1
|
Silva MEF, Saetta R, Raimondo R, Costa JM, Ferreira JV, Brás I. Forest waste composting-operational management, environmental impacts, and application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32279-0. [PMID: 38372920 DOI: 10.1007/s11356-024-32279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
In Portugal, the number of fires and the size of burnt areas are rising dramatically every year, increasing with improper management of agroforestry wastes (AFRs). This work aims to study the composting of these wastes with minimal operational costs and understand the environmental impact and the compost application on burnt soil. Thus, a study of life cycle assessment (LCA) was carried out based on windrow composting processes, considering the avoided environmental impacts associated with the end-product quality and its application as an organic amendment. Three composting piles were made with AFRs from the Residual Biomass Collection Centre (RBCC) in Bodiosa (Portugal). Sewage sludges (SS) from an urban wastewater treatment plant were used as conditioning agent. One pile with AFRs (MC) and another with AFRs and SS (MCS) were managed according to good composting practices. Another pile with the AFRs was developed without management (NMC), thus with a minimal operational cost. Periodically, it was measured several physical and chemical parameters according to standard methodologies. Eleven environmental impacts of compost production, MC and MCS, were analyzed by a LCA tool, and their effect on the growth of Pinus pinea was evaluated, using peat as reference. Composting evolution was expected for both piles. Final composts, MC and MCS, were similar, complying with organic amendment quality parameters. Compost NMC, with no operational management, showed the highest germination index. Piles MC and MCS showed similar environmental impacts, contributing to a negative impact on global warming, acidification, and eutrophication. Greater growth was obtained with application of MCS, followed by MC, and finally, peat. Composting is a sustainable way to valorize AFRs wastes, producing compost that could restore burnt soils and promote plant growth and circular economy.
Collapse
Affiliation(s)
- Maria Elisabete Ferreira Silva
- CISeD-Centre for Research in Digital Services, Polytechnic Institute of Viseu, 3504-510, Viseu, Portugal.
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto (FEUP), R. Dr. Roberto Frias S/N, 4200-465, Porto, Portugal.
| | - Raffaella Saetta
- Department of Civil, Building and Environmental Engineering, University Napoli Federico II, Via Claudio, 21, 80125, Naples, Italy
| | - Roberta Raimondo
- Department of Civil, Building and Environmental Engineering, University Napoli Federico II, Via Claudio, 21, 80125, Naples, Italy
| | - José Manuel Costa
- Research Center for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Viseu, 3504-510, Viseu, Portugal
| | - José Vicente Ferreira
- Research Center for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Viseu, 3504-510, Viseu, Portugal
| | - Isabel Brás
- CISeD-Centre for Research in Digital Services, Polytechnic Institute of Viseu, 3504-510, Viseu, Portugal
| |
Collapse
|
2
|
Li D, Manu MK, Varjani S, Wong JWC. Mitigation of NH 3 and N 2O emissions during food waste digestate composting at C/N ratio 15 using zeolite amendment. BIORESOURCE TECHNOLOGY 2022; 359:127465. [PMID: 35700892 DOI: 10.1016/j.biortech.2022.127465] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Composting of food waste digestate (FWD) is challenging as it requires more bulking agents, and the nitrogen loss is inevitable. To address these issues, FWD composting was conducted at a relatively lower C/N ratio of 15 with zeolite amendment in the dosage range of 5-15%. The impact of zeolite addition on nitrogen loss, NH3 and N2O emissions was assessed during FWD composting. The results showed that the addition of 10-15% zeolite could significantly reduce the phytotoxic nature of FWD and the compost maturity level could be reached in 10-21 days. Furthermore, ∼45% total nitrogen loss could be reduced by mitigating NH3 and N2O emissions upon 10 and 15% zeolite amendment. The outcome of the present study could be used as an effective strategy for composting FWD in any part of the world as the FWD characteristics are similar irrespective of the type of food waste.
