1
|
Donzella S, Fumagalli A, Contente ML, Molinari F, Compagno C. Waste cooking oil and molasses for the sustainable production of extracellular lipase by Saitozyma flava. Biotechnol Appl Biochem 2024; 71:712-720. [PMID: 38409863 DOI: 10.1002/bab.2570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Organic waste valorization is one of the principal goals of the circular economy. Bioprocesses offer a promising approach to achieve this goal by employing microorganisms to convert organic feedstocks into high value products through their metabolic activities. In this study, a fermentation process for yeast cultivation and extracellular lipase production was developed by utilizing food waste. Lipases are versatile enzymes that can be applied in a wide range of industrial fields, from detergent, leather, and biodiesel production to food and beverage manufacturing. Among several oleaginous yeast species screened, Saitozyma flava was found to exhibit the highest secreted lipase activity on pNP-butyrate, pNP-caproate, and pNP-caprylate. The production medium was composed of molasses, a by-product of the sugar industry, which provided nutrients for yeast biomass formation. At the same time, waste cooking oil was employed to induce and enhance extracellular lipase production. After 48 h of process, 20 g/L of yeast biomass and 150 mU/mgdw of lipase activity were achieved, with a productivity of 3 mU/mgdw/h. The purified lipase from S. flava showed optimal performances at temperature 28°C and pH 8.0, exhibiting a specific activity of 62 U/mg when using p-NPC as substrate.
Collapse
Affiliation(s)
- Silvia Donzella
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Andrea Fumagalli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Martina Letizia Contente
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Francesco Molinari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Concetta Compagno
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
2
|
Rmili F, Krayem N, Loiseau C, Gauvry L, Frikha F, Ergan F, Chamkha M, Sayari A, Fendri A. Expression and characterization of an organic solvent tolerant recombinant lipase from Staphylococcus capitis SH6 for food wastewater treatment. Prep Biochem Biotechnol 2024; 54:736-748. [PMID: 37937535 DOI: 10.1080/10826068.2023.2279111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The study illustrated here aims on an organic solvent tolerant lipase from Staphylococcus capitis (SCL). The gene part, encoding the mature lipase, was cloned and sequenced. The concluded polypeptide sequence, equivalent to the protein, consist of 388 amino acid residues with a molecular mass of about 45 kDa. A structure-based alignment of the SCL amino acid sequence shows high identities with those many staphylococcal lipases. From this alignment of sequences, the catalytic triad (Ser 117, Asp 308 and His 347) of SCL could be identified. The mature part of the SCL was expressed in Escherichia coli and the recombinant lipase (r-SCL) was purified to homogeneity. The purified r-SCL presented a quite interesting stability at low temperatures (< 30 °C) and the enzyme was found to be highly stable in polar organic solvent and at a pH ranging from 3 to 12. After that, we have demonstrated that the recombinant enzyme may be implicated in the biodegradability of oily wastewater from effluents of fast-food restaurants; the maximum conversion yield into fatty acids obtained at 30 °C, was 65%.
