1
|
Nie J, Wang X, Sun P, Yu D, Yu Z, Qiu Y, Zhao J. Inadvertently enriched cyanobacteria prompted bacterial phosphorus uptake without aeration in a conventional anaerobic/oxic reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172313. [PMID: 38593871 DOI: 10.1016/j.scitotenv.2024.172313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/30/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
The enhanced biological phosphorus removal (EBPR) process requires alternate anaerobic and aerobic conditions, which are regulated respectively by aeration off and on. Recently, in an ordinary EBPR reactor, an abnormal orthophosphate concentration (PO43--P) decline in the anaerobic stage (namely non-aerated phosphorus uptake) aroused attention. It was not occasionally but occurred in each cycle and lasted for 101 d and shared about 16.63 % in the total P uptake amount. After excluding bio-mineralization and surface re-aeration, indoor light conditions (180 to 260 lx) inducing non-aerated P uptake were confirmed. High-throughput sequencing analysis revealed that cyanobacteria could produce oxygen via photosynthesis and were inhabited inside wall biofilm. The cyanobacteria (Pantalinema and Leptolyngbya ANT.L52.2) were incubated in a feeding transparent silicone hose, entered the reactor along with influent, and outcompeted Chlorophyta, which existed in the inoculum. Eventually, this work deciphered the reason for non-aerated phosphorus uptake and indicated its potential application in reducing CO2 emissions and energy consumption via the cooperation of microalgal-bacterial and biofilm-sludge.
Collapse
Affiliation(s)
- Jiaxiang Nie
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaoxia Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Peng Sun
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhengda Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanling Qiu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ji Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Cheng M, Zhang C, Guisasola A, Baeza JA. Evaluating the opportunities for mainstream P-recovery in anaerobic/anoxic/aerobic systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168898. [PMID: 38016545 DOI: 10.1016/j.scitotenv.2023.168898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
Mainstream P-recovery can help wastewater treatment plants (WWTPs) to effectively maintain good enhanced biological phosphorus removal (EBPR) while helping to recover P. In this study, a pilot-scale anaerobic-anoxic-aerobic (A2O) process was operated for simultaneous COD/N/P removal and P-recovery under different operational conditions. The operation with conventional extraction of waste activated sludge (WAS) from the aerobic reactor was compared to the mainstream P-recovery strategy of WAS extraction from the anaerobic reactor. Successful nutrient removal was obtained for both scenarios, but the anaerobic WAS extraction results improved polyphosphate accumulating organisms (PAOs) activity by increasing almost 27 % P concentration in the anaerobic reactor. WAS fermentation was also evaluated, showing that anaerobic WAS required only 3 days to reach a high P concentration, while the aerobic WAS fermentation required up to 7 days. The fermentation process increased the amount of soluble P available for precipitation from 24.4 % up to 51.6 % in the fermented anaerobic WAS scenario. Results obtained by precipitation modelling of these streams showed the limitations for struvite precipitation due to Ca2+ interference and Mg2+ and NH4+ as limiting species. The optimum precipitation scenario showed that P-recovery could reach up to 51 % of the input P, being 90 % struvite.
Collapse
Affiliation(s)
- Mengqi Cheng
- GENOCOV, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | - Congcong Zhang
- GENOCOV, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Albert Guisasola
- GENOCOV, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | - Juan Antonio Baeza
- GENOCOV, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
3
|
Kang D, Yuan Z, Li G, Lee J, Han IL, Wang D, Zheng P, Reid MC, Gu AZ. Toward Integrating EBPR and the Short-Cut Nitrogen Removal Process in a One-Stage System for Treating High-Strength Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13247-13257. [PMID: 37615362 DOI: 10.1021/acs.est.3c03917] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Enhanced biological phosphorus removal (EBPR) is an economical and sustainable process for phosphorus removal from wastewater. Despite the widespread application of EBPR for low-strength domestic wastewater treatment, limited investigations have been conducted to apply EBPR to the high-strength wastewaters, particularly, the integration of EBPR and the short-cut nitrogen removal process in the one-stage system remains challenging. Herein, we reported a novel proof-of-concept demonstration of integrating EBPR and nitritation (oxidation of ammonium to nitrite) in a one-stage sequencing batch reactor to achieve simultaneous high-strength phosphorus and short-cut nitrogen removal. Excellent EBPR performance of effluent 0.8 ± 1.0 mg P/L and >99% removal efficiency was achieved fed with synthetic high-strength phosphorus wastewater. Long-term sludge acclimation proved that the dominant polyphosphate accumulating organisms (PAOs), Candidatus Accumulibacter, could evolve to a specific subtype that can tolerate the nitrite inhibition as revealed by operational taxonomic unit (OTU)-based oligotyping analysis. The EBPR kinetic and stoichiometric evaluations combined with the amplicon sequencing proved that the Candidatus Competibacter, as the dominant glycogen accumulating organisms (GAOs), could well coexist with PAOs (15.3-24.9% and 14.2-33.1%, respectively) and did not deteriorate the EBPR performance. The nitrification activity assessment, amplicon sequencing, and functional-based gene marker quantification verified that the unexpected nitrite accumulation (10.7-21.0 mg N/L) in the high-strength EBPR system was likely caused by the nitritation process, in which the nitrite-oxidizing bacteria (NOB) were successfully out-selected (<0.1% relative abundance). We hypothesized that the introduction of the anaerobic phase with high VFA concentrations could be the potential selection force for achieving nitritation based on the literature review and our preliminary batch tests. This study sheds light on developing a new feasible technical route for integrating EBPR with short-cut nitrogen removal for efficient high-strength wastewater treatment.
Collapse
Affiliation(s)
- Da Kang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853-0001, United States
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310029, China
| | - Zhihang Yuan
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| | - Guangyu Li
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| | - Jangho Lee
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| | - I L Han
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| | - Dongqi Wang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310029, China
| | - Matthew C Reid
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| |
Collapse
|
4
|
Feng X, Qian Y, Xi P, Cao R, Qin L, Zhang S, Chai G, Huang M, Li K, Xiao Y, Xie L, Song Y, Wang D. Partial Nitrification and Enhanced Biological Phosphorus Removal in a Sequencing Batch Reactor Treating High-Strength Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095653. [PMID: 35565048 PMCID: PMC9105176 DOI: 10.3390/ijerph19095653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022]
Abstract
Complex and high levels of various pollutants in high-strength wastewaters hinder efficient and stable biological nutrient removal. In this study, the changes in pollutant removal performance and microbial community structure in a laboratory-scale anaerobic/aerobic sequencing batch reactor (SBR) treating simulated pre-fermented high-strength wastewater were investigated under different influent loading conditions. The results showed that when the influent chemical oxygen demand (COD), total nitrogen (TN), and orthophosphate (PO43−-P) concentrations in the SBR increased to 983, 56, and 20 mg/L, respectively, the COD removal efficiency was maintained above 85%, the TN removal efficiency was 64.5%, and the PO43−-P removal efficiency increased from 78.3% to 97.5%. Partial nitrification with simultaneous accumulation of ammonia (NH4+-N) and nitrite (NO2−-N) was observed, which may be related to the effect of high influent load on ammonia- and nitrite-oxidising bacteria. The biological phosphorus removal activity was higher when propionate was used as the carbon source instead of acetate. The relative abundance of glycogen accumulating organisms (GAOs) increased significantly with the increase in organic load, while Tetrasphaera was the consistently dominant polyphosphate accumulating organism (PAO) in the reactor. Under high organic loading conditions, there was no significant PAO–GAO competition in the reactor, thus the phosphorus removal performance was not affected.
Collapse
Affiliation(s)
- Xiaojun Feng
- Xi’an Modern Chemistry Research Institute, Xi’an 710065, China; (X.F.); (Y.Q.); (P.X.)
| | - Yishi Qian
- Xi’an Modern Chemistry Research Institute, Xi’an 710065, China; (X.F.); (Y.Q.); (P.X.)
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Peng Xi
- Xi’an Modern Chemistry Research Institute, Xi’an 710065, China; (X.F.); (Y.Q.); (P.X.)
| | - Rui Cao
- Department of Municipal and Environmental Engineering, Xi’an University of Technology, Xi’an 710048, China; (R.C.); (L.Q.); (S.Z.); (G.C.); (M.H.); (K.L.); (Y.X.); (L.X.); (Y.S.)
| | - Lu Qin
- Department of Municipal and Environmental Engineering, Xi’an University of Technology, Xi’an 710048, China; (R.C.); (L.Q.); (S.Z.); (G.C.); (M.H.); (K.L.); (Y.X.); (L.X.); (Y.S.)
| | - Shengwei Zhang
- Department of Municipal and Environmental Engineering, Xi’an University of Technology, Xi’an 710048, China; (R.C.); (L.Q.); (S.Z.); (G.C.); (M.H.); (K.L.); (Y.X.); (L.X.); (Y.S.)
| | - Guodong Chai
- Department of Municipal and Environmental Engineering, Xi’an University of Technology, Xi’an 710048, China; (R.C.); (L.Q.); (S.Z.); (G.C.); (M.H.); (K.L.); (Y.X.); (L.X.); (Y.S.)
| | - Mengbo Huang
- Department of Municipal and Environmental Engineering, Xi’an University of Technology, Xi’an 710048, China; (R.C.); (L.Q.); (S.Z.); (G.C.); (M.H.); (K.L.); (Y.X.); (L.X.); (Y.S.)
| | - Kailong Li
- Department of Municipal and Environmental Engineering, Xi’an University of Technology, Xi’an 710048, China; (R.C.); (L.Q.); (S.Z.); (G.C.); (M.H.); (K.L.); (Y.X.); (L.X.); (Y.S.)
| | - Yi Xiao
- Department of Municipal and Environmental Engineering, Xi’an University of Technology, Xi’an 710048, China; (R.C.); (L.Q.); (S.Z.); (G.C.); (M.H.); (K.L.); (Y.X.); (L.X.); (Y.S.)
| | - Lin Xie
- Department of Municipal and Environmental Engineering, Xi’an University of Technology, Xi’an 710048, China; (R.C.); (L.Q.); (S.Z.); (G.C.); (M.H.); (K.L.); (Y.X.); (L.X.); (Y.S.)
| | - Yuxin Song
- Department of Municipal and Environmental Engineering, Xi’an University of Technology, Xi’an 710048, China; (R.C.); (L.Q.); (S.Z.); (G.C.); (M.H.); (K.L.); (Y.X.); (L.X.); (Y.S.)
| | - Dongqi Wang
- Department of Municipal and Environmental Engineering, Xi’an University of Technology, Xi’an 710048, China; (R.C.); (L.Q.); (S.Z.); (G.C.); (M.H.); (K.L.); (Y.X.); (L.X.); (Y.S.)
