in childhood, these models are rarely implemented in FIT samples. Applications of predictive modeling in children of these ages provide an opportunity to develop powerful tools for improved characterization of the neural mechanisms underlying development. To facilitate the broader use of predictive models in FIT neuroimaging, we present a brief primer and systematic review on the methods used in current predictive modeling FIT studies. Reflecting on current practices in more than 100 studies conducted over the past decade, we provide an overview of topics, modalities, and methods commonly used in the field and under-researched areas. We then outline ethical and future considerations for neuroimaging researchers interested in predicting health outcomes in early life, including researchers who may be relatively new to either advanced machine learning methods or using FIT data. Altogether, the last decade of FIT research in machine learning has provided a foundation for accelerating the prediction of early-life trajectories across the full spectrum of illness and health.
Collapse
Affiliation(s)
- Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Department of Biomedical Engineering, Yale University, New Haven, Connecticut; Department of Statistics and Data Science, Yale University, New Haven, Connecticut; Child Study Center, Yale School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut.
| | - Angeliki Pollatou
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Alexander J Dufford
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Rongtao Jiang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Michael C Farruggia
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Matthew Rosenblatt
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Hannah Peterson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | | | | | - Qinghao Liang
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Wei Dai
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Maya L Foster
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Chris C Camp
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Brendan D Adkinson
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Huili Sun
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Jean Ye
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Qi Cheng
- Departments of Neuroscience and Psychology, Smith College, Northampton, Massachusetts
| | - Marisa N Spann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Max Rolison
- Child Study Center, Yale School of Medicine, New Haven, Connecticut
| | - Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Margaret L Westwater
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
3
|
Spann MN, Rogers C. The Infant Brain: A Critical Antecedent of Psychiatric Risk. Biol Psychiatry 2023; 93:854-857. [PMID: 37121613 DOI: 10.1016/j.biopsych.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 05/02/2023]
Affiliation(s)
- Marisa N Spann
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York; New York State Psychiatric Institute, New York, New York.
| | - Cynthia Rogers
- Departments of Psychiatry and Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
| |
Collapse
|