1
|
García Alanis JC, Güth MR, Chavanon ML, Peper M. Neurocognitive dynamics of preparatory and adaptive cognitive control: Insights from mass-univariate and multivariate pattern analysis of EEG data. PLoS One 2024; 19:e0311319. [PMID: 39432477 PMCID: PMC11493265 DOI: 10.1371/journal.pone.0311319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Cognitive control refers to humans' ability to willingly align thoughts and actions with internally represented goals. Research indicates that cognitive control is not one-dimensional but rather integrates multiple sub-processes to cope with task demands successfully. In particular, the dynamic interplay between preparatory (i.e., prior to goal-relevant events) and adaptive (i.e., in response to unexpected demands) recruitment of neural resources is believed to facilitate successful behavioural performance. However, whether preparatory and adaptive processes draw from independent or shared neural resources, and how these align in the information processing stream, remains unclear. To address these issues, we recorded electroencephalographic data from 52 subjects while they performed a computerised task. Using a combination of mass-univariate and multivariate pattern analysis procedures, we found that different types of control triggered distinct sequences of brain activation patterns, and that the order and temporal extent of these patterns were dictated by the type of control used by the participants. Stimuli that fostered preparatory recruitment of control evoked a sequence of transient occipital-parietal, sustained central-parietal, and sustained fronto-central responses. In contrast, stimuli that indicated the need for quick behavioural adjustments triggered a sequence of transient occipital-parietal, fronto-central, and central parietal responses. There was also a considerable degree of overlap in the temporal evolution of these brain activation patterns, with behavioural performance being mainly related to the magnitude of the central-parietal and fronto-central responses. Our results demonstrate how different neurocognitive mechanisms, such as early attentional allocation and subsequent behavioural selection processes, are likely to contribute to cognitive control. Moreover, our findings extend prior work by showing that these mechanisms are engaged (at least partly) in parallel, rather than independently of each other.
Collapse
Affiliation(s)
| | - Malte R. Güth
- Department of Psychology, Philipps-Universität Marburg, Marburg, Germany
- Center for Molecular and Behavioral Neuroscience, Rutgers University, New Brunswick, NJ, United States of America
| | - Mira-Lynn Chavanon
- Department of Psychology, Philipps-Universität Marburg, Marburg, Germany
| | - Martin Peper
- Department of Psychology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
2
|
Stringfellow JS, Liran O, Lin MH, Baker TE. Recording Neural Reward Signals in a Naturalistic Operant Task Using Mobile-EEG and Augmented Reality. eNeuro 2024; 11:ENEURO.0372-23.2024. [PMID: 39013585 PMCID: PMC11315430 DOI: 10.1523/eneuro.0372-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 07/18/2024] Open
Abstract
The electrophysiological response to rewards recorded during laboratory tasks has been well documented, yet little is known about the neural response patterns in a more naturalistic setting. Here, we combined a mobile-EEG system with an augmented reality headset to record event-related brain potentials (ERPs) while participants engaged in a naturalistic operant task to find rewards. Twenty-five participants were asked to navigate toward a west or east goal location marked by floating orbs, and once participants reached the goal location, the orb would then signify a reward (5 cents) or no-reward (0 cents) outcome. Following the outcome, participants returned to a start location marked by floating purple rings, and once standing in the middle, a 3 s counter signaled the next trial, for a total of 200 trials. Consistent with previous research, reward feedback evoked the reward positivity, an ERP component believed to index the sensitivity of the anterior cingulate cortex to reward prediction error signals. The reward positivity peaked ∼230 ms with a maximal at channel FCz (M = -0.695 μV, ±0.23) and was significantly different than zero (p < 0.01). Participants took ∼3.38 s to reach the goal location and exhibited a general lose-shift (68.3% ±3.5) response strategy and posterror slowing. Overall, these novel findings provide support for the idea that combining mobile-EEG with augmented reality technology is a feasible solution to enhance the ecological validity of human electrophysiological studies of goal-directed behavior and a step toward a new era of human cognitive neuroscience research that blurs the line between laboratory and reality.