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Shaanxi Key Laboratory of Water Resources and Environment, Xi’an University of Technology, Xi’an 710048, China
- Correspondence:
| |
Collapse
|
5
|
Effect of biofilm media application on biomass characteristics and membrane permeability in the biological spatiotemporal phase-separation process. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Bahreini G, Elbahrawi M, Elbeshbishy E, Santoro D, Nakhla G. Biological nutrient removal enhancement using fermented primary and rotating belt filter biosolids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148947. [PMID: 34273832 DOI: 10.1016/j.scitotenv.2021.148947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
This research compared the impact of two primary treatment options (i.e. primary clarification and rotating belt filtration (RBF)) on biological nutrients removal (BNR) process, using sludge fermentation liquid (SFL) as a carbon source. The liquid fraction of both fermented primary and RBF sludges comparably enhanced BNR. Despite the significant contribution of the unpurified SFL to the sharp increase in nutrient levels; i.e. 47%-64% (primary effluent; PE), and 45%-53% (RBF) of the soluble nitrogen and phosphorus loads; readily biodegradable COD and volatile fatty acids (VFAs) fractions of the combined feed increased significantly (2.5-6.1 times), compared to the original feed by additional SFL. Removal efficiencies in the reactors reached 57% (total nitrogen) and 92% (total phosphorus) after addition of SFL. Effluent nitrogen and phosphorus of the two reactors were close in the range of 15 ± 6 mg N/L, and 0.5 ± 0.3 mg P/L, respectively. Kinetics studies showed denitrification rates of 1.3, and 1.13 kg NO3-N/m3.d for primary effluent and RBF effluent-fed reactors, respectively. Phosphorus release rates were 11.7 and 9.7 mg PO4-P/g VSS.h, for primary, and RBF effluents, respectively; showing 20%-22% lower rates in the RBF SFL. Incorporating experimental data into a plant-wide model for a 100 MLD facility receiving typical medium strength wastewater, showed that although primary treatment enhanced the biogas production by 96% (primary clarification) and 62% (RBF) trains; combined fermentation and anaerobic digestion was effective to enhance the biogas production by 59% on average, compared to the base scenario without primary treatment. Additionally, if primary clarification exists, then the addition of fermentation results in additional revenue of C$1890/d in the plant, considering additional revenue of C$2230/d due to VFA generation in contrast to only C$340/d loss due to the reduced methane production.
Collapse
Affiliation(s)
- Gholamreza Bahreini
- Department of Civil and Environmental Engineering, Western University, London, ON N6A 5B9, Canada.
| | - Moustafa Elbahrawi
- Department of Civil and Environmental Engineering, Western University, London, ON N6A 5B9, Canada
| | - Elsayed Elbeshbishy
- Civil Engineering Department, Ryerson University, Toronto, ON M5B 2K3, Canada
| | | | - George Nakhla
- Department of Civil and Environmental Engineering, Western University, London, ON N6A 5B9, Canada; Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 5B9, Canada
| |
Collapse
|
7
|
Izadi P, Izadi P, Eldyasti A. A review of biochemical diversity and metabolic modeling of EBPR process under specific environmental conditions and carbon source availability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112362. [PMID: 33831633 DOI: 10.1016/j.jenvman.2021.112362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 05/25/2023]
Abstract
Enhanced biological phosphorus removal (EBPR) is one of the most promising technologies as an economical and environmentally sustainable technique for removal of phosphorus from wastewater (WW). However, with high capacity of EBPR, insufficient P-removal is a major yet common issue of many full-scale wastewater treatment plants (WWTP), due to misinterpreted environmental and microbial disturbance. By developing a rather extensive understanding on biochemical pathways and metabolic models governing the anaerobic and aerobic/anoxic processes; the optimal operational conditions, environmental changes and microbial population interaction are efficiently predicted. Therefore, this paper critically reviews the current knowledge on biochemical pathways and metabolic models of phosphorus accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) as the most abundant microbial populations in EBPR process with an insight on the effect of available carbon source types in WW on phosphorus removal performance. Moreover, this paper critically assesses the gaps and potential future research in metabolic modeling area. With all the developments on EBPR process in the past few decades, there is still lack of knowledge in this critical sector. This paper hopes to touch on this problem by gathering the existing knowledge and to provide farther insights on the future work onto chemical transformations and metabolic strategies in different conditions to benefit the quantitative model as well as WWTP designs.
Collapse
Affiliation(s)
- Parnian Izadi
- Civil engineering, York university, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
| | - Parin Izadi
- Civil engineering, York university, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
| | - Ahmed Eldyasti
- Civil engineering, York university, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
| |
Collapse
|
8
|
Majed N, Gu AZ. Phenotypic dynamics in polyphosphate and glycogen accumulating organisms in response to varying influent C/P ratios in EBPR systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140603. [PMID: 32758819 DOI: 10.1016/j.scitotenv.2020.140603] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/17/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
This study employed molecular tools and single cell Raman micro-spectroscopy techniques to reveal the single cell- and population-level phenotypic dynamics and changes in functionally relevant organisms, namely polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), in response to influent loading readily biodegradable carbon to phosphorus ratio (C/P) changes in enhanced biological phosphorus removal (EBPR) systems. The results, for the first time, provided direct and cellular evidence confirming the adaptive anaerobic metabolic pathway shifts in PAOs in response to influent loading variations. Increase in influent readily biodegradable carbon to phosphorus (C/P) ratio from 20 to 50 led to nearly 50% decline in polyphosphate content and drastic rise of intracellular polyβhydroxybutyrate (PHB) to polyphosphate (polyP) ratio by nearly 6 times in PAOs, indicating corresponding diminishing reliance on polyP hydrolysis for energy as P becomes limiting. Influent carbon availability surge also impacted the intracellular carbon polymers in GAOs, with significant increase in the mean PHB content level but no observed changes in the intracellular glycogen level. Furthermore, the Raman-based quantification of differentiated intracellular polymer content associated with PAOs and GAOs, revealed new insights into the quantitative shift in intracellular carbon storage distribution between the two populations and their variations between the two carbon polymers (PHB, Glycogen). In summary, this investigation revealed high-resolution cellular level information regarding the metabolic flexibility in PAOs, phenotypic stoichiometry changes and carbon flux and distribution among PAOs and GAOs, in response to influent loading conditions. The new information will contribute to improvement in mechanistic EBPR modeling and design.
Collapse
Affiliation(s)
- Nehreen Majed
- Department of Civil Engineering, University of Asia Pacific, 74/A Green Road, Dhaka 1205, Bangladesh; Department of Civil & Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - April Z Gu
- Department of Civil & Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Tsitouras A, Basu O, Al-Ghussain N, Delatolla R. Kinetic effects of anaerobic staging and aeration rates on sequencing batch moving bed biofilm reactors: Carbon, nitrogen, and phosphorus treatment of cheese production wastewater. CHEMOSPHERE 2020; 252:126407. [PMID: 32182506 DOI: 10.1016/j.chemosphere.2020.126407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/23/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
The food and beverage industry produces wastewaters containing high concentrations of organic carbon and nutrients, which when discharged leads to eutrophication and algal blooms. Given recent stringencies in effluent regulations, industries are required to treat their wastewater on-site. There is a critical need for compact, high-rate, cost-effective wastewater technologies to treat industrial wastewaters, such as the sequencing batch moving bed biofilm reactor. The aim of this study is to investigate the potential and evaluate the performance of the sequencing batch moving bed biofilm reactor cycling between anaerobic and aerobic stages to treat high-strength food and beverage wastewaters. Specifically, this study focuses on the effects of anaerobic staging times and enhanced aeration on the removal of carbon, nitrogen, and phosphorous from cheese production wastewaters. Increasing anaerobic staging times was found to improve the removal rates of carbon beyond previously reported moving bed biofilm reactor results. Increasing the anaerobic stage however decreased the total nitrogen removal, with organic nitrogen undergoing ammonification during the anaerobic stage. This study demonstrates an optimum anaerobic staging time of 138 min; with a carbon removal rate of 31.1 g-sCOD·m-2d-1 and a nitrogen removal rate of 1.3 g-N·m-2d-1. Enhanced aeration was found to be detrimental to phosphorous removal, where a moderate aeration rate demonstrated a net total phosphorous removal of approximately 22 mg-P·l-1 with the phosphorous-content of the suspended solids being approximately 4%. Finally, the sequencing batch moving bed biofilm reactor shows potential for on-site treatment of carbon, nitrogen, and phosphorous from cheese production wastewater.