Collapse
Affiliation(s)
- Dongyi Li
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - M K Manu
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, China; School of Technology, Huzhou University, Huzhou 311800, China.
| |
Collapse
|
3
|
Hoang HG, Thuy BTP, Lin C, Vo DVN, Tran HT, Bahari MB, Le VG, Vu CT. The nitrogen cycle and mitigation strategies for nitrogen loss during organic waste composting: A review. CHEMOSPHERE 2022; 300:134514. [PMID: 35398076 DOI: 10.1016/j.chemosphere.2022.134514] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Composting is a promising technology to decompose organic waste into humus-like high-quality compost, which can be used as organic fertilizer. However, greenhouse gases (N2O, CO2, CH4) and odorous emissions (H2S, NH3) are major concerns as secondary pollutants, which may pose adverse environmental and health effects. During the composting process, nitrogen cycle plays an important role to the compost quality. This review aimed to (1) summarizes the nitrogen cycle of the composting, (2) examine the operational parameters, microbial activities, functions of enzymes and genes affecting the nitrogen cycle, and (3) discuss mitigation strategies for nitrogen loss. Operational parameters such as moisture, oxygen content, temperature, C/N ratio and pH play an essential role in the nitrogen cycle, and adjusting them is the most straightforward method to reduce nitrogen loss. Also, nitrification and denitrification are the most crucial processes of the nitrogen cycle, which strongly affect microbial community dynamics. The ammonia-oxidizing bacteria or archaea (AOB/AOA) and the nitrite-oxidizing bacteria (NOB), and heterotrophic and autotrophic denitrifiers play a vital role in nitrification and denitrification with the involvement of ammonia monooxygenase (amoA) gene, nitrate reductase genes (narG), and nitrous oxide reductase (nosZ). Furthermore, adding additives such as struvite salts (MgNH4PO4·6H2O), biochar, and zeolites (clinoptilolite), and microbial inoculation, namely Bacillus cereus (ammonium strain), Pseudomonas donghuensis (nitrite strain), and Bacillus licheniformis (nitrogen fixer) can help control nitrogen loss. This review summarized critical issues of the nitrogen cycle and nitrogen loss in order to help future composting research with regard to compost quality and air pollution/odor control.
Collapse
Affiliation(s)
- Hong Giang Hoang
- Faculty of Health Sciences and Finance - Accounting, Dong Nai Technology University, Bien Hoa, Dong Nai, 76100, Viet Nam
| | - Bui Thi Phuong Thuy
- Faculty of Basic Sciences, Van Lang University, 68/69 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 700000, Viet Nam
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, 81157, Taiwan
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam; School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
| | - Huu Tuan Tran
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, 81157, Taiwan.
| | - Mahadi B Bahari
- Faculty of Science, Universiti Technoloki Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - Van Giang Le
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chi Thanh Vu
- Civil and Environmental Engineering Department, University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| |
Collapse
|
4
|
Industrial Symbiosis for Optimal Bio-Waste Management and Production of a Higher Value-Added Product. Processes (Basel) 2021. [DOI: 10.3390/pr9122228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A considerable amount of food waste ends up in centralized treatment plants due to the lack of preventive measures, resulting in significant environmental impacts. Hospitality food waste management is even more resource-intensive because of animal by-products regulation. According to this regulation, companies must store and then consign waste to specific waste managers. The extensive need for transportation of high-moisture-content materials is the leading cause of the impact. Moreover, the management of category III animal by-products is costly for companies. A previous study has shown the economic benefits of decentralized animal by-product treatment by intensive composting in catering companies. Although the produced compost was characterized by exceptional quality parameters, it was phytotoxic. The investigation of hospitality waste management is scarcely discussed among scholars, and waste management on a regional scale is nearly absent. This study examines the regional management of hospitality food waste by exploiting the municipal waste management infrastructure and intensive composting at the source. The co-maturation experiment with animal by-products and municipal green waste primary composts showed that the phytotoxicity parameters of the cured compost were in the optimal range or below the thresholds (conductivity (1.1 mS cm−1), dissolved organic carbon (82 mg kg−1), and NH4+/NO3− ratio (0.0027)). Additionally, the amounts of total nitrogen, water-soluble nitrogen, and water-soluble phosphorus in the compost were rated as very high. Finally, inventory and environmental impact analysis of the current and planned management approaches showed a reduction in 12 of 18 impact categories.
