1
|
Norman LJ, Shaw P. Harnessing mega-analysis in the era of "big data" neuroimaging. Neuropsychopharmacology 2024; 50:332-334. [PMID: 39143321 PMCID: PMC11525563 DOI: 10.1038/s41386-024-01964-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Affiliation(s)
- Luke J Norman
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Philip Shaw
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Kings Maudsley Partnership for Children and Young People, Pears Maudsley Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
2
|
Koirala S, Grimsrud G, Mooney MA, Larsen B, Feczko E, Elison JT, Nelson SM, Nigg JT, Tervo-Clemmens B, Fair DA. Neurobiology of attention-deficit hyperactivity disorder: historical challenges and emerging frontiers. Nat Rev Neurosci 2024:10.1038/s41583-024-00869-z. [PMID: 39448818 DOI: 10.1038/s41583-024-00869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Extensive investigations spanning multiple levels of inquiry, from genetic to behavioural studies, have sought to unravel the mechanistic foundations of attention-deficit hyperactivity disorder (ADHD), with the aspiration of developing efficacious treatments for this condition. Despite these efforts, the pathogenesis of ADHD remains elusive. In this Review, we reflect on what has been learned about ADHD while also providing a framework that may serve as a roadmap for future investigations. We emphasize that ADHD is a highly heterogeneous disorder with multiple aetiologies that necessitates a multifactorial dimensional phenotype, rather than a fixed dichotomous conceptualization. We highlight new findings that suggest a more brain-wide, 'global' view of the disorder, rather than the traditional localizationist framework, which asserts that a limited set of brain regions or networks underlie ADHD. Last, we underscore how underpowered studies that have aimed to associate neurobiology with ADHD phenotypes have long precluded the field from making progress. However, a new age of ADHD research with refined phenotypes, advanced methods, creative study designs and adequately powered investigations is beginning to put the field on a good footing. Indeed, the field is at a promising juncture to advance the neurobiological understanding of ADHD and fulfil the promise of clinical utility.
Collapse
Affiliation(s)
- Sanju Koirala
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Gracie Grimsrud
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Michael A Mooney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
- Departments of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Bart Larsen
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Steven M Nelson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Joel T Nigg
- Departments of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Brenden Tervo-Clemmens
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Damien A Fair
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA.
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
3
|
Singh M, Skippen P, He J, Thomson P, Fuelscher I, Caeyenberghs K, Anderson V, Hyde C, Silk TJ. Developmental patterns of inhibition and fronto-basal-ganglia white matter organisation in healthy children and children with attention-deficit/hyperactivity disorder. Hum Brain Mapp 2024; 45:e70010. [PMID: 39460623 PMCID: PMC11512212 DOI: 10.1002/hbm.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 10/28/2024] Open
Abstract
There is robust evidence implicating inhibitory deficits as a fundamental behavioural phenotype in children with attention-deficit/hyperactivity disorder (ADHD). However, prior studies have not directly investigated the role in which white matter properties within the fronto-basal-ganglia circuit may play in the development of inhibitory control deficits in this group. Combining recent advancements in brain-behavioural modelling, we mapped the development of stop-signal task (SST) performance and fronto-basal-ganglia maturation in a longitudinal sample of children aged 9-14 with and without ADHD. In a large sample of 135 ADHD and 138 non-ADHD children, we found that the ADHD group had poorer inhibitory control (i.e., longer stop-signal reaction times) across age compared to non-ADHD controls. When applying the novel parametric race model, this group effect was driven by higher within-subject variability (sigma) and higher number of extreme responses (tau) on stop trials. The ADHD group also displayed higher within-subject variability on correct responses to go stimuli. Moreover, we observed the ADHD group committing more task-based failures such as responding on stop trials (trigger failures) and omissions on go trials (go failures) compared to non-ADHD controls, suggesting the contribution of attentional lapses to poorer response inhibition performance. In contrast, longitudinal modelling of fixel-based analysis measures revealed no significant group differences in the maturation of fronto-basal-ganglia fibre cross-section in a subsample (74 ADHD and 73 non-ADHD children). Finally, brain-behavioural models revealed that age-related changes in fronto-basal-ganglia morphology (fibre cross-section) were significantly associated with reductions in the variability of the correct go-trial responses (sigma.true) and skew of the stop-trial distribution (tauS). However, this effect did not differ between ADHD and typically developing children. Overall, our findings support the growing consensus suggesting that attentional deficits subserve ADHD-related inhibitory dysfunction. Furthermore, we show novel evidence suggesting that while children with ADHD are consistently performing worse on the SST than their non-affected peers, they appear to have comparable rates of neurocognitive maturation across this period.