Collapse
Affiliation(s)
- Alexandra Tsitouras
- Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur, K1N 6N5, Ottawa, ON, Canada
| | - Onita Basu
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Nour Al-Ghussain
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur, K1N 6N5, Ottawa, ON, Canada.
| |
Collapse
|
10
|
Chen X, Sun X, Xu P, Wang S, Zhou T, Wang X, Yang C, Lu Q. Optimal regulation of N/P in horizontal sub-surface flow constructed wetland through quantitative phosphorus removal by steel slag fed. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5779-5787. [PMID: 31853854 DOI: 10.1007/s11356-019-06696-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
High concentration of nitrogen and phosphorus and imbalance of N/P can lead to the formation of water and the malignant proliferation of toxic microalgae. This study put forward the advanced nutrient removal with the regulation of effluent N/P as the core in order to restrain the eutrophication and growth of poisonous algae. According to the preliminary study and review, the optimal N/P for non-toxic green algae was 50:1. The horizontal sub-surface flow constructed wetland was filled with steel slag and ceramsite to achieve the regulation of effluent N/P. The results showed that steel slag had the stable P removal capacity when treating synthetic solution with low P concentration and the average removal rate for 1.5, 1.0, and 0.5 mg/L synthetic P solution was 2.98 ± 0.20 mg kg-1/h, 2.26 ± 0.15 mg kg-1/h, and 1.11 ± 0.10 mg kg-1/h, respectively. Combined with P removal rate and P removal task, the filling amount of steel slag along the SSFCW (sub-surface flow constructed wetland) was 3.22 kg, 4.24 kg, and 4.31 kg. In order to ensure the stability of dephosphorization of steel slag, the regeneration of P removal capacity was investigated by switching operation of two parallel SSFCW in 20 days for cycle. The N removal was limited for the deficiency of carbon source (COD (chemical oxygen demand)/TN = 3-4), and was stable at 18.5-31.9% which was less affected by temperature. Therefore, by controlling the process of quantitative P removal of steel slag, the effluent N/P in SSFCW can be stable at 40-60:1 in the whole year, so as to inhibit the malignant proliferation of toxic algae.
Collapse
Affiliation(s)
- Xiurong Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
- National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Xiaoli Sun
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
- National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Peng Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
- National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Shanshan Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
- National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Tianjun Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
- National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Xiaoxiao Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
- National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Chenchen Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
- National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Quanling Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
- National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
11
|
Wang D, Tooker NB, Srinivasan V, Li G, Fernandez LA, Schauer P, Menniti A, Maher C, Bott CB, Dombrowski P, Barnard JL, Onnis-Hayden A, Gu AZ. Side-stream enhanced biological phosphorus removal (S2EBPR) process improves system performance - A full-scale comparative study. WATER RESEARCH 2019; 167:115109. [PMID: 31585384 DOI: 10.1016/j.watres.2019.115109] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
To address the common challenges in enhanced biological phosphorus removal (EBPR) related to stability and unfavorable influent carbon to phosphorus ratio, a side-stream EBPR (S2EBPR) process that involves a side-stream anaerobic biological sludge hydrolysis and fermentation reactor was proposed as an emerging alternative. In this study, a full-scale pilot testing was performed with side-by-side operation of a conventional anaerobic-anoxic-aerobic (A2O) process versus a S2EBPR process. A comparison of the performance, activity and microbial community between the two configurations was performed. The results demonstrated that, with the same influent wastewater characteristics, S2EBPR configuration showed improved P removal performance and stability than the conventional A2O configuration, especially when the mixers in the side-stream anaerobic reactor were operated intermittently. Mass balance analysis illustrated that both denitrification and EBPR were enhanced in S2EBPR configuration, where return activated sludge was diverted into the anaerobic zone to promote fermentation and enrichment of polyphosphate accumulating organisms (PAOs), and the influent was bypassed to the anoxic zone for enhancing denitrification. A relatively higher PAO activity and total PAO abundance were observed in S2EBPR than in A2O configuration, accompanied by a higher degree of dependence on glycolysis pathway than tricarboxylic acid cycle. No significant difference in the relative abundances of putative PAOs, including Ca. Accumulibacter and Tetrasphaera, were observed between the two configurations. However, higher microbial community diversity indices were observed in S2EBPR configuration than in conventional one. In addition, consistently lower relative abundance of known glycogen accumulating organisms (GAOs) was observed in S2EBPR system. Extended anaerobic retention time and conditions that generate continuous and more complex volatile fatty acids in the side-stream anaerobic reactor of S2EBPR process likely give more competitive advantage for PAOs over GAOs. PAOs exhibited sustained EBPR activity and delayed decay under extended anaerobic condition, likely due to their versatile metabolic pathways depending on the availability and utilization of multiple intracellular polymers. This study provided new insights into the effects of implementing side-stream EBPR configuration on microbial populations, EBPR activity profiles and resulted system performance.
Collapse
Affiliation(s)
- Dongqi Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States.
| | - Nicholas B Tooker
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States
| | - Varun Srinivasan
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States
| | - Guangyu Li
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States
| | - Loretta A Fernandez
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States
| | - Peter Schauer
- Clean Water Services, 16060 SW 85th Avenue, Tigard, OR, 97224, United States
| | - Adrienne Menniti
- Clean Water Services, 16060 SW 85th Avenue, Tigard, OR, 97224, United States
| | - Chris Maher
- Clean Water Services, 16060 SW 85th Avenue, Tigard, OR, 97224, United States
| | - Charles B Bott
- Hampton Roads Sanitation District, 1434 Air Rail Avenue, Virginia Beach, VA, 23454, United States
| | - Paul Dombrowski
- Woodard & Curran, Inc., 1699 King Street, Enfield, CT, 06082, United States
| | - James L Barnard
- Black & Veatch, 8400 Ward Parkway, Kansas City, MO, 64114, United States
| | - Annalisa Onnis-Hayden
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States
| | - April Z Gu
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States; School of Civil and Environmental Engineering, Cornell University, 220 Hollister Hall, Ithaca, NY, 14853, United States.
| |
Collapse
|
12
|
Li D, Zhang S, Li S, Zeng H, Zhang J. Aerobic granular sludge operation and nutrients removal mechanism in a novel configuration reactor combined sequencing batch reactor and continuous-flow reactor. BIORESOURCE TECHNOLOGY 2019; 292:122024. [PMID: 31450062 DOI: 10.1016/j.biortech.2019.122024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
A novel aerobic granular sludge (AGS) system called SBR (sequencing batch reactor)-CF (continuous-flow) system merging the advantages of sequencing batch reactors (SBRs) and continuous flow (CF) reactors was developed. The AGS was successfully operated in the SBR-CF system which consisted of four same SBRs (each served as settling tank/anaerobic feeding tank/aerobic reacting tank in turn). The effects of aeration intensity and hydraulic retention time (HRT) on the SBR-CF system were studied. The results showed strong aeration intensity (9.74 h-1 in this study) and appropriate HRT (9 h in this study) were more favorable to the nutrients removal. The EEM-PARAFAC analysis was applied to characterize the LB-EPS, TB-EPS and domestic wastewater, as results TB-EPS was found play an important role in the biosorption in COD removal of the SBR-CF system. In addition, a preliminary conceptual reaction process model in the SBR-CF system was built using high-throughput pyrosequencing and phylogenetic assignment.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China.
| | - Shirui Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Shuai Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
13
|
Semitela S, Pirra A, Braga FG. Impact of mesophilic co-composting conditions on the quality of substrates produced from winery waste activated sludge and grape stalks: Lab-scale and pilot-scale studies. BIORESOURCE TECHNOLOGY 2019; 289:121622. [PMID: 31200284 DOI: 10.1016/j.biortech.2019.121622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
In this study, different amounts of a mixture of winery waste activated sludge and grape stalks were co-composted for 8 weeks, at lab-scale under different temperatures and aeration rates, and at pilot-scale. None of the experiments showed the occurrence of a thermophilic stage, even when the composting temperature was kept at 34 °C, which might suggest biological suppression by the acclimated mesophilic microorganisms ubiquitous to the winery waste activated sludge. The composted substrates were fully characterized by physicochemical analysis, plant growth tests and germination indexes using parsley (Petroselinum crispum) seedlings and seeds. Surprisingly, despite the higher volume reduction at lab-scale, it was the initial mixture and the mixture composted outdoors which presented the best horticultural qualities, with seedling survival rates of 88.9% and 87.0% and modified germination indexes of 54% and 161%, respectively. These findings shed some light on previous contradictory results and allow the development of new recycling strategies.