Collapse
|
5
|
Chojnacka K, Moustakas K, Witek-Krowiak A. Bio-based fertilizers: A practical approach towards circular economy. BIORESOURCE TECHNOLOGY 2020; 295:122223. [PMID: 31623921 DOI: 10.1016/j.biortech.2019.122223] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 05/28/2023]
Abstract
Although for the past 100 years, fertilizer technologies have increasingly used renewable resources, the majority of manufactured products are still based on mineral deposits and fossil fuels. The European Commission has set a goal of 30% reduction of non-renewable resources in fertilizer production. This can only be accomplished if there are incentives for wastes valorization and fines for making use of non-renewable raw materials. This will enable the reduction of eutrophication of surface waters due to the presence of nitrogen and phosphorus, originating from agricultural fields fertilizers. The use of biological waste is a practical solution to recover valuable fertilizer components. In order to effectively implement technologies based on biological resources, it is necessary to construct small wastes solubilization or fertilizer installations at the site of waste generation, which will solve the problem of waste transport or sanitary hazards.
Collapse
Affiliation(s)
- Katarzyna Chojnacka
- Department of Advanced Material Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-373, Poland.
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780 Athens, Greece
| | - Anna Witek-Krowiak
- Department of Chemical Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-373, Poland
| |
Collapse
|
6
|
Joshi TN, Nepali DB, Sah R, Bhattarai T, Midmore DJ. A comparison of composting and vermicomposting for the disposal of poultry waste. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an17177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Poultry products, mostly meat and eggs, provide affordable quality foodstuffs to human populations in Nepal. However, the poultry industry’s by-products, such as litter and offal, also generate potential environmental and human health issues and need a sustainable method of management.
Aims
The present study compared the effectiveness of vermicomposting by using an exotic earthworm species Eisenia fetida, or effective microorganism-based (EM) composting, of poultry litters in the Terai region of Nepal.
Methods
Four types of poultry litter, namely, broiler cage litter (parent stock litter), broiler deep litter, commercial layer cage litter and layer deep litter, each combined with earthworms (vermicompost) or effective microorganisms, were subjected to decomposition in beds. A completely randomised design in a 4 × 2 factorial arrangement (poultry litters by Eisenia fetida or effective microorganism) with three replicates per treatment was applied.
Key results
Macronutrient concentrations, and reduction of the carbon:nitrogen ratio were significantly greater in vermicompost than EM compost. In addition, reduction of the carbon:nitrogen ratio was more significant following vermicomposting for broiler and layer cage litter than in other treatments. The highest initial concentration of N was found in layer cage litter (2.1%) and the lowest in layer deep litter (1.3%) and these increased to 1.5–3.4% and 1.7–1.8% in vermicompost and EM compost respectively. Available phosphorus increased by two- to three-fold in most vermicomposted poultry litters in comparison to initial poultry litters, and a two-fold increase in potassium was likewise achieved. Consistent with these results, worm biomass was significantly higher in layer cage litter and broiler cage litter than in deep litter. More cocoons were evident in layer cage litter, and lowest numbers of cocoon formation were observed in broiler deep litter.
Conclusions
This comparative study showed that vermicomposting is superior to EM composting for bioconversion of poultry litters into value-added compost.
Implications
With the adoption of this result, the poultry industry in Nepal could become more sustainable.
Collapse
|
7
|
Attia TMS, Elsheery NI. Nanomaterials: Scope, Applications, and Challenges in Agriculture and Soil Reclamation. SUSTAINABLE AGRICULTURE REVIEWS 41 2020. [DOI: 10.1007/978-3-030-33996-8_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Application of zeolites in organic waste composting: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101396] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Pyrolysis Process as a Sustainable Management Option of Poultry Manure: Characterization of the Derived Biochars and Assessment of their Nutrient Release Capacities. WATER 2019. [DOI: 10.3390/w11112271] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Raw poultry manure (RPM) and its derived biochars at temperatures of 400 (B400) and 600 °C (B600) were physico-chemically characterized, and their ability to release nutrients was assessed under static conditions. The experimental results showed that RPM pyrolysis operation significantly affects its morphology, surface charges, and area, as well as its functional groups contents, which in turn influences its nutrient release ability. The batch experiments indicated that nutrient release from the RPM as well as biochars attains a pseudo-equilibrium state after a contact time of about 48 h. RPM pyrolysis increased phosphorus stability in residual biochars and, in contrast, transformed potassium to a more leachable form. For instance, at this contact time, P- and K-released amounts passed from 5.1 and 25.6 mg g−1 for RPM to only 3.8 and more than 43.3 mg g−1 for B400, respectively. On the other hand, six successive leaching batch experiments with a duration of 48 h each showed that P and K release from the produced biochars was a very slow process since negligible amounts continued to be released even after a total duration of 12 days. All these results suggest that RPM-derived biochars have specific physico-chemical characteristics allowing them to be used in agriculture as low-cost and slow-release fertilizers.