Collapse
Affiliation(s)
- Mervyn Singh
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
- Centre for Social and Early Emotional DevelopmentDeakin UniversityGeelongVictoriaAustralia
| | - Patrick Skippen
- Neuroscience Research AustraliaRandwickNew South WalesAustralia
- Hunter Medical InstituteNewcastleNew South WalesAustralia
| | - Jason He
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
- Centre for Social and Early Emotional DevelopmentDeakin UniversityGeelongVictoriaAustralia
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and NeuroscienceKing's College LondonLondonUK
| | - Phoebe Thomson
- Developmental ImagingMurdoch Children's Research InstituteMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Autism Research CentreChild Mind InstituteNew YorkNew YorkUSA
| | - Ian Fuelscher
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
- Centre for Social and Early Emotional DevelopmentDeakin UniversityGeelongVictoriaAustralia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
- Centre for Social and Early Emotional DevelopmentDeakin UniversityGeelongVictoriaAustralia
| | | | - Christian Hyde
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
- Centre for Social and Early Emotional DevelopmentDeakin UniversityGeelongVictoriaAustralia
| | - Timothy J. Silk
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
- Centre for Social and Early Emotional DevelopmentDeakin UniversityGeelongVictoriaAustralia
- Developmental ImagingMurdoch Children's Research InstituteMelbourneVictoriaAustralia
| |
Collapse
|
4
|
Rubia K. Network Connection Issues in ADHD. Am J Psychiatry 2024; 181:479-481. [PMID: 38822583 DOI: 10.1176/appi.ajp.20240319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Affiliation(s)
- Katya Rubia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology, and Neurosciences, King's College London
| |
Collapse
|
5
|
Norman LJ, Sudre G, Price J, Shaw P. Subcortico-Cortical Dysconnectivity in ADHD: A Voxel-Wise Mega-Analysis Across Multiple Cohorts. Am J Psychiatry 2024; 181:553-562. [PMID: 38476041 PMCID: PMC11486346 DOI: 10.1176/appi.ajp.20230026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
OBJECTIVE A large body of functional MRI research has examined a potential role for subcortico-cortical loops in the pathogenesis of attention deficit hyperactivity disorder (ADHD), but has produced inconsistent findings. The authors performed a mega-analysis of six neuroimaging data sets to examine associations between ADHD diagnosis and traits and subcortico-cortical connectivity. METHODS Group differences were examined in the functional connectivity of four subcortical seeds in 1,696 youths with ADHD diagnoses (66.39% males; mean age, 10.83 years [SD=2.17]) and 6,737 unaffected control subjects (47.05% males; mean age, 10.33 years [SD=1.30]). The authors examined associations between functional connectivity and ADHD traits (total N=9,890; 50.3% males; mean age, 10.77 years [SD=1.96]). Sensitivity analyses were used to examine specificity relative to commonly comorbid internalizing and non-ADHD externalizing problems. The authors further examined results within motion-matched subsamples, and after adjusting for estimated intelligence. RESULTS In the group comparison, youths with ADHD showed greater connectivity between striatal seeds and temporal, fronto-insular, and supplementary motor regions, as well as between the amygdala and dorsal anterior cingulate cortex, compared with control subjects. Similar findings emerged when ADHD traits were considered and when alternative seed definitions were adopted. Dominant associations centered on the connectivity of the caudate bilaterally. Findings were not driven by in-scanner motion and were not shared with commonly comorbid internalizing and externalizing problems. Effect sizes were small (largest peak d, 0.15). CONCLUSIONS The findings from this large-scale mega-analysis support established links with subcortico-cortical circuits, which were robust to potential confounders. However, effect sizes were small, and it seems likely that resting-state subcortico-cortical connectivity can capture only a fraction of the complex pathophysiology of ADHD.
Collapse
Affiliation(s)
- Luke J. Norman
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Gustavo Sudre
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jolie Price
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Philip Shaw
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
6
|
McKay CC, Scheinberg B, Xu EP, Kircanski K, Pine DS, Brotman MA, Leibenluft E, Linke JO. Modeling Shared and Specific Variances of Irritability, Inattention, and Hyperactivity Yields Novel Insights Into White Matter Perturbations. J Am Acad Child Adolesc Psychiatry 2024:S0890-8567(24)00108-4. [PMID: 38452811 DOI: 10.1016/j.jaac.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/16/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVE Irritability, inattention, and hyperactivity, which are common presentations of childhood psychopathology, have been associated with perturbed white matter microstructure. However, similar tracts have been implicated across these phenotypes; such non-specificity could be rooted in their high co-occurrence. To address this problem, we use a bifactor approach parsing unique and shared components of irritability, inattention, and hyperactivity, which we then relate to white matter microstructure. METHOD We developed a bifactor model based on the Conners Comprehensive Behavioral Rating Scale in a sample of youth with no psychiatric diagnosis or a primary diagnosis of attention-deficit/hyperactivity disorder or disruptive mood dysregulation disorder (n = 521). We applied the model to an independent yet sociodemographically and clinically comparable sample (n = 152), in which we tested associations between latent variables and fractional anisotropy (FA). RESULTS The bifactor model fit well (comparative fit index = 0.99; root mean square error of approximation = 0.07). The shared factor was positively associated with an independent measure of impulsivity (ρS = 0.88, pFDR < .001) and negatively related to whole-brain FA (r = -0.20), as well as FA of the corticospinal tract (all pFWE < .05). FA increased with age and deviation from this curve, indicating that altered white matter maturation was associated with the hyperactivity-specific factor (r = -0.16, pFWE < .05). Inattention-specific and irritability-specific factors were not linked to FA. CONCLUSION Perturbed white matter microstructure may represent a shared neurobiological mechanism of irritability, inattention, and hyperactivity related to heightened impulsivity. Furthermore, hyperactivity might be uniquely associated with a delay in white matter maturation.