Collapse
Affiliation(s)
- Sabrina Semitela
- Centro de Química, Universidade de Trás-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real, Portugal
| | - António Pirra
- Centro de Química, Universidade de Trás-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real, Portugal
| | - Fernando G Braga
- Centro de Química, Universidade de Trás-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real, Portugal.
| |
Collapse
|
14
|
Crutchik D, Frison N, Eusebi AL, Fatone F. Biorefinery of cellulosic primary sludge towards targeted Short Chain Fatty Acids, phosphorus and methane recovery. WATER RESEARCH 2018; 136:112-119. [PMID: 29500972 DOI: 10.1016/j.watres.2018.02.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/31/2018] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
Cellulose from used toilet paper is a major untapped resource embedded in municipal wastewater which recovery and valorization to valuable products can be optimized. Cellulosic primary sludge (CPS) can be separated by upstream dynamic sieving and anaerobically digested to recover methane as much as 4.02 m3/capita·year. On the other hand, optimal acidogenic fermenting conditions of CPS allows the production of targeted short-chain fatty acids (SCFAs) as much as 2.92 kg COD/capita·year. Here propionate content can be more than 30% and can optimize the enhanced biological phosphorus removal (EBPR) processes or the higher valuable co-polymer of polyhydroxyalkanoates (PHAs). In this work, first a full set of batch assays were used at three different temperatures (37, 55 and 70 °C) and three different initial pH (8, 9 and 10) to identify the best conditions for optimizing both the total SCFAs and propionate content from CPS fermentation. Then, the optimal conditions were applied in long term to a Sequencing Batch Fermentation Reactor where the highest propionate production (100-120 mg COD/g TVSfed·d) was obtained at 37 °C and adjusting the feeding pH at 8. This was attributed to the higher hydrolysis efficiency of the cellulosic materials (up to 44%), which increased the selective growth of Propionibacterium acidopropionici in the fermentation broth up to 34%. At the same time, around 88% of the phosphorus released during the acidogenic fermentation was recovered as much as 0.15 kg of struvite per capita·year. Finally, the potential market value was preliminary estimated for the recovered materials that can triple over the conventional scenario of biogas recovery in existing municipal wastewater treatment plants.
Collapse
Affiliation(s)
- Dafne Crutchik
- Department of Biotechnology, University of Verona, Verona, Italy; Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Nicola Frison
- Department of Biotechnology, University of Verona, Verona, Italy.
| | - Anna Laura Eusebi
- Department of Science and Engineering of Materials, Environment and City Planning, Faculty of Engineering, Polytechnic University of Marche, Ancona, Italy
| | - Francesco Fatone
- Department of Science and Engineering of Materials, Environment and City Planning, Faculty of Engineering, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
15
|
Carvalho VCF, Freitas EB, Silva PJ, Fradinho JC, Reis MAM, Oehmen A. The impact of operational strategies on the performance of a photo-EBPR system. WATER RESEARCH 2018; 129:190-198. [PMID: 29149674 DOI: 10.1016/j.watres.2017.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 09/21/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
A novel Phototrophic - Enhanced Biological Phosphorus Removal (Photo-EBPR) system, consisting of a consortium of photosynthetic organisms and polyphosphate accumulating organisms (PAOs), was studied in this work. A sequencing batch reactor was fed with a mixture of acetate and propionate (75%-25%) and subjected to dark/light cycles in order to select a photo-EBPR system containing PAOs and photosynthetic organisms, the latter likely providers of oxygen to the system. The results from the selection period (stage 1) showed that the photo-EBPR culture was capable of performing P release in the dark and P uptake in the presence of light, under limited oxygen concentrations. During the optimization period, the aeration period, which was initially provided at the end of the light phase, was gradually reduced until a non-aerated system was achieved, while the light intensity was increased. After optimization of the operational conditions, the selected consortium of photosynthetic organisms/PAOs showed high capacity of P removal in the light phase in the absence of air or other electron acceptor. A net P removal of 34 ± 3 mg-P/L was achieved, with a volumetric P removal rate of 15 ± 2 mg-P/L.h, and 79 ± 8% of P removal from the system. Also, in limiting oxygen conditions, the P uptake rate was independent of the PHA consumption, which demonstrates that the organisms obtained energy for P removal from light. These results indicated that a photo-EBPR system can be a potential solution for P removal with low COD/P ratios and in the absence of air, prospecting the use of natural sunlight as illumination, which would reduce the costs of EBPR operation regarding aeration.
Collapse
Affiliation(s)
- V C F Carvalho
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - E B Freitas
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - P J Silva
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - J C Fradinho
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - M A M Reis
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - A Oehmen
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
16
|
Novel MBR_based main stream biological nutrient removal process: high performance and microbial community. Biodegradation 2017; 29:11-22. [PMID: 29080942 DOI: 10.1007/s10532-017-9810-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/23/2017] [Indexed: 10/18/2022]
Abstract
For municipal wastewater treatment, main stream biological nutrient removal (BNR) process is becoming more and more important. This lab-scale study, novel MBR_based BNR processes (named A2N-MBR and A2NO-MBR) were built. Comparison of the COD removal, results obtained demonstrated that COD removal efficiencies were almost the same in three processes, with effluent concentration all bellowed 30 mg L-1. However, the two-sludge systems (A2N-MBR and A2NO-MBR) had an obvious advantage over the A2/O for denitrification and phosphorus removal, with the average TP removal rates of 91.20, 98.05% and TN removal rates of 73.00, 79.49%, respectively, higher than that of 86.45 and 61.60% in A2/O process. Illumina Miseq sequencing revealed that Candidatus_Accumulibacter, which is capable of using nitrate as an electron acceptor for phosphorus and nitrogen removal simultaneously, was the dominant phylum in both A2N-MBR and A2NO-MBR process, accounting for 28.74 and 23.98%, respectively. Distinguishingly, major organism groups related to nitrogen and phosphorus removal in A2/O system were Anaerolineaceae_uncultured, Saprospiraceae_uncultured and Thauera, with proportions of 11.31, 8.56 and 5.00%, respectively. Hence, the diversity of dominant PAOs group was likely responsible for the difference in nitrogen and phosphorus removal in the three processes.
Collapse
|
17
|
Yan P, Guo JS, Wang J, Ji FY, Zhang CC, Chen YP, Shen Y. Enhanced excess sludge hydrolysis and acidification in an activated sludge side-stream reactor process with single-stage sludge alkaline treatment: a pilot scale study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22761-22770. [PMID: 27562811 DOI: 10.1007/s11356-016-7490-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
A pilot-scale side-stream reactor process with single-stage sludge alkaline treatment was employed to systematically investigate characteristics of excess sludge hydrolysis and acidification with alkaline treatment and evaluate feasibility of recovering a carbon source (C-source) from excess sludge to enhance nutrient removal at ambient temperature. The resulting C-source and volatile fatty acid specific yields reached 349.19 mg chemical oxygen demand (COD)/g volatile suspended solids (VSS) d-1 and 121.3 mg COD/g VSS d-1, respectively, the process had excellent C-source recovery potential. The propionic-to-acetic acid ratio of the recovered C-source was 3.0 times that in the influent, which beneficially enhanced biological phosphorus removal. Large populations and varieties of hydrolytic acid producing bacteria cooperated with alkaline treatment to accelerate sludge hydrolysis and acidification. Physicochemical characteristics indicated that recovered C-source was derived primarily from extracellular polymeric substances hydrolysis rather than from cells disruption during alkaline treatment. This study showed that excess sludge as carbon source was successfully recycled by alkaline treatment in the process.
Collapse
Affiliation(s)
- Peng Yan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Science, Chongqing, 400714, China
| | - Jin-Song Guo
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Science, Chongqing, 400714, China
| | - Jing Wang
- Chongqing Jianzhu College, Chongqing, 400072, China
| | - Fang-Ying Ji
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Cheng-Cheng Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - You-Peng Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
- Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Science, Chongqing, 400714, China.
| | - Yu Shen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
- Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Science, Chongqing, 400714, China.
| |
Collapse
|
18
|
Li D, Lv Y, Zeng H, Zhang J. Long term operation of continuous-flow system with enhanced biological phosphorus removal granules at different COD loading. BIORESOURCE TECHNOLOGY 2016; 216:761-767. [PMID: 27295254 DOI: 10.1016/j.biortech.2016.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
In this study, a continuous-flow system with enhanced biological phosphorus removal (EBPR) granules was operated at different COD concentrations (200, 300 and 400mgL(-)(1)) to investigate the effect of COD loading on this system. The results showed that when the COD concentration in influent was increased to 400mgL(-)(1), the anaerobic COD removal efficiency and total phosphorus removal efficiency reduced obviously and the settling ability of granules deteriorated due to the proliferation of filamentous bacteria. Moreover, high COD loading inhibited the EPS secretion and destroyed the stability of granules. Results of high-through pyrosequencing indicated that filamentous bacteria had a competitive advantage over polyphosphate-accumulating organisms (PAOs) at high COD loading. The performance of system, settling ability of granules and proportion of PAOs gradually recovered to the initial level after the COD concentration was reduced to 200mgL(-)(1) on day 81.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China.
| | - Yufeng Lv
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
19
|
Yan X, Li B, Lei F, Feng X, Pang B. Enhanced deodorization and sludge reduction in situ by a humus soil cooperated anaerobic/anoxic/oxic (A2O) wastewater treatment system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15963-15969. [PMID: 27146529 DOI: 10.1007/s11356-016-6771-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
Simultaneous sludge reduction and malodor abatement in humus soil cooperated an anaerobic/anoxic/oxic (A2O) wastewater treatment were investigated in this study. The HSR-A2O was composed of a humus soil reactor (HSR) and a conventional A2O (designated as C-A2O).The results showed that adding HSR did not deteriorate the chemical oxygen demand (COD) removal, while total phosphorus (TP) removal efficiency in HSR-A2O was improved by 18 % in comparison with that in the C-A2O. Both processes had good performance on total nitrogen (TN) removal, and there was no significant difference between them (76.8 and 77.1 %, respectively). However, NH4 (+)-N and NO3 (-)-N were reduced to 0.3 and 6.7 mg/L in HSR-A2O compared to 1.5 and 4.5 mg/L. Moreover, adding HSR induced the sludge reduction, and the sludge production rate was lower than that in the C-A2O. The observed sludge yield was estimated to be 0.32 kg MLSS/day in HSR-A2O, which represent a 33.5 % reduction compared to a C-A2O process. Activated sludge underwent humification and produced more humic acid in HSR-A2O, which is beneficial to sludge reduction. Odor abatement was achieved in HSR-A2O, ammonium (NH3), and sulfuretted hydrogen (H2S) emission decreased from 1.34 and 1.33 to 0.06 mg/m(3), 0.025 mg/m(3) in anaerobic area, with the corresponding reduction efficiency of 95.5 and 98.1 %. Microbial community analysis revealed that the relevant microorganism enrichment explained the reduction effect of humus soil on NH3 and H2S emission. The whole study demonstrated that humus soil enhanced odor abatement and sludge reduction in situ.