Collapse
|
10
|
Wang Q, Awasthi MK, Zhao J, Ren X, Wang M, Li R, Wang Z, Zhang Z. Utilization of medical stone to improve the composition and quality of dissolved organic matter in composted pig manure. JOURNAL OF CLEANER PRODUCTION 2018; 197:472-478. [DOI: 10.1016/j.jclepro.2018.06.230] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
11
|
Zarrabi M, Mohammadi AA, Al-Musawi TJ, Najafi Saleh H. Using natural clinoptilolite zeolite as an amendment in vermicomposting of food waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23045-23054. [PMID: 29860684 DOI: 10.1007/s11356-018-2360-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
The effect of adding different proportions of natural clinoptilolite zeolite (5 and 10%) to food waste vermicomposting was investigated by assessing the physicochemical characteristics, worms' growth, and maturation time of finished vermicompost in comparison with the vermicompost prepared with no amendment (control). Vermicomposting was performed in 18 plastic containers for 70 days. The experimental results showed that the carbon-to-nitrogen (C/N) ratios were 15.85, 10.75, and 8.94 for 5 and 10% zeolite concentration and control after 70 days, respectively. The addition of zeolite could facilitate organic matter degradation and increase the total nitrogen content by adsorption of ammonium ions. Increasing the proportion of zeolite from 0% (control) to 10% decreased the ammonia escape by 25% in the final vermicompost. The natural zeolite significantly reduced the electrical conductivity (EC). At the end of the process, salinity uptake efficiency was 39.23% for 5% zeolite treatment and 45.23% for 10% zeolite treatment. The pH values at 5 and 10% zeolite-amended treatments were 7.31 and 7.57, respectively, in comparison to 7.10 in the control. The maturation time at the end of vermicomposting decreased with increasing zeolite concentration. The vermicompost containing 5 and 10% zeolite matured in 49 and 42 days, respectively, in comparison to 56 days for the control. With the use of an initial ten immature Eisenia fetida worms, the number of mature worms in the 10% zeolite treatment was 26 more than that in the 5% zeolite treatment (21 worms) and 9 more than that in the control treatment (17 worms). Significantly, natural zeolite showed a beneficial effect on the characteristics of the end-product when used in the vermicomposting of food waste.
Collapse
Affiliation(s)
- Mansur Zarrabi
- Department of Environmental Health Engineering, Faculty of Health, Alborz University of Medical Sciences, Karaj, Iran
| | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Tariq J Al-Musawi
- Department of Civil Engineering, Faculty of Engineering, Isra University, Amman, Jordan
- Department of Env. Eng., College of Engineering, University of Baghdad, Baghdad, Iraq
| | | |
Collapse
|
12
|
Alavi N, Daneshpajou M, Shirmardi M, Goudarzi G, Neisi A, Babaei AA. Investigating the efficiency of co-composting and vermicomposting of vinasse with the mixture of cow manure wastes, bagasse, and natural zeolite. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 69:117-126. [PMID: 28780295 DOI: 10.1016/j.wasman.2017.07.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/17/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Fermentation of ethanol as a product of sugarcane agro-industry causes the discharge of large amounts of a liquid waste called vinasse into the environment. In this study, co-composting followed by vermicomposting process of the mixtures of vinasse, cow manure, and chopped bagasse was performed for 60days using earthworms of Eisenia fetida species. The results showed that the trend of changes in C/N was decreasing. The pH of the final fertilizer was in alkaline range (8.1-8.4). The total potassium decreased during the process, ranging from 0.062 to 0.15%, while the total phosphorus increased and its values ranged from 0.06 to 0.10%. The germination index (GI) for all samples was 100%, while the cellular respiration maturity index was<2mg C-CO2g-1 organic carbon day-1, confirming a very stable compost. The results of this study indicate that the compost obtained from the co-composting-vermicomposting process could be used as a sound soil amendment.