Collapse
Affiliation(s)
- Fatma Rmili
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Najeh Krayem
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Celine Loiseau
- Laboratoire MMS Mer Molécules Santé (EA2160), Université du Maine, IUT de Laval Génie Biologique, Laval cedex 09, France
| | - Laurent Gauvry
- Laboratoire MMS Mer Molécules Santé (EA2160), Université du Maine, IUT de Laval Génie Biologique, Laval cedex 09, France
| | - Fakher Frikha
- Laboratory of Molecular and Cellular Screening Processes Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Françoise Ergan
- Laboratoire MMS Mer Molécules Santé (EA2160), Université du Maine, IUT de Laval Génie Biologique, Laval cedex 09, France
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Adel Sayari
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Ahmed Fendri
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| |
Collapse
|
3
|
Wang Y, Xiao L, Lv J, Ji J, Zhang M, Li J, Su W, Qian G. Carbon tax-driven technological innovation may accelerate the directional recovery of waste cooking oil into bio-jet fuel: An evolutionary game approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172886. [PMID: 38697542 DOI: 10.1016/j.scitotenv.2024.172886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/14/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Biofuel production from waste cooking oil (WCO) offers an alternative to fossil fuels, especially for high-value bio-jet fuel. However, this industry is hindered by informal recyclers who covertly divert large amounts of WCO to illegal gutter oil production. Investigating the dynamic evolution of stakeholder behavior will help explore solutions. Thus, this study presents a tripartite evolutionary game model that includes the government, formal recyclers, and informal recyclers, aims to redesign the government intervention strategy to promote the directional flow of WCO from restaurant trash cans to bio-jet fuel production. We find that the evolutionary game model exists eight possible evolutionary stability strategies (ESSs), and the choice of each ESS depends mainly on the trade-off between costs and revenues for each stakeholder. The numerical study results reveal that formal recyclers are driven to carry out technological innovation by government support, profiting from bio-aviation kerosene products, and income from carbon emission reduction. These factors also have an indirect impact on the transformation of informal recyclers. Therefore, the government should provide adequate support for technological innovation to formal recyclers and increase their profitability of products to enable them to actively implement innovative strategies. This can be achieved by expanding the sales channels of bio-jet fuel products, implementing patent protection measures, and improving the carbon reduction trading mechanism. Furthermore, the government's high tax rate on formal recyclers and the significant profits earned by informal recyclers through illegal gutter oil production may dissuade them from transitioning their businesses. Above findings are in line with the actual issues of WCO recycling and provide a new dynamic decision-making method for enterprises and government managers.
Collapse
Affiliation(s)
- Yao Wang
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China.
| | - Luying Xiao
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Jianing Lv
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Junnan Ji
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.
| | - Mengyao Zhang
- School of Economics, Shanghai University, Shanghai, China
| | - Jiasheng Li
- Shanghai Resource Utilization and Garbage Sorting Management Centre, Shanghai, China.
| | - Wu Su
- School of Economics, Shanghai University, Shanghai, China
| | - Guangren Qian
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
4
|
Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol. ENERGIES 2022. [DOI: 10.3390/en15093381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The environmental context causes the use of renewable energy to increase, with the aim of finding alternatives to fossil-based products such as fuels. Biodiesel, an alternative to diesel, is now a well-developed solution, and its production from renewable resources makes it perfectly suitable in the environmental context. In addition, it is biodegradable, non-toxic and has low greenhouse gas emissions: reduced about 85% compared to diesel. However, the feedstock used to produce biodiesel competes with agriculture and the application of chemical reactions is not advantageous with a “green” process. Therefore, this review focuses only on bioprocesses currently taking an important place in the production of biodiesel and allow high yields, above 90%, and with very few produced impurities. In addition, the use of waste oils as feedstock, which now accounts for 10% of feedstocks used in the production of biodiesel, avoids competition with agriculture. To present a complete life-cycle of oils in this review, a second part will focus on the valorization of the biodiesel by-product, glycerol. About 10% of glycerol is generated during the production of biodiesel, so it should be recovered to high value-added products, always based on bioprocesses. This review will also present existing techniques to extract and purify glycerol. In the end, from the collection of feedstocks to the production of CO2 during the combustion of biodiesel, this review presents the steps using the “greener” possible processes.