Collapse
Affiliation(s)
- Xing Yan
- Guangzhou Sewage Purification Co., LTD., Guangzhou, 510163, Guangdong, China.
| | - Biqing Li
- Guangzhou Sewage Purification Co., LTD., Guangzhou, 510163, Guangdong, China
| | - Fang Lei
- Guangzhou Sewage Purification Co., LTD., Guangzhou, 510163, Guangdong, China
| | - Xin Feng
- Guangzhou Sewage Purification Co., LTD., Guangzhou, 510163, Guangdong, China
| | - Bo Pang
- Guangzhou Sewage Purification Co., LTD., Guangzhou, 510163, Guangdong, China
| |
Collapse
|
20
|
Liu H, Wang Q, Sun Y, Zhou K, Liu W, Lu Q, Ming C, Feng X, Du J, Jia X, Li J. Isolation of a non-fermentative bacterium, Pseudomonas aeruginosa, using intracellular carbon for denitrification and phosphorus-accumulation and relevant metabolic mechanisms. BIORESOURCE TECHNOLOGY 2016; 211:6-15. [PMID: 26995616 DOI: 10.1016/j.biortech.2016.03.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/04/2016] [Accepted: 03/09/2016] [Indexed: 06/05/2023]
Abstract
A newly designed pilot-scale system was developed to enrich denitrifying phosphate-accumulating organisms (DNPAOs) for nitrogen and phosphorus nutrient removal synchronously. A strain of DNPAOs was isolated and its biochemical characteristics and metabolic mechanisms of this bacterial strain were analyzed. The results showed that compared with previously reported system, this newly designed system has higher removal rates of nutrients. Removal efficiencies of NH3-N, TN, TP, and COD in actual wastewater were 82.64%, 79.62%, 87.22%, and 90.41%, respectively. Metabolic activity of DNPAOs after anoxic stage in this study even reached 94.64%. Pseudomonas aeruginosa is a strain of non-fermentative DNPAOs with strong nitrogen and phosphorus removal abilities. Study on the metabolic mechanisms suggested that intracellular PHB of P. aeruginosa plays dual roles, supplying energy for phosphorus accumulation and serving as a major carbon source for denitrification.
Collapse
Affiliation(s)
- Hui Liu
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Qin Wang
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yanfu Sun
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Kangqun Zhou
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wen Liu
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qian Lu
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Caibing Ming
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xidan Feng
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jianjun Du
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jun Li
- Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
21
|
Rezaee S, Zinatizadeh A, Asadi A. Comparative study on effect of mechanical mixing and ultrasound on the performance of a single up-flow anaerobic/aerobic/anoxic bioreactor removing CNP from milk processing wastewater. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Peces M, Astals S, Clarke WP, Jensen PD. Semi-aerobic fermentation as a novel pre-treatment to obtain VFA and increase methane yield from primary sludge. BIORESOURCE TECHNOLOGY 2016; 200:631-638. [PMID: 26551651 DOI: 10.1016/j.biortech.2015.10.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/21/2015] [Accepted: 10/24/2015] [Indexed: 06/05/2023]
Abstract
There is a growing trend to consider organic wastes as potential sources of renewable energy and value-add products. Fermentation products have emerged as attractive value-add option due to relative easy production and broad application range. However, pre-fermentation and extraction of soluble products may impact down-stream treatment processes, particularly energy recovery by anaerobic digestion. This paper investigates primary sludge pre-fermentation at different temperatures (20, 37, 55, and 70°C), treatment times (12, 24, 48, and 72h), and oxygen availability (semi-aerobic, anaerobic); and its impact on anaerobic digestion. Pre-fermentation at 20 and 37°C succeeded for VFA production with acetate and propionate being major products. Pre-fermentation at 37, 55, and 70°C resulted in higher solubilisation yield but it reduced sludge methane potential by 20%. Under semi-aerobic conditions, pre-fermentation allowed both VFA recovery (43gCODVFAkg(-1)VS) and improved methane potential. The latter phenomenon was linked to fungi that colonised the sludge top layer during pre-fermentation.
Collapse
Affiliation(s)
- M Peces
- Centre for Solid Waste Bioprocessing, Schools of Civil and Chemical Engineering, The University of Queensland, St. Lucia Campus, 4072 QLD, Australia
| | - S Astals
- Advanced Water Management Centre, The University of Queensland, St. Lucia Campus, 4072 QLD, Australia.
| | - W P Clarke
- Centre for Solid Waste Bioprocessing, Schools of Civil and Chemical Engineering, The University of Queensland, St. Lucia Campus, 4072 QLD, Australia
| | - P D Jensen
- Advanced Water Management Centre, The University of Queensland, St. Lucia Campus, 4072 QLD, Australia
| |
Collapse
|
23
|
Goebel TS, Lascano RJ, Davis TA. Phosphate Sorption in Water by Several Cationic Polymer Flocculants. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jacen.2016.51005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Yin Z, Tarabara VV, Xagoraraki I. Effect of pressure relaxation and membrane backwash on adenovirus removal in a membrane bioreactor. WATER RESEARCH 2016; 88:750-757. [PMID: 26595096 DOI: 10.1016/j.watres.2015.10.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 06/05/2023]
Abstract
Pressure relaxation and permeate backwash are two commonly used physical methods for membrane fouling mitigation in membrane bioreactor (MBR) systems. In order to assess the impact of these methods on virus removal by MBRs, experiments were conducted in a bench-scale submerged MBR treating synthetic wastewater. The membranes employed were hollow fibers with the nominal pore size of 0.45 μm. The experimental variables included durations of the filtration (tTMP>0), pressure relaxation (tTMP=0) and backwash (tTMP<0) steps. Both pressure relaxation and permeate backwash led to significant reductions in removal of human adenovirus (HAdV). For the same value of tTMP>0/tTMP=0, longer filtration/relaxation cycles (i.e. larger tTMP+tTMP=0) led to higher transmembrane pressure (TMP) but did not have a significant impact on HAdV removal. A shorter backwash (tTMP<0 = 10 min) at a higher flow rate (Q = 40 mL/min) resulted in more substantial decreases in TMP and HAdV removal than a longer backwash (tTMP<0 = 20 min) at a lower flow rate (Q = 20 mL/min) even though the backwash volume (QtTMP<0) was the same. HAdV removal returned to pre-cleaning levels within 16 h after backwash was applied. Moderate to strong correlations (R(2) = 0.63 to 0.94) were found between TMP and HAdV removal.
Collapse
Affiliation(s)
- Ziqiang Yin
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Volodymyr V Tarabara
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
25
|
Tayà C, Guerrero J, Suárez-Ojeda ME, Guisasola A, Baeza JA. Assessment of crude glycerol for Enhanced Biological Phosphorus Removal: Stability and role of long chain fatty acids. CHEMOSPHERE 2015; 141:50-56. [PMID: 26092200 DOI: 10.1016/j.chemosphere.2015.05.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 05/04/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
Enhanced Biological Phosphorus Removal (EBPR) of urban wastewaters is usually limited by the available carbon source required by Polyphosphate Accumulating Organisms (PAO). External carbon sources as volatile fatty acids (VFA) or other pure organic compounds have been tested at lab scale demonstrating its ability to enhance PAO activity, but the application of this strategy at full-scale WWTPs is not cost-effective. The utilization of industrial by-products with some of these organic compounds provides lower cost, but it has the possible drawback of having inhibitory or toxic compounds to PAO. This study is focused on the utilization of crude glycerol, the industrial by-product generated in the biodiesel production, as a possible carbon source to enhance EBPR in carbon-limited urban wastewaters. Crude glycerol has non-negligible content of other organic compounds as methanol, salts, VFA and long chain fatty acids (LCFA). VFA and methanol have been demonstrated to enhance PAO activity, but there is no previous study about the effect of LCFA on PAO. This work presents the operation of an EBPR SBR system using crude glycerol as sole carbon source, studying also its long-term stability. The effect of LCFA is evaluated at short and long-term operation, demonstrating for the first time EBPR activity with LCFA as sole carbon source and its long-term failure due to the increased hydrophobicity of the sludge.