Collapse
Affiliation(s)
- Nadali Alavi
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Monavvar Daneshpajou
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Shirmardi
- Department of Environmental Health Engineering, Faculty of Paramedical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Gholamreza Goudarzi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdolkazem Neisi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Akbar Babaei
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
13
|
Nassar MY, Abdelrahman EA. Hydrothermal tuning of the morphology and crystallite size of zeolite nanostructures for simultaneous adsorption and photocatalytic degradation of methylene blue dye. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.07.033] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Onwosi CO, Igbokwe VC, Odimba JN, Eke IE, Nwankwoala MO, Iroh IN, Ezeogu LI. Composting technology in waste stabilization: On the methods, challenges and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 190:140-157. [PMID: 28040590 DOI: 10.1016/j.jenvman.2016.12.051] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/18/2016] [Accepted: 12/20/2016] [Indexed: 05/22/2023]
Abstract
Composting technology has become invaluable in stabilization of municipal waste due to its environmental compatibility. In this review, different types of composting methods reportedly applied in waste management were explored. Further to that, the major factors such as temperature, pH, C/N ratio, moisture, particle size that have been considered relevant in the monitoring of the composting process were elucidated. Relevant strategies to improve and optimize process effectiveness were also addressed. However, during composting, some challenges such as leachate generation, gas emission and lack of uniformity in assessing maturity indices are imminent. Here in, these challenges were properly addressed and some strategies towards ameliorating them were proffered. Finally, we highlighted some recent technologies that could improve composting.
Collapse
Affiliation(s)
- Chukwudi O Onwosi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Victor C Igbokwe
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Joyce N Odimba
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Ifeanyichukwu E Eke
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Mary O Nwankwoala
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Ikemdinachi N Iroh
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Lewis I Ezeogu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
15
|
Wang Q, Li R, Cai H, Awasthi MK, Zhang Z, Wang JJ, Ali A, Amanullah M. Improving pig manure composting efficiency employing Ca-bentonite. ECOLOGICAL ENGINEERING 2016; 87:157-161. [DOI: 10.1016/j.ecoleng.2015.11.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
16
|
Oliveira MCD, Gonçalves BN, Pádula GT, Silva VGD, Silva DVD, Freitas AIM. Treatment of poultry litter does not improve performance or carcass lesions in broilers. REV COLOMB CIENC PEC 2015. [DOI: 10.17533/udea.rccp.v28n4a05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Abd El Maksod IH, AlBishri HM, Al-bogami AS. Saudi Arabian White Silica as a Good Adsorbent for Pollutants. CLEAN - SOIL, AIR, WATER 2014; 42:480-486. [DOI: 10.1002/clen.201300279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- Islam Hamdy Abd El Maksod
- Faculty of Science, Chemistry Department (North Jeddah); King Abdul Aziz University; Jeddah Saudi Arabia
- Physical Chemistry Department; National Research Centre; Cairo Egypt
| | - Hassan M. AlBishri
- Faculty of Science, Chemistry Department (North Jeddah); King Abdul Aziz University; Jeddah Saudi Arabia
| | - Abdullah Saad Al-bogami
- Faculty of Science, Chemistry Department (North Jeddah); King Abdul Aziz University; Jeddah Saudi Arabia
| |
Collapse
|
18
|
Nanoenhanced Materials for Reclamation of Mine Lands and Other Degraded Soils: A Review. JOURNAL OF NANOTECHNOLOGY 2012. [DOI: 10.1155/2012/461468] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Successful mine soil reclamation facilitates ecosystem recovery, minimizes adverse environmental impacts, creates additional lands for agricultural or forestry uses, and enhances the carbon (C) sequestration. Nanoparticles with extremely high reactivity and deliverability can be applied as amendments to improve soil quality, mitigate soil contaminations, ensure safe land–application of the conventional amendment materials (e.g., manures and biosolids), and enhance soil erosion control. However, there is no report on using nanoenhanced materials for mine soil reclamation. Through reviewing the up-to-date research results on using environment-friendly nanoparticles for agricultural soil quality improvement and for contaminated soil remediation, this paper synthesizes that these nanomaterials with high potentials for mine soil reclamation include zeolites, zero-valent iron nanoparticles, iron oxide nanoparticles, phosphate-based nanoparticles, iron sulfide nanoparticles and C nanotubes. Transport of these particles in the environment and their possible ecotoxicological effects are also discussed. Additionally, this article proposes a practical and economical approach to applying nanotechnology for mine soil reclamation: adding small amounts of nanoparticles to the conventional soil amendment materials and then applying the mixtures for soil quality improvements. Hence the cost of using nanoparticles is reduced and the benefits of both nanoparticles and the conventional amendment materials are harnessed.