Collapse
|
5
|
Martínez SAH, Melchor-Martínez EM, Hernández JAR, Parra-Saldívar R, Iqbal HM. Magnetic nanomaterials assisted nanobiocatalysis systems and their applications in biofuels production. FUEL 2022. [DOI: 10.1016/j.fuel.2021.122927] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Nabgan W, Jalil AA, Nabgan B, Jadhav AH, Ikram M, Ul-Hamid A, Ali MW, Hassan NS. Sustainable biodiesel generation through catalytic transesterification of waste sources: a literature review and bibliometric survey. RSC Adv 2022; 12:1604-1627. [PMID: 35425206 PMCID: PMC8979057 DOI: 10.1039/d1ra07338a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
Sustainable renewable energy production is being intensely disputed worldwide because fossil fuel resources are declining gradually. One solution is biodiesel production via the transesterification process, which is environmentally feasible due to its low-emission diesel substitute. Significant issues arising with biodiesel production are the cost of the processes, which has stuck its sustainability and the applicability of different resources. In this article, the common biodiesel feedstock such as edible and non-edible vegetable oils, waste oil and animal fats and their advantages and disadvantages were reviewed according to the Web of Science (WOS) database over the timeframe of 1970-2020. The biodiesel feedstock has water or free fatty acid, but it will produce soap by reacting free fatty acids with an alkali catalyst when they present in high portion. This reaction is unfavourable and decreases the biodiesel product yield. This issue can be solved by designing multiple transesterification stages or by employing acidic catalysts to prevent saponification. The second solution is cheaper than the first one and even more applicable because of the abundant source of catalytic materials from a waste product such as rice husk ash, chicken eggshells, fly ash, red mud, steel slag, and coconut shell and lime mud. The overview of the advantages and disadvantages of different homogeneous and heterogeneous catalysts is summarized, and the catalyst promoters and prospects of biodiesel production are also suggested. This research provides beneficial ideas for catalyst synthesis from waste for the transesterification process economically, environmentally and industrially.
Collapse
Affiliation(s)
- Walid Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Aishah Abdul Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Bahador Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Arvind H Jadhav
- Centre for Nano and Material Science, JAIN University Jain Global Campus Bangalore 562112 Karnataka India
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore 54000 Punjab Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Mohamad Wijayanuddin Ali
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Nurul Sahida Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| |
Collapse
|
7
|
Activation and Stabilization of Lipase B from Candida antarctica by Immobilization on Polymer Brushes with Optimized Surface Structure. Appl Biochem Biotechnol 2022; 194:3384-3399. [PMID: 35357660 PMCID: PMC9270307 DOI: 10.1007/s12010-022-03913-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/15/2022] [Indexed: 11/25/2022]
Abstract
A reusable support system for the immobilization of lipases is developed using hybrid polymer-inorganic core shell nanoparticles. The biocatalyst core consists of a silica nanoparticle. PMMA is grafted from the nanoparticle as polymer brush via ARGET ATRP (activator regenerated by electron transfer atom transfer radical polymerization), which allows defining the surface properties by chemical synthesis conditions. Lipase B from Candida antarctica is immobilized on the hybrid particles. The activity and stability of the biocatalyst are analyzed by spectroscopic activity analysis. It is shown that the hydrophobic PMMA brushes provide an activating surface for the lipase giving a higher specific activity than the enzyme in solution. Varying the surface structure from disordered to ordered polymer brushes reveals that the reusability of the biocatalyst is more effectively optimized by the surface structure than by the introduction of crosslinking with glutaraldehyde (GDA). The developed immobilization system is highly suitable for biocatalysis in non-native media which is shown by a transesterification assay in isopropyl alcohol and an esterification reaction in n-heptane.