Collapse
Affiliation(s)
- Carlota Tayà
- GENOCOV, Departament d'Enginyeria Química, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Javier Guerrero
- GENOCOV, Departament d'Enginyeria Química, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - María Eugenia Suárez-Ojeda
- GENOCOV, Departament d'Enginyeria Química, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Albert Guisasola
- GENOCOV, Departament d'Enginyeria Química, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Juan Antonio Baeza
- GENOCOV, Departament d'Enginyeria Química, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
26
|
Rezaee S, Zinatizadeh AAL, Asadi A. High rate CNP removal from a milk processing wastewater in a single ultrasound augmented up-flow anaerobic/aerobic/anoxic bioreactor. ULTRASONICS SONOCHEMISTRY 2015; 23:289-301. [PMID: 25457518 DOI: 10.1016/j.ultsonch.2014.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 09/22/2014] [Accepted: 10/17/2014] [Indexed: 06/04/2023]
Abstract
Simultaneous removal of carbon, nitrogen and phosphorus (CNP) in a single bioreactor is of high significance in terms of reactor volume and energy consumption. Therefore, in this study, an innovative up-flow anaerobic/aerobic/anoxic bioreactor (UAAASB) augmented by ultrasound was developed as a high rate single bioreactor for the simultaneous removal of nutrients from a milk processing wastewater. The ultrasonic irradiation used in this work was in the range of high frequency (1.7 MHz). The central composite design (CCD) and response surface methodology (RSM) were applied to design the experimental conditions, model obtained data, and optimize the process. The effects of three independent variables, i.e. hydraulic retention time (HRT), aeration mode and mixed liquor suspended solid (MLSS) concentration on 10 process responses were investigated. The results prove that the ultrasonic irradiation has a positive effect on the sludge settling velocity and effluent turbidity. The optimum conditions were determined as 12-15 h, 4000-5000 mg/l and 1.5-2 for HRT, MLSS concentration and aeration mode, respectively, based on removal efficiency of sCOD ⩾ 90%, TN and TP ⩾ 50%.
Collapse
Affiliation(s)
- S Rezaee
- Water and Wastewater Research Center (WWRC), Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - A A L Zinatizadeh
- Water and Wastewater Research Center (WWRC), Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.
| | - A Asadi
- Water and Wastewater Research Center (WWRC), Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
27
|
Lv XM, Shao MF, Li J, Li CL. Metagenomic Analysis of the Sludge Microbial Community in a Lab-Scale Denitrifying Phosphorus Removal Reactor. Appl Biochem Biotechnol 2015; 175:3258-70. [DOI: 10.1007/s12010-015-1491-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/12/2015] [Indexed: 11/29/2022]
|
28
|
Ge H, Batstone DJ, Keller J. Biological phosphorus removal from abattoir wastewater at very short sludge ages mediated by novel PAO clade Comamonadaceae. WATER RESEARCH 2015; 69:173-182. [PMID: 25481076 DOI: 10.1016/j.watres.2014.11.026] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/06/2014] [Accepted: 11/16/2014] [Indexed: 06/04/2023]
Abstract
Recent increases in global phosphorus costs, together with the need to remove phosphorus from wastewater to comply with water discharge regulations, make phosphorus recovery from wastewater economically and environmentally attractive. Biological phosphorus (Bio-P) removal process can effectively capture the phosphorus from wastewater and concentrate it in a form that is easily amendable for recovery in contrast to traditional (chemical) phosphorus removal processes. However, Bio-P removal processes have historically been operated at medium to long solids retention times (SRTs, 10-20 days typically), which inherently increases the energy consumption while reducing the recoverable carbon fraction and hence makes it incompatible with the drive towards energy self-sufficient wastewater treatment plants. In this study, a novel high-rate Bio-P removal process has been developed as an energy efficient alternative for phosphorus removal from wastewater through operation at an SRT of less than 4 days. The process was most effective at an SRT of 2-2.5 days, achieving >90% phosphate removal. Further reducing the SRT to 1.7 days resulted in a loss of Bio-P activity. 16S pyrotag sequencing showed the community changed considerably with changes in the SRT, but that Comamonadaceae was consistently abundant when the Bio-P activity was evident. FISH analysis combined with DAPI staining confirmed that bacterial cells of Comamonadaceae arranged in tetrads contained polyphosphate, identifying them as the key polyphosphate accumulating organisms at these low SRT conditions. Overall, this paper demonstrates a novel, high-rate phosphorus removal process that can be effectively integrated with short SRT, energy-efficient carbon removal and recovery processes.
Collapse
Affiliation(s)
- Huoqing Ge
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, QLD 4072, Queensland, Australia
| | - Damien J Batstone
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, QLD 4072, Queensland, Australia
| | - Jürg Keller
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, QLD 4072, Queensland, Australia.
| |
Collapse
|
29
|
Yu S, Sun P, Zheng W, Chen L, Zheng X, Han J, Yan T. The effect of COD loading on the granule-based enhanced biological phosphorus removal system and the recoverability. BIORESOURCE TECHNOLOGY 2014; 171:80-87. [PMID: 25189512 DOI: 10.1016/j.biortech.2014.08.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/09/2014] [Accepted: 08/11/2014] [Indexed: 06/03/2023]
Abstract
In this study, the effect of varied COD loading (200, 400, 500, 600 and 800 mg L(-1)) on stability and recoverability of granule-based enhanced biological phosphorus removal (EBPR) system was investigated during continuously 53-d operation. Results showed that COD loading higher than 500 mg L(-1) could obviously deteriorate the granular EBPR system and result in sludge bulking with filamentous bacteria. High COD loading also changed the transformation patterns of poly-β-hydroxyalkanoates (PHAs) and glycogen in metabolism process of polyphosphate-accumulating organisms (PAOs) and inhibited the EPS secretion, which completely destroyed the stability and integrality of granules. Results of FISH indicated that glycogen-accumulating organisms (GAOs) and other microorganisms had a competitive advantage over PAOs with higher COD loading. The community composition and EBPR performance were recovered irreversibly in long time operation when COD loading was higher than 500 mg L(-1).
Collapse
Affiliation(s)
- Shenjing Yu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Peide Sun
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Wei Zheng
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314016, China
| | - Lujun Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiongliu Zheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jingyi Han
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Tao Yan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| |
Collapse
|
30
|
Begum SA, Batista JR. Impact of butyrate on microbial selection in enhanced biological phosphorus removal systems. ENVIRONMENTAL TECHNOLOGY 2014; 35:2961-2972. [PMID: 25189844 DOI: 10.1080/09593330.2014.927531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microbial selection in an enhanced biological phosphorus removal system was investigated in a laboratory-scale sequencing batch reactor fed exclusively with butyrate as a carbon source. As reported in the few previous studies, butyrate uptake was slow and phosphorus (P) release occurred during the entire anaerobic period. Polyphosphate-accumulating organism (PAO), i.e. Candidatus Accumulibacter phosphatis (named as Accumulibacter), glycogen-accumulating organisms (GAOs), i.e. Candidatus Competibacter phosphatis (named as Competibacter) and Defluviicoccus-related, tetrad-forming alphaproteobacteria (named as Defluviicoccus) were identified using fluorescence in situ hybridization analysis. The results show that Accumulibacter and Defluviicoccus were selected in the butyrate-fed reactor, whereas Competibacter was not selected. P removal was efficient at the beginning of the experiment with an increasing percentage relative abundance (% RA) of PAOs. The % RA of Accumulibacter and Defluviicoccus increased from 13% to 50% and 8% to 16%, respectively, and the % RA of Competibacter decreased from 8% to 2% during the experiment. After 6 weeks, P removal deteriorated with the poor correlation between the percentage of P removal and % RA of GAOs.
Collapse
Affiliation(s)
- Shamim A Begum
- a Department of Chemical Engineering , Tuskegee University , 522E Luther Foster Hall, Tuskegee , AL 36088 , USA
| | | |
Collapse
|
31
|
Lv XM, Shao MF, Li CL, Li J, Gao XL, Sun FY. A comparative study of the bacterial community in denitrifying and traditional enhanced biological phosphorus removal processes. Microbes Environ 2014; 29:261-8. [PMID: 24964811 PMCID: PMC4159037 DOI: 10.1264/jsme2.me13132] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Denitrifying phosphorus removal is an attractive wastewater treatment process due to its reduced carbon source demand and sludge minimization potential. Two lab-scale sequencing batch reactors (SBRs) were operated in alternating anaerobic-anoxic (A-A) or anaerobic-oxic (A-O) conditions to achieve denitrifying enhanced biological phosphate removal (EBPR) and traditional EBPR. No significant differences were observed in phosphorus removal efficiencies between A-A SBR and A-O SBR, with phosphorus removal rates being 87.9% and 89.0% respectively. The community structures in denitrifying and traditional EBPR processes were evaluated by high-throughput sequencing of the PCR-amplified partial 16S rRNA genes from each sludge. The results obtained showed that the bacterial community was more diverse in A-O sludge than in A-A sludge. Taxonomy and β-diversity analyses indicated that a significant shift occurred in the dominant microbial community in A-A sludge compared with the seed sludge during the whole acclimation phase, while a slight fluctuation was observed in the abundance of the major taxonomies in A-O sludge. One Dechloromonas-related OTU outside the 4 known Candidatus “Accumulibacter” clades was detected as the main OTU in A-A sludge at the stationary operation, while Candidatus “Accumulibacter” dominated in A-O sludge.
Collapse
Affiliation(s)
- Xiao-Mei Lv
- Harbin Institute of Technology Shenzhen Graduate School
| | | | | | | | | | | |
Collapse
|
32
|
Wei J, Imai T, Higuchi T, Arfarita N, Yamamoto K, Sekine M, Kanno A. Effect of different carbon sources on the biological phosphorus removal by a sequencing batch reactor using pressurized pure oxygen. BIOTECHNOL BIOTEC EQ 2014; 28:471-477. [PMID: 26019532 PMCID: PMC4434035 DOI: 10.1080/13102818.2014.924200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 01/29/2014] [Indexed: 11/05/2022] Open
Abstract
The effect of different carbon source on the efficiency of enhanced biological phosphorus removal (EBPR) from synthetic wastewater with acetate and two ratios of acetate/starch as a carbon source was investigated. Three pressurized pure oxygen sequencing batch reactor (POSBR) experiments were operated. The reactors (POSBR1, POSBR2 and POSBR3) were developed and studied at different carbon source ratios of 100% acetate, 75% acetate plus 25% starch and 50% acetate plus 50% starch, respectively. The results showed that POSBR1 had a higher phosphate release-to-uptake ratio and, respectively, in a much higher phosphorus removal efficiency (93.8%) than POSBR2 (84.7%) and POSBR3 (77.3%) within 30 days of operation. This indicated that the phosphorus removal efficiency decreased the higher the starch concentration was. It was also found that POSBR1 produced more polyhydroxyalkanoates (PHAs) than the other reactors. Based on the effect of the carbon source on the PHA concentration and consumption, the conditions of POSBR1 were favourable for the growth of polyphosphate-accumulating organisms and therefore, beneficial for the biological phosphorus removal process.