Collapse
Affiliation(s)
- Jaleesa S Stringfellow
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| | - Omer Liran
- Department of Psychiatry & Behavioral Neurosciences, Cedars-Sinai Virtual Medicine, Los Angeles, California 90048
| | - Mei-Heng Lin
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| | - Travis E Baker
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| |
Collapse
|
3
|
Karpov G, Lin MH, Headley DB, Baker TE. Oscillatory correlates of threat imminence during virtual navigation. Psychophysiology 2024; 61:e14551. [PMID: 38516942 DOI: 10.1111/psyp.14551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/18/2024] [Accepted: 02/10/2024] [Indexed: 03/23/2024]
Abstract
The Predatory Imminence Continuum Theory proposes that defensive behaviors depend on the proximity of a threat. While the neural mechanisms underlying this proposal are well studied in animal models, it remains poorly understood in humans. To address this issue, we recorded EEG from 24 (15 female) young adults engaged in a first-person virtual reality Risk-Reward interaction task. On each trial, participants were placed in a virtual room and presented with either a threat or reward conditioned stimulus (CS) in the same room location (proximal) or different room location (distal). Behaviorally, all participants learned to avoid the threat-CS, with most using the optimal behavior to actively avoid the proximal threat-CS (88% accuracy) and passively avoid the distal threat-CS (69% accuracy). Similarly, participants learned to actively approach the distal reward-CS (82% accuracy) and to remain passive to the proximal reward-CS (72% accuracy). At an electrophysiological level, we observed a general increase in theta power (4-8 Hz) over the right posterior channel P8 across all conditions, with the proximal threat-CS evoking the largest theta response. By contrast, distal cues induced two bursts of gamma (30-60 Hz) power over midline-parietal channel Pz (200 msec post-cue) and right frontal channel Fp2 (300 msec post-cue). Interestingly, the first burst of gamma power was sensitive to the distal threat-CS and the second burst at channel Fp2 was sensitive to the distal reward-CS. Together, these findings demonstrate that oscillatory processes differentiate between the spatial proximity information during threat and reward encoding, likely optimizing the selection of the appropriate behavioral response.
Collapse
Affiliation(s)
- Galit Karpov
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey, USA
| | - Mei-Heng Lin
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey, USA
| | - Drew B Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey, USA
| | - Travis E Baker
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey, USA
| |
Collapse
|
4
|
Nunn K, Creighton R, Tilton-Bolowsky V, Arbel Y, Vallila-Rohter S. The effect of feedback timing on category learning and feedback processing in younger and older adults. Front Aging Neurosci 2024; 16:1404128. [PMID: 38887611 PMCID: PMC11182045 DOI: 10.3389/fnagi.2024.1404128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction Corrective feedback can be received immediately after an action or with a temporal delay. Neuroimaging studies suggest that immediate and delayed feedback are processed by the striatum and medial temporal lobes (MTL), respectively. Age-related changes in the striatum and MTL may influence the efficiency of feedback-based learning in older adults. The current study leverages event-related potentials (ERPs) to evaluate age-related differences in immediate and delayed feedback processing and consequences for learning. The feedback-related negativity (FRN) captures activity in the frontostriatal circuit while the N170 is hypothesized to reflect MTL activation. Methods 18 younger (Myears = 24.4) and 20 older (Myears = 65.5) adults completed learning tasks with immediate and delayed feedback. For each group, learning outcomes and ERP magnitudes were evaluated across timing conditions. Results Younger adults learned better than older adults in the immediate timing condition. This performance difference was associated with a typical FRN signature in younger but not older adults. For older adults, impaired processing of immediate feedback in the striatum may have negatively impacted learning. Conversely, learning was comparable across groups when feedback was delayed. For both groups, delayed feedback was associated with a larger magnitude N170 relative to immediate feedback, suggesting greater MTL activation. Discussion and conclusion Delaying feedback may increase MTL involvement and, for older adults, improve category learning. Age-related neural changes may differentially affect MTL- and striatal-dependent learning. Future research can evaluate the locus of age-related learning differences and how feedback can be manipulated to optimize learning across the lifespan.