Collapse
|
8
|
A Short Review on Catalyst, Feedstock, Modernised Process, Current State and Challenges on Biodiesel Production. Catalysts 2021. [DOI: 10.3390/catal11111261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biodiesel, comprising mono alkyl fatty acid esters or methyl ethyl esters, is an encouraging option to fossil fuels or diesel produced from petroleum; it has comparable characteristics and its use has the potential to diminish carbon dioxide production and greenhouse gas emissions. Manufactured from recyclable and sustainable feedstocks, e.g., oils originating from vegetation, biodiesel has biodegradable properties and has no toxic impact on ecosystems. The evolution of biodiesel has been precipitated by the continuing environmental damage created by the deployment of fossil fuels. Biodiesel is predominantly synthesised via transesterification and esterification procedures. These involve a number of key constituents, i.e., the feedstock and catalytic agent, the proportion of methanol to oil, the circumstances of the reaction and the product segregation and purification processes. Elements that influence the yield and standard of the obtained biodiesel encompass the form and quantity of the feedstock and reaction catalyst, the proportion of alcohol to feedstock, the temperature of the reaction, and its duration. Contemporary research has evaluated the output of biodiesel reactors in terms of energy production and timely biodiesel manufacture. In order to synthesise biodiesel for industrial use efficaciously, it is essential to acknowledge the technological advances that have significant potential in this sector. The current paper therefore offers a review of contemporary progress, feedstock categorisation, and catalytic agents for the manufacture of biodiesel and production reactors, together with modernised processing techniques. The production reactor, form of catalyst, methods of synthesis, and feedstock standards are additionally subjects of discourse so as to detail a comprehensive setting pertaining to the chemical process. Numerous studies are ongoing in order to develop increasingly efficacious techniques for biodiesel manufacture; these acknowledge the use of solid catalytic agents and non-catalytic supercritical events. This review appraises the contemporary situation with respect to biodiesel production in a range of contexts. The spectrum of techniques for the efficacious manufacture of biodiesel encompasses production catalysed by homogeneous or heterogeneous enzymes or promoted by microwave or ultrasonic technologies. A description of the difficulties to be surmounted going forward in the sector is presented.
Collapse
|
9
|
Abstract
Enzymes are the highly efficient biocatalyst in modern biotechnological industries. Due to the fragile property exposed to the external stimulus, the application of enzymes is highly limited. The immobilized enzyme by polymer has become a research hotspot to empower enzymes with more extraordinary properties and broader usage. Compared with free enzyme, polymer immobilized enzymes improve thermal and operational stability in harsh environments, such as extreme pH, temperature and concentration. Furthermore, good reusability is also highly expected. The first part of this study reviews the three primary immobilization methods: physical adsorption, covalent binding and entrapment, with their advantages and drawbacks. The second part of this paper includes some polymer applications and their derivatives in the immobilization of enzymes.
Collapse
|
10
|
Mandari V, Devarai SK. Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts via Transesterification and Esterification Reactions: a Critical Review. BIOENERGY RESEARCH 2021; 15:935-961. [PMID: 34603592 PMCID: PMC8476987 DOI: 10.1007/s12155-021-10333-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/11/2021] [Indexed: 06/01/2023]
Abstract
The excessive utilization of petroleum resources leads to global warming, crude oil price fluctuations, and the fast depletion of petroleum reserves. Biodiesel has gained importance over the last few years as a clean, sustainable, and renewable energy source. This review provides knowledge of biodiesel production via transesterification/esterification using different catalysts, their prospects, and their challenges. The intensive research on homogeneous chemical catalysts points to the challenges in using high free fatty acids containing oils, such as waste cooking oils and animal fats. The problems faced are soap formation and the difficulty in product separation. On the other hand, heterogeneous catalysts are more preferable in biodiesel synthesis due to their ease of separation and reusability. However, in-depth studies show the limited activity and selectivity issues. Using biomass waste-based catalysts can reduce the biodiesel production cost as the materials are readily available and cheap. The use of an enzymatic approach has gained precedence in recent times. Additionally, immobilization of these enzymes has also improved the statistics because of their excellent functional properties like easy separation and reusability. However, free/liquid lipases are also growing faster due to better mass transfer with reactants. Biocatalysts are exceptional in good selectivity and mild operational conditions, but attractive features are veiled with the operational costs. Nanocatalysts play a vital role in heterogeneous catalysis and lipase immobilization due to their excellent selectivity, reactivity, faster reaction rates owing to their higher surface area, and easy recovery from the products and reuse for several cycles.