Collapse
Affiliation(s)
- Jie Wei
- Graduate School of Science and Engineering, Division of Environmental Science and Engineering, Yamaguchi University, Yamaguchi, Japan
| | - Tsuyoshi Imai
- Graduate School of Science and Engineering, Division of Environmental Science and Engineering, Yamaguchi University, Yamaguchi, Japan
| | - Takaya Higuchi
- Graduate School of Science and Engineering, Division of Environmental Science and Engineering, Yamaguchi University, Yamaguchi, Japan
| | - Novi Arfarita
- Graduate School of Science and Engineering, Division of Environmental Science and Engineering, Yamaguchi University, Yamaguchi, Japan
- Faculty of Agrotechnology, Malang Islamic University, Malang, Indonesia
| | - Koichi Yamamoto
- Systems Design and Engineering, Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi, Japan
| | - Masahiko Sekine
- Systems Design and Engineering, Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi, Japan
| | - Ariyo Kanno
- Systems Design and Engineering, Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
33
|
Zheng X, Sun P, Lou J, Cai J, Song Y, Yu S, Lu X. Inhibition of free ammonia to the granule-based enhanced biological phosphorus removal system and the recoverability. BIORESOURCE TECHNOLOGY 2013; 148:343-351. [PMID: 24055976 DOI: 10.1016/j.biortech.2013.08.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/14/2013] [Accepted: 08/17/2013] [Indexed: 06/02/2023]
Abstract
The inhibition of free ammonia (FA) to the granule-based enhanced biological phosphorus removal (EBPR) system and the recoverability from macro- to micro-scale were investigated in this study. FA was found to seriously deteriorate the EBPR performance and sludge characteristic (settleability and morphology). The FA inhibitory threshold of 17.76 mg NL(-1) was established. Acclimation phenomenon took place when poly-phosphate accumulating organisms (PAOs) were exposed for long time to constant FA concentration (8.88 mg NL(-1)). The repressed polysaccharides excretion could lead to breaking the stability and integrity of the granules. Therefore, the reduced particle size and granule disintegration were observed. The molecular analysis revealed that FA had a significant influence on the microbial communities and FA inhibition may provide a competitive advantage to glycogen accumulating organisms (GAOs) over PAOs. Interestingly, the community composition was found irreversible by recovery (Dice coefficients, 36.3%), although good EBPR performance was re-achieved.
Collapse
Affiliation(s)
- Xiongliu Zheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Ostace GS, Baeza JA, Guerrero J, Guisasola A, Cristea VM, Agachi PŞ, Lafuente J. Development and economic assessment of different WWTP control strategies for optimal simultaneous removal of carbon, nitrogen and phosphorus. Comput Chem Eng 2013. [DOI: 10.1016/j.compchemeng.2013.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Effect of Ferric Chloride on the Properties of Biological Sludge in Co-precipitation Phosphorus Removal Process. Chin J Chem Eng 2013. [DOI: 10.1016/s1004-9541(13)60511-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Zhu R, Wu M, Yang J. Effect of sludge retention time and phosphorus to carbon ratio on biological phosphorus removal in HS-SBR process. ENVIRONMENTAL TECHNOLOGY 2013; 34:429-435. [PMID: 23530356 DOI: 10.1080/09593330.2012.698650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Sludge retention time (SRT) and phosphorus to carbon ratio (P/C) in the feed are important control parameters in biological phosphorus removal. In this study, humus soil sequencing batch reactor (HS-SBR) process was operated with different SRTs (five, 10 and 15 days) and P/C feeding (0.0125 and 0.1) to evaluate their phosphorus removal efficiencies. The HS-SBR was composed of a humus soil reactor (HSR) and a conventional SBR (designated as hsSBR to differentiate from the conventional SBR used as a control). The results showed that the phosphorus removal efficiency was 82.7%, 97.3% and 97.3% at SRTs of five, 10 and 15 days respectively and acetate utilization efficiency for phosphorus release with SRTs of 10 and 15 days was much higher than that with an SRT of five days. In addition, a high P/C feeding (0.1) could promote the growth of the phosphate accumulating organisms in the hsSBR; however, the efficiency of phosphorus removal was lower than a low P/C feeding (0.0125) at an SRT of 15 days. All these observations suggested that a relatively long SRT and low P/C feeding exert a useful effect on the phosphorus removal in the hsSBR.
Collapse
Affiliation(s)
- Rui Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, PR China
| | | | | |
Collapse
|
37
|
Shi J, Lu X, Yu R, Zhu W. Nutrient removal and phosphorus recovery performances of a novel anaerobic-anoxic/nitrifying/induced crystallization process. BIORESOURCE TECHNOLOGY 2012; 121:183-189. [PMID: 22858484 DOI: 10.1016/j.biortech.2012.06.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/17/2012] [Accepted: 06/23/2012] [Indexed: 06/01/2023]
Abstract
An anaerobic-anoxic/nitrifying (A(2)N) two sludge process coupled with induced crystallization (IC) called A(2)N-IC process was developed for wastewater nutrient removal and phosphorus recovery. The performances of A(2)N-IC process in comparison with A(2)N process at different COD to phosphorus (COD/P) feeding ratios were investigated. The results indicated that A(2)N-IC achieved not only high and stable nutrient removal but also phosphorus recovery. Calcium phosphorus crystals were formed in the crystallization reactor in A(2)N-IC. Moreover, the incorporation of chemical induced crystallization improved biological phosphorus removal. In A(2)N-IC process, phosphorus removal efficiency was consistently maintained at 99.2%, whereas in A(2)N it decreased from 93.0% to 65.7% with the decrease of feeding COD/P ratio. The COD and ammonia removal efficiencies were regardless of feeding COD/P ratio in the two processes.
Collapse
Affiliation(s)
- Jing Shi
- School of Energy and Environment, Southeast University, Sipailou Road, Nanjing 210096, PR China
| | | | | | | |
Collapse
|
38
|
Guerrero J, Tayà C, Guisasola A, Baeza JA. Glycerol as a sole carbon source for enhanced biological phosphorus removal. WATER RESEARCH 2012; 46:2983-2991. [PMID: 22459328 DOI: 10.1016/j.watres.2012.02.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 02/24/2012] [Accepted: 02/26/2012] [Indexed: 05/31/2023]
Abstract
Wastewaters with low organic matter content are one of the major causes of EBPR failures in full-scale WWTP. This carbon source deficit can be solved by external carbon addition and glycerol is a perfect candidate since it is nowadays obtained in excess from biodiesel production. This work shows for the first time that glycerol-driven EBPR with a single-sludge SBR configuration is feasible (i.e. anaerobic glycerol degradation linked to P release and aerobic P uptake). Two different strategies were studied: direct replacement of the usual carbon source for glycerol and a two-step consortium development with glycerol anaerobic degraders and PAO. The first strategy provided the best results. The implementation of glycerol as external carbon source in full-scale WWTP would require a suitable anaerobic hydraulic retention time. An example using dairy wastewater with a low COD/P ratio confirms the feasibility of using glycerol as an external carbon source to increase P removal activity. The approach used in this work opens a new range of possibilities and, similarly, other fermentable substrates can be used as electron donors for EBPR.
Collapse
Affiliation(s)
- Javier Guerrero
- Departament d'Enginyeria Química, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | | | | | | |
Collapse
|
39
|
Chuang SH, Chang WC, Huang YH, Tseng CC, Tai CC. Effects of different carbon supplements on phosphorus removal in low C/P ratio industrial wastewater. BIORESOURCE TECHNOLOGY 2011; 102:5461-5465. [PMID: 21183336 DOI: 10.1016/j.biortech.2010.11.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 11/23/2010] [Accepted: 11/25/2010] [Indexed: 05/30/2023]
Abstract
This study focuses on the effects of different carbon supplements on biological phosphorus removal in the optonics and semiconductor industrial wastewater treatment. Experimental results demonstrate that the addition of a carbon source (glucose, acetate, and digester supernatant) improved phosphorus removal effectively. When the COD/P ratios were controlled in the range of 18-20 (using glucose and supernatant as supplement), the acclimated sludge showed more than 98% removal of phosphorus. In addition, different organic carbons induce dissimilar behavior in anaerobic release and aerobic uptake of phosphorus. The glucose supplement induces significant phosphorus release in anaerobic phase and then an increased phosphorus uptake in aerobic phase. The released phosphorus descended in anaerobic phase when acetate and supernatant were added. There was a good linear relationship of first order reaction between initial COD concentration and specific substrate utilization rate in anaerobic phase.