Collapse
|
19
|
Villaseñor J, Rodríguez L, Fernández FJ. Composting domestic sewage sludge with natural zeolites in a rotary drum reactor. BIORESOURCE TECHNOLOGY 2011; 102:1447-1454. [PMID: 20951578 DOI: 10.1016/j.biortech.2010.09.085] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 05/30/2023]
Abstract
This work aimed the influence of zeolites addition on a sludge-straw composting process using a pilot-scale rotary drum reactor. The type and concentration of three commercial natural zeolites were considered: a mordenite and two clinoptilolites (Klinolith and Zeocat). Mordenite caused the greatest carbon removal (58%), while the clinoptilolites halved losses of ammonium. All zeolites removed 100% of Ni, Cr, Pb, and significant amounts (more than 60%) of Cu, Zn and Hg. Zeocat displayed the greatest retention of ammonium and metals, and retention efficiencies increased as Zeocat concentration increased. The addition of 10% Zeocat produced compost compliant with Spanish regulations. Zeolites were separated from the final compost, and leaching studies suggested that zeolites leachates contained very low metals concentrations (<1 mg/kg). Thus, the final compost could be applied directly to soil, or metal-polluted zeolites could be separated from the compost prior to application. The different options have been discussed.
Collapse
Affiliation(s)
- J Villaseñor
- Institute for Chemical and Environmental Technology (ITQUIMA), Department of Chemical Engineering, University of Castilla-La Mancha, Ciudad Real 13071, Spain.
| | | | | |
Collapse
|
20
|
Turan NG, Akdemir A, Ergun ON. Removal of volatile organic compounds by natural materials during composting of poultry litter. BIORESOURCE TECHNOLOGY 2009; 100:798-803. [PMID: 18752939 DOI: 10.1016/j.biortech.2008.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/10/2008] [Accepted: 07/12/2008] [Indexed: 05/26/2023]
Abstract
The objective of this study was to reduce volatile organic compounds (VOCs) produced during composting of poultry litter. The natural zeolite, expanded perlite, pumice and expanded vermiculite as the natural materials were used for the reducing of VOCs. Composting was performed in a laboratory scale in-vessel composting plant. Poultry litter was composted for 100 d with volumetric ratio of natural materials:poultry litter of 1:10. The VOCs were tested using the FT-IR method by VOCs analyzer. Studies showed that VOCs generation was the greatest in the control treatment without any natural materials. The natural materials significantly reduced VOCs. At the end of the processes, removal efficiency was 79.73% for NZ treatment, 54.59% for EP treatment, 88.22% for P treatment and 61.53% for EV treatment. Potential of removal for VOCs on poultry litter matrix using natural materials was in order of: P>NZ>EV>EP.
Collapse
Affiliation(s)
- N G Turan
- Department of Environmental Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey.
| | | | | |
Collapse
|
21
|
Kim HS, Kim HJ. Influence of the zeolite type on the mechanical-thermal properties and volatile organic compound emissions of natural-flour-filled polypropylene hybrid composites. J Appl Polym Sci 2008. [DOI: 10.1002/app.28853] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|