Collapse
Affiliation(s)
- Kristen Nunn
- MGH Institute of Health Professions, Boston, MA, United States
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | | | - Victoria Tilton-Bolowsky
- MGH Institute of Health Professions, Boston, MA, United States
- Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yael Arbel
- MGH Institute of Health Professions, Boston, MA, United States
| | | |
Collapse
|
5
|
Li Z, Cai S, Qiao J, Li Y, Wang Q, Chen R. Implications of depressive mood in OSAHS patients: insights from event-related potential. BMC Psychiatry 2024; 24:307. [PMID: 38654234 PMCID: PMC11040885 DOI: 10.1186/s12888-024-05772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a chronic breathing disorder characterized by recurrent upper airway obstruction during sleep. Although previous studies have shown a link between OSAHS and depressive mood, the neurobiological mechanisms underlying mood disorders in OSAHS patients remain poorly understood. This study aims to investigate the emotion processing mechanism in OSAHS patients with depressive mood using event-related potentials (ERPs). METHODS Seventy-four OSAHS patients were divided into the depressive mood and non-depressive mood groups according to their Self-rating Depression Scale (SDS) scores. Patients underwent overnight polysomnography and completed various cognitive and emotional questionnaires. The patients were shown facial images displaying positive, neutral, and negative emotions and tasked to identify the emotion category, while their visual evoked potential was simultaneously recorded. RESULTS The two groups did not differ significantly in age, BMI, and years of education, but showed significant differences in their slow wave sleep ratio (P = 0.039), ESS (P = 0.006), MMSE (P < 0.001), and MOCA scores (P = 0.043). No significant difference was found in accuracy and response time on emotional face recognition between the two groups. N170 latency in the depressive group was significantly longer than the non-depressive group (P = 0.014 and 0.007) at the bilateral parieto-occipital lobe, while no significant difference in N170 amplitude was found. No significant difference in P300 amplitude or latency between the two groups. Furthermore, N170 amplitude at PO7 was positively correlated with the arousal index and negatively with MOCA scores (both P < 0.01). CONCLUSION OSAHS patients with depressive mood exhibit increased N170 latency and impaired facial emotion recognition ability. Special attention towards the depressive mood among OSAHS patients is warranted for its implications for patient care.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of Respiratory and Critical Care Medicine, Sleep Center, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sijie Cai
- Department of Respiratory and Critical Care Medicine, Sleep Center, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Pulmonary and Critical Care Medicine, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
| | - Jiamin Qiao
- Department of Respiratory and Critical Care Medicine, Sleep Center, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yezhou Li
- Oxford University Clinical Academic Graduate School and Buckinghamshire Healthcare NHS Trust, Oxford, UK
| | - Qiaojun Wang
- Department of Respiratory and Critical Care Medicine, Sleep Center, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rui Chen
- Department of Respiratory and Critical Care Medicine, Sleep Center, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Albrecht C, van de Vijver R, Bellebaum C. Learning new words via feedback-Association between feedback-locked ERPs and recall performance-An exploratory study. Psychophysiology 2023; 60:e14324. [PMID: 37144796 DOI: 10.1111/psyp.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
Feedback learning is thought to involve the dopamine system and its projection sites in the basal ganglia and anterior cingulate cortex (ACC), regions associated with procedural learning. Under certain conditions, such as when feedback is delayed, feedback-locked activation is pronounced in the medial temporal lobe (MTL), which is associated with declarative learning. In event-related potential research, the feedback-related negativity (FRN) has been linked to immediate feedback processing, while the N170, possibly reflecting MTL activity, has been related to delayed feedback processing. In the current study, we performed an exploratory investigation on the relation between N170 and FRN amplitude and memory performance in a test for declarative memory (free recall), also exploring the role of feedback delay. To this end, we adapted a paradigm in which participants learned associations between non-objects and non-words with either immediate or delayed feedback, and added a subsequent free recall test. We indeed found that N170, but not FRN amplitudes, depended on later free recall performance, with smaller amplitudes for later remembered non-words. In an additional analysis with memory performance as dependent variable, the N170, but not the FRN amplitude predicted free recall, modulated by feedback timing and valence. This finding shows that the N170 reflects an important process during feedback processing, possibly related to expectations and their violation, but is distinct from the process reflected by the FRN.