Collapse
Affiliation(s)
- Shun-Hsing Chuang
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung County 41349, Taiwan.
| | | | | | | | | |
Collapse
|
40
|
Zhang Z, Li H, Zhu J, Weiping L, Xin X. Improvement strategy on enhanced biological phosphorus removal for municipal wastewater treatment plants: full-scale operating parameters, sludge activities, and microbial features. BIORESOURCE TECHNOLOGY 2011; 102:4646-4653. [PMID: 21306892 DOI: 10.1016/j.biortech.2011.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 05/30/2023]
Abstract
The poor quality of effluent discharged by municipal wastewater treatment plants (WWTPs) is threatening the safety of water ecology. This study, which integrated a field survey, batch tests, and microbial community identification, was designed to improve the effectiveness of the enhanced biological phosphorus removal (EBPR) process for WWTPs. Over two-thirds of the investigated WWTPs could not achieve total P in effluent lower than 0.5 mg/L, mainly due to the high ratio of chemical oxygen demand to P (28.6-196.2) in the influent. The rates of anaerobic P release and aerobic P uptake for the activated sludge varied from 0.22 to 7.9 mg/g VSS/h and 0.43 to 8.11 mg/g VSS/h, respectively. The fraction of Accumulibacter (PAOs: polyphosphate accumulating organisms) was 4.8 ± 2.0% of the total biomass, while Competibacter (GAOs: glycogen-accumulating organisms) accounted for 4.8 ± 6.4%. The anaerobic P-release rate was found to be an effective indicator of EBPR. Four classifications of the principal components were identified to improve the EBPR effluent quality and sludge activity.
Collapse
Affiliation(s)
- Zhijian Zhang
- College of Natural Research and Environmental Sciences, Institute of Environmental Science, ZheJiang University, KuanXian Avenue 268, HangZhou, ZheJiang Province 310029, PR China.
| | | | | | | | | |
Collapse
|
41
|
Park KY, Lee JW, Song KG, Ahn KH. Ozonolysate of excess sludge as a carbon source in an enhanced biological phosphorus removal for low strength wastewater. BIORESOURCE TECHNOLOGY 2011; 102:2462-2467. [PMID: 21109429 DOI: 10.1016/j.biortech.2010.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/28/2010] [Accepted: 11/01/2010] [Indexed: 05/30/2023]
Abstract
Potential use of the municipal sludge ozonolysate as a carbon source was examined for phosphorus removal from low strength wastewater in a modified intermittently decanted extended aeration (IDEA) process. At ozone dosage of 0.2 g O(3)/g solids, readily biodegradable COD accounted for about 36% of COD from sludge ozonolysate. The denitrification potential of ozonolysate as a carbon source was comparable to that of acetate. Although, the first order constant for phosphorus release with the ozonolysate was half that of acetate, it was much higher than that of wastewater. Continuous operation of the modified IDEA process showed that the removals of nitrogen and phosphorus were simultaneously enhanced by addition of the ozonolysate. Phosphorus release was significantly induced after complete denitrification indicating that phosphorus release was strongly depended on nitrate concentration. Effectiveness of the ozonolysate as a carbon source for EBPR was also confirmed in a track study of the modified IDEA.
Collapse
Affiliation(s)
- K Y Park
- Department of Civil and Environmental System Engineering, Konkuk University, Seoul, South Korea
| | | | | | | |
Collapse
|
42
|
Research on polyhydroxyalkanoates and glycogen transformations: Key aspects to biologic nitrogen and phosphorus removal in low dissolved oxygen systems. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11783-010-0243-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Freitas F, Temudo MF, Carvalho G, Oehmen A, Reis MAM. Robustness of sludge enriched with short SBR cycles for biological nutrient removal. BIORESOURCE TECHNOLOGY 2009; 100:1969-1976. [PMID: 19056261 DOI: 10.1016/j.biortech.2008.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 10/09/2008] [Accepted: 10/12/2008] [Indexed: 05/27/2023]
Abstract
In this study, it is proposed that short sequencing batch reactor (SBR) cycles select and maintain a robust and active biomass, able to cope with typical disturbances occurring in wastewater treatment plants. In order to test this hypothesis, an SBR system was subjected to COD, N and P shock loads. It was shown that the sludge enriched in the SBR operated with short cycles was able to rapidly recover from the tested disturbances. COD and N removal recovered within 1-2 days for shock loads of 10 times the standard concentration. The P removal took up to 2-3 sludge ages to fully recover from the COD spike, but the enhanced biological phosphorus removal (EBPR) performance was still able to be totally re-established after each of the tests, even in theoretically adverse conditions for the growth of polyphosphate accumulating organisms.
Collapse
Affiliation(s)
- Filomena Freitas
- CQFB/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | | | | | |
Collapse
|
44
|
Watanabe T, Masaki K, Iwashita K, Fujii T, Iefuji H. Treatment and phosphorus removal from high-concentration organic wastewater by the yeast Hansenula anomala J224 PAWA. BIORESOURCE TECHNOLOGY 2009; 100:1781-1785. [PMID: 19010663 DOI: 10.1016/j.biortech.2008.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Revised: 10/04/2008] [Accepted: 10/06/2008] [Indexed: 05/27/2023]
Abstract
A flocculent yeast, Hansenula anomala J224 PAWA, bred in this study, accumulated twice as much phosphorus as the wild type. Over a 30-d period, PAWA removed 70-80% of dissolved total phosphorus from sweet-potato and barley shochu wastewaters (alcoholic distillery wastewaters) while the wild type removed only 30%. Waste sludge was easily separated from effluent wastewater because PAWA cells made large flocks that rapidly settled. Component analysis suggested that PAWA sludge could be used as a protein source for feedstuff and as a phosphorus source for fertilizer. Under anaerobic conditions, denitrification was rapid, resulting in the removal of large amounts of nitrogen from barley shochu wastewater. These results suggest that small shochu manufacturers could benefit from using PAWA to remove phosphorus and organic compounds and then by using a combination of the upflow anaerobic sludge blanket and the downflow hanging sponge method (UASB-DHS method) for nitrification/denitrification.
Collapse
Affiliation(s)
- Takashi Watanabe
- Graduate School of Biosphere Science Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
45
|
Wang DB, Li XM, Yang Q, Zeng GM, Liao DX, Zhang J. Biological phosphorus removal in sequencing batch reactor with single-stage oxic process. BIORESOURCE TECHNOLOGY 2008; 99:5466-5473. [PMID: 18082396 DOI: 10.1016/j.biortech.2007.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 11/05/2007] [Accepted: 11/05/2007] [Indexed: 05/25/2023]
Abstract
The performance of biological phosphorus removal (BPR) in a sequencing batch reactor (SBR) with single-stage oxic process was investigated using simulated municipal wastewater. The experimental results showed that BPR could be achieved in a SBR without anaerobic phase, which was conventionally considered as a key phase for BPR. Phosphorus (P) concentration 0.22-1.79 mg L(-1) in effluent can be obtained after 4h aeration when P concentration in influent was about 15-20 mg L(-1), the dissolved oxygen (DO) was controlled at 3+/-0.2 mg L(-1) during aerobic phase and pH was maintained 7+/-0.1, which indicated the efficiencies of P removal were achieved 90% above. Experimental results also showed that P was mainly stored in the form of intracellular storage of polyphosphate (poly-P), and about 207.235 mg phosphates have been removed by the discharge of rich-phosphorus sludge for each SBR cycle. However, the energy storage poly-beta-hydroxyalkanoates (PHA) was almost kept constant at a low level (5-6 mg L(-1)) during the process. Those results showed that phosphate could be transformed to poly-P with single-stage oxic process without PHA accumulation, and BPR could be realized in net phosphate removal.
Collapse
Affiliation(s)
- Dong-Bo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | | | | | | | | | | |
Collapse
|
46
|
Li H, Chen Y, Gu G. The effect of propionic to acetic acid ratio on anaerobic-aerobic (low dissolved oxygen) biological phosphorus and nitrogen removal. BIORESOURCE TECHNOLOGY 2008; 99:4400-7. [PMID: 17919901 DOI: 10.1016/j.biortech.2007.08.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 08/19/2007] [Accepted: 08/21/2007] [Indexed: 05/08/2023]
Abstract
In this paper, three lab-scale sequencing batch reactors (SBR-A, B, and C) operated with anaerobic/aerobic (low dissolved oxygen, 0.15-0.45 mg L(-1)) configuration were long-term cultured, respectively with single acetic acid and propionic/acetic acid of 1/1 and 2/1 (carbon molar ratio), and the comparisons of anaerobic and aerobic transformations of phosphorus and nitrogen among them were made. With the increase of propionic/acetic acid, lower anaerobic phosphorus release and higher phosphorus release to short-chain fatty acids uptake ratio were observed, and less anaerobic and aerobic transformations of glycogen and poly-3-hydroxybutyrate as well as total polyhydroxyalkanoates occurred, but the transformations of poly-3-hydroxyvalerate and poly-3-hydroxy-2-methyvalerate increased. The phosphorus removal efficiency was respectively 81, 94 and 97% in SBR-A, B and C. Almost all ammonium was removed and no significant nitrite was accumulated at different propionic/acetic acid ratios. However, the nitrate accumulation and total nitrogen removal were observed to be affected by propionic/acetic acid ratio. The total nitrogen removal efficiency was 61, 68 and 82%, and the aerobic end nitrate concentration was 8.05, 6.40 and 3.54 mg L(-1) in three SBRs, respectively. All the above studies indicated that the sole acetic acid caused more nitrate accumulation than propionic and acetic acids mixture, and a pertinent increase of wastewater propionic/acetic acid ratio was of benefit to both nitrogen and phosphorus removal in an anaerobic/aerobic (low dissolved oxygen) biological wastewater treatment process.
Collapse
Affiliation(s)
- Hongjing Li
- State Key Lab of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | | | | |
Collapse
|