Collapse
Affiliation(s)
- Cameron C McKay
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Brooke Scheinberg
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Ellie P Xu
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Katharina Kircanski
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Daniel S Pine
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Melissa A Brotman
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Ellen Leibenluft
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
7
|
Vishnubhotla RV, Ahmad ST, Zhao Y, Radhakrishnan R. Impact of prenatal marijuana exposure on adolescent brain structural and functional connectivity and behavioural outcomes. Brain Commun 2024; 6:fcae001. [PMID: 38444906 PMCID: PMC10914455 DOI: 10.1093/braincomms/fcae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/01/2023] [Accepted: 01/05/2024] [Indexed: 03/07/2024] Open
Abstract
There has been an increase in the number of women using marijuana whilst pregnant. Previous studies have shown that children with prenatal marijuana exposure have developmental deficits in memory and decreased attentiveness. In this study, we assess whether prenatal marijuana exposure is associated with alterations in brain regional morphometry and functional and structural connectivity in adolescents. We downloaded behavioural scores and subject image files from the Adolescent Brain Cognitive DevelopmentSM Study. A total of 178 anatomical and diffusion magnetic resonance imaging files (88 prenatal marijuana exposure and 90 age- and gender-matched controls) and 152 resting-state functional magnetic resonance imaging files (76 prenatal marijuana exposure and 76 controls) were obtained. Behavioural metrics based on the parent-reported child behavioural checklist were also obtained for each subject. The associations of prenatal marijuana exposure with 17 subscales of the child behavioural checklist were calculated. We assessed differences in brain morphometry based on voxel-based and surface-based morphometry in adolescents with prenatal marijuana exposure versus controls. We also evaluated group differences in structural and functional connectivity in adolescents for region-to-region connectivity and graph theoretical metrics. Interactions of prenatal marijuana exposure and graph networks were assessed for impact on behavioural scores. Multiple comparison correction was performed as appropriate. Adolescents with prenatal marijuana exposure had greater abnormal or borderline child behavioural checklist scores in 9 out of 17 subscales. There were no significant differences in voxel- or surface-based morphometry, structural connectivity or functional connectivity between prenatal marijuana exposure and controls. However, there were significant differences in prenatal marijuana exposure-graph network interactions with respect to behavioural scores. There were three structural prenatal marijuana exposure-graph network interactions and seven functional prenatal marijuana exposure-graph network interactions that were significantly associated with behavioural scores. Whilst this study was not able to confirm anatomical or functional differences between prenatal marijuana exposure and unexposed pre-adolescent children, there were prenatal marijuana exposure-brain structural and functional graph network interactions that were significantly associated with behavioural scores. This suggests that altered brain networks may underlie behavioural outcomes in adolescents with prenatal marijuana exposure. More work needs to be conducted to better understand the prognostic value of brain structural and functional network measures in prenatal marijuana exposure.
Collapse
Affiliation(s)
- Ramana V Vishnubhotla
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sidra T Ahmad
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
da Silva BS, Grevet EH, Silva LCF, Ramos JKN, Rovaris DL, Bau CHD. An overview on neurobiology and therapeutics of attention-deficit/hyperactivity disorder. DISCOVER MENTAL HEALTH 2023; 3:2. [PMID: 37861876 PMCID: PMC10501041 DOI: 10.1007/s44192-022-00030-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/29/2022] [Indexed: 10/21/2023]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) is a prevalent psychiatric condition characterized by developmentally inappropriate symptoms of inattention and/or hyperactivity/impulsivity, which leads to impairments in the social, academic, and professional contexts. ADHD diagnosis relies solely on clinical assessment based on symptom evaluation and is sometimes challenging due to the substantial heterogeneity of the disorder in terms of clinical and pathophysiological aspects. Despite the difficulties imposed by the high complexity of ADHD etiology, the growing body of research and technological advances provide good perspectives for understanding the neurobiology of the disorder. Such knowledge is essential to refining diagnosis and identifying new therapeutic options to optimize treatment outcomes and associated impairments, leading to improvements in all domains of patient care. This review is intended to be an updated outline that addresses the etiological and neurobiological aspects of ADHD and its treatment, considering the impact of the "omics" era on disentangling the multifactorial architecture of ADHD.
Collapse
Affiliation(s)
- Bruna Santos da Silva
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Genetics and Graduate Program in Genetics and Molecular Biology, Instituto de Biociências, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Eugenio Horacio Grevet
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Luiza Carolina Fagundes Silva
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - João Kleber Neves Ramos
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Diego Luiz Rovaris
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Claiton Henrique Dotto Bau
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
- Department of Genetics and Graduate Program in Genetics and Molecular Biology, Instituto de Biociências, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
- Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
| |
Collapse
|