Collapse
Affiliation(s)
- Christine Albrecht
- Institute of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Ruben van de Vijver
- Institute of Linguistics and Information Science, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Bellebaum
- Institute of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
7
|
Stringfellow J, Liran O, Lin MH, Baker TE. Recording neural reward signals in the real-world using mobile-EEG and augmented reality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555757. [PMID: 37693413 PMCID: PMC10491265 DOI: 10.1101/2023.08.31.555757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The electrophysiological response to rewards recorded during laboratory-based tasks has been well documented over the past two decades, yet little is known about the neural response patterns in 'real-world' settings. To address this issue, we combined a mobile-EEG system with an augmented reality headset (which blends high definition "holograms" within the real-world) to record event-related brain potentials (ERP) while participants navigated an operant chamber to find rewards. 25 participants (age = 18-43, Male=6, Female=19) were asked to choose between two floating holograms marking a west or east goal-location in a large room, and once participants reached the goal location, the hologram would turn into a reward (5 cents) or no-reward (0 cents) cue. Following the feedback cue, participants were required to return to a hologram marking the start location, and once standing in it, a 3 second counter hologram would initiate the next trial. This sequence was repeated until participants completed 200 trials. Consistent with previous research, reward feedback evoked the reward positivity, an ERP component believed to index the sensitivity of the anterior cingulate cortex to reward prediction error signals. The reward positivity peaked around 235ms post-feedback with a maximal at channel FCz (M=-2.60μV, SD=1.73μV) and was significantly different than zero (p < 0.01). At a behavioral level, participants took approximately 3.38 seconds to reach the goal-location and exhibited a general lose-shift (68.3% ± 3.5) response strategy and were slightly slower to return to the start location following negative feedback (2.43 sec) compared to positive feedback (2.38 sec), evidence of post-error slowing. Overall, these findings provide the first evidence that combining mobile-EEG with augmented reality technology is a feasible solution to enhance the ecological validity of human electrophysiological studies of goal-directed behavior and a step towards a new era of human cognitive neuroscience research that blurs the line between laboratory and reality.
Collapse
|
8
|
Scalp recorded theta activity is modulated by reward, direction, and speed during virtual navigation in freely moving humans. Sci Rep 2022; 12:2041. [PMID: 35132101 PMCID: PMC8821620 DOI: 10.1038/s41598-022-05955-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
Theta oscillations (~ 4–12 Hz) are dynamically modulated by speed and direction in freely moving animals. However, due to the paucity of electrophysiological recordings of freely moving humans, this mechanism remains poorly understood. Here, we combined mobile-EEG with fully immersive virtual-reality to investigate theta dynamics in 22 healthy adults (aged 18–29 years old) freely navigating a T-maze to find rewards. Our results revealed three dynamic periods of theta modulation: (1) theta power increases coincided with the participants’ decision-making period; (2) theta power increased for fast and leftward trials as subjects approached the goal location; and (3) feedback onset evoked two phase-locked theta bursts over the right temporal and frontal-midline channels. These results suggest that recording scalp EEG in freely moving humans navigating a simple virtual T-maze can be utilized as a powerful translational model by which to map theta dynamics during “real-life” goal-directed behavior in both health and disease.
Collapse
|
9
|
Wen D, Yuan J, Zhou Y, Xu J, Song H, Liu Y, Xu Y, Jung TP. The EEG Signal Analysis for Spatial Cognitive Ability Evaluation Based on Multivariate Permutation Conditional Mutual Information-Multi-Spectral Image. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2113-2122. [PMID: 32833638 DOI: 10.1109/tnsre.2020.3018959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study aims to find an effective method to evaluate the efficacy of cognitive training of spatial memory under a virtual reality environment, by classifying the EEG signals of subjects in the early and late stages of spatial cognitive training. This study proposes a new EEG signal analysis method based on Multivariate Permutation Conditional Mutual Information-Multi-Spectral Image (MPCMIMSI). This method mainly considers the relationship between the coupled features of EEG signals in different channel pairs and transforms the multivariate permutation conditional mutual information features into multi-spectral images. Then, a convolutional neural networks (CNN) model classifies the resultant image data into different stages of cognitive training to objectively assess the efficacy of the training. Compared to the multi-spectral image transformation method based on Granger causality analysis (GCA) and permutation conditional mutual information (PCMI), the MPCMIMSI led to better classification performance, which can be as high as 95% accuracy. More specifically, the Theta-Beta2-Gamma-band combination has the best accuracy. The proposed MPCMIMSI method outperforms the multi-spectral image transformation methods based on GCA and PCMI in terms of classification performance. The MPCMIMSI feature in the Theta-Beta2-Gamma band is an effective biomarker for assessing the efficacy of spatial memory training. The proposed EEG feature-extraction method based on MPCMIMSI offers a new window to characterize spatial information of the noninvasive EEG recordings and might apply to assessing other brain functions.
Collapse
|
10
|
Zhou Y, Wen D, Lu H, Yao W, Liu Y, Qian W, Yuan J. The Current Research of Spatial Cognitive Evaluation and Training With Brain-Computer Interface and Virtual Reality. Front Neurosci 2020; 13:1439. [PMID: 32116484 PMCID: PMC7025557 DOI: 10.3389/fnins.2019.01439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/20/2019] [Indexed: 11/28/2022] Open
Affiliation(s)
- Yanhong Zhou
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
- School of Mathematics and Information Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Dong Wen
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
- The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Huibin Lu
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
- The Key Laboratory of Information Transmission and Signal Processing of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Wang Yao
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
- The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Yijun Liu
- School of Science, Yanshan University, Qinhuangdao, China
| | - Wenbo Qian
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
- The Key Laboratory of Information Transmission and Signal Processing of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Jingpeng Yuan
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
- The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Yanshan University, Qinhuangdao, China
| |
Collapse
|
11
|
Passively learned spatial navigation cues evoke reinforcement learning reward signals. Cognition 2019; 189:65-75. [PMID: 30927659 DOI: 10.1016/j.cognition.2019.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 11/23/2022]
Abstract
Since the suggestion by Tolman (1948) that both rodents and humans create cognitive maps during navigation, the specifics of how navigators learn about their environment has been mired in debate. One facet of this debate is whether or not the creation of cognitive maps - also known as allocentric navigation - involves reinforcement learning. Here, we demonstrate a role for reinforcement learning during allocentric navigation using event-related brain potentials (ERPs). In the present experiment, participants navigated in a virtual environment that allowed the use of three different navigation strategies (allocentric, egocentric-response, & egocentric-cue), in which their goal was to locate and remember a hidden platform. Following the navigation phase of the experiment, participants were shown "cue images" representative of the three navigation strategies. Specifically, we examined whether or not these passively learned strategy images elicited a reward positivity - an ERP component associated with reinforcement learning and the anterior cingulate cortex. We found that when allocentric navigators were shown previously learned cues predicting the goal location a reward positivity was elicited. The present findings demonstrate that allocentric navigational cues carry long-term value after navigation and lend support to the claim that reinforcement learning plays a role in the acquisition of allocentric navigation and thus the generation of cognitive maps.
Collapse
|
12
|
Török Á, Kóbor A, Persa G, Galambos P, Baranyi P, Csépe V, Honbolygó F. Temporal dynamics of object location processing in allocentric reference frame. Psychophysiology 2017; 54:1346-1358. [PMID: 28480967 DOI: 10.1111/psyp.12886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 02/27/2017] [Accepted: 03/31/2017] [Indexed: 11/28/2022]
Abstract
The spatial location of objects is processed in egocentric and allocentric reference frames, the early temporal dynamics of which have remained relatively unexplored. Previous experiments focused on ERP components related only to egocentric navigation. Thus, we designed a virtual reality experiment to see whether allocentric reference frame-related ERP modulations can also be registered. Participants collected reward objects at the end of the west and east alleys of a cross maze, and their ERPs to the feedback objects were measured. Participants made turn choices from either the south or the north alley randomly in each trial. In this way, we were able to discern place and response coding of object location. Behavioral results indicated a strong preference for using the allocentric reference frame and a preference for choosing the rewarded place in the next trial, suggesting that participants developed probabilistic expectations between places and rewards. We also found that the amplitude of the P1 was sensitive to the allocentric place of the reward object, independent of its value. We did not find evidence for egocentric response learning. These results show that early ERPs are sensitive to the location of objects during navigation in an allocentric reference frame.
Collapse
Affiliation(s)
- Ágoston Török
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Systems and Control Laboratory, Institute for Computer Science and Control, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Cognitive Psychology, Faculty of Pedagogy and Psychology, Eötvös Loránd University, Budapest, Hungary
| | - Andrea Kóbor
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - György Persa
- 3D Internet-based Control and Communications Laboratory, Institute for Computer Science and Control, Hungarian Academy of Sciences, Budapest, Hungary.,Faculty of Informatics, Széchenyi István University, Győr, Hungary
| | - Péter Galambos
- 3D Internet-based Control and Communications Laboratory, Institute for Computer Science and Control, Hungarian Academy of Sciences, Budapest, Hungary.,Antal Bejczy Center for Intelligent Robotics, Óbuda University, Budapest, Hungary
| | - Péter Baranyi
- 3D Internet-based Control and Communications Laboratory, Institute for Computer Science and Control, Hungarian Academy of Sciences, Budapest, Hungary.,Faculty of Informatics, Széchenyi István University, Győr, Hungary
| | - Valéria Csépe
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ferenc Honbolygó
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Cognitive Psychology, Faculty of Pedagogy and Psychology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
13
|
Arbel Y, Hong L, Baker TE, Holroyd CB. It's all about timing: An electrophysiological examination of feedback-based learning with immediate and delayed feedback. Neuropsychologia 2017; 99:179-186. [DOI: 10.1016/j.neuropsychologia.2017.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 02/26/2017] [Accepted: 03/02/2017] [Indexed: 11/25/2022]
|
14
|
Rightward-biased hemodynamic response of the parahippocampal system during virtual navigation. Sci Rep 2015; 5:9063. [PMID: 25761577 PMCID: PMC4356951 DOI: 10.1038/srep09063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/28/2015] [Indexed: 11/20/2022] Open
Abstract
Phase reset of parahippocampal electrophysiological oscillations in the theta frequency range is said to contribute to item encoding and retrieval during spatial navigation. Although well-studied in non-human animals, this mechanism is poorly understood in humans. Previously we found that feedback stimuli presented in a virtual maze environment elicited a burst of theta power over right-posterior areas of the human scalp, and that the power and phase angle of these oscillations were greater following right turns compared to left turns in the maze. Here we investigated the source of this effect with functional magnetic resonance imaging. Consistent with our predictions, we found that 1) feedback encountered in the maze task activated right parahippocampal cortex (PHC), 2) right PHC was more activated by rewards following right turns compared to left turns in the maze, and 3) the rightward-biased activation was more pronounced in individuals who displayed good spatial abilities. These findings support our previous electrophysiological findings and highlight, in humans, a role for PHC theta oscillations in encoding salient information for the purpose of spatial navigation.
Collapse
|
15
|
Abstract
Spatial representations and walking speed in rodents are consistently related to the phase, frequency, and/or amplitude of θ rhythms in hippocampal local field potentials. However, neuropsychological studies in humans have emphasized the importance of parietal cortex for spatial navigation, and efforts to identify the electrophysiological signs of spatial navigation in humans have been stymied by the difficulty of recording during free exploration of complex environments. We resolved the recording problem and experimentally probed brain activity of human participants who were fully ambulant. On each of 2 d, electroencephalography was synchronized with head and body movement in 13 subjects freely navigating an extended virtual environment containing numerous unique objects. θ phase and amplitude recorded over parietal cortex were consistent when subjects walked through a particular spatial separation at widely separated times. This spatial displacement θ autocorrelation (STAcc) was quantified and found to be significant from 2 to 8 Hz within the environment. Similar autocorrelation analyses performed on an electrooculographic channel, used to measure eye movements, showed no significant spatial autocorrelations, ruling out eye movements as the source of STAcc. Strikingly, the strength of an individual's STAcc maps from day 1 significantly predicted object location recall success on day 2. θ was also significantly correlated with walking speed; however, this correlation appeared unrelated to STAcc and did not predict memory performance. This is the first demonstration of memory-related, spatial maps in humans generated during active spatial exploration.
Collapse
|