Collapse
Affiliation(s)
- Venkatesh Mandari
- Industrial Bioprocess and Bioprospecting Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy District, Telangana 502285 India
| | - Santhosh Kumar Devarai
- Industrial Bioprocess and Bioprospecting Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy District, Telangana 502285 India
| |
Collapse
|
11
|
Nunes PMB, Fraga JL, Ratier RB, Rocha-Leão MHM, Brígida AIS, Fickers P, Amaral PFF. Waste soybean frying oil for the production, extraction, and characterization of cell-wall-associated lipases from Yarrowia lipolytica. Bioprocess Biosyst Eng 2021; 44:809-818. [PMID: 33389167 DOI: 10.1007/s00449-020-02489-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Abstract
The lipolytic yeast Yarrowia lipolytica produces cell-wall-associated lipases, namely Lip7p and Lip8p, that could have interesting properties as catalyst either in free (released lipase fraction-RLF) or cell-associated (cell-bound lipase fraction-CBLF) forms. Herein, a mixture of waste soybean frying oil, yeast extract and bactopeptone was found to favor the enzyme production. Best parameters for lipase activation and release from the cell wall by means of acoustic wave treatment were defined as: 26 W/cm2 for 1 min for CBLF and 52 W/cm2 for 2 min for RLF. Optimal pH and temperature values for lipase activity together with storage conditions were similar for both the free enzyme and cell-associated one: pH 7.0; T = 37 °C; and > 70% residual activity for 60 days at 4, - 4 °C and for 15 days at 30 °C.
Collapse
Affiliation(s)
- Patrícia M B Nunes
- Escola de Química, Universidade Federal Do Rio de Janeiro, Av. Athos da Silveira Ramos, 149-CT, Bl. E, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-909, Brazil
- Microbial Processes and Interactions, Terra Teaching and Research Centre, University of Liège-Gembloux Agro-Bio Tech, Av. de la Faculté 2B, 5030, Gelmbloux, Belgium
| | - Jully L Fraga
- Escola de Química, Universidade Federal Do Rio de Janeiro, Av. Athos da Silveira Ramos, 149-CT, Bl. E, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Rafael B Ratier
- Escola de Química, Universidade Federal Do Rio de Janeiro, Av. Athos da Silveira Ramos, 149-CT, Bl. E, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Maria Helena M Rocha-Leão
- Escola de Química, Universidade Federal Do Rio de Janeiro, Av. Athos da Silveira Ramos, 149-CT, Bl. E, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Ana I S Brígida
- Embrapa Agroindústria Tropical, Rua Doutora Sara Mesquita, 2270, Pici, Fortaleza, CE, 60511-110, Brazil
| | - Patrick Fickers
- Microbial Processes and Interactions, Terra Teaching and Research Centre, University of Liège-Gembloux Agro-Bio Tech, Av. de la Faculté 2B, 5030, Gelmbloux, Belgium
| | - Priscilla F F Amaral
- Escola de Química, Universidade Federal Do Rio de Janeiro, Av. Athos da Silveira Ramos, 149-CT, Bl. E, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-909, Brazil.
| |
Collapse
|
12
|
A review on influence of reactor technologies and kinetic studies for biodiesel application. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Lipid Extraction Maximization and Enzymatic Synthesis of Biodiesel from Microalgae. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176103] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microalgae has received overwhelming attention worldwide as a sustainable source for energy generation. However, the production of biofuel from microalgae biomass consists of several steps, of which lipid extraction is the most important one. Because of the nature of feedstock, extraction needs special attention. Three different methods were studied to extract algal oil from two different algae variant, Chlorella sp. and Spirulina sp. The highest percentage oil yield was obtained by ultrasonication (9.4% for Chlorella sp., 6.6% for Spirulina sp.) followed by the Soxhlet and solvent extraction processes. Ultrasonication and Soxhlet extraction processes were further optimized to maximize oil extraction as solvent extraction was not effective in extracting lipid. For ultrasonication, an amplitude of 90% recorded the highest percentage yield of oil for Spirulina sp. and a 70% amplitude recorded the highest percentage yield of oil for Chlorella sp. On the other hand, for Soxhlet extraction, a combination of chloroform, hexane, and methanol at a 1:1:1 ratio resulted in the highest yield of algal oil. Afterward, the crude algae oil from the ultrasonication process was transesterified for 5 h using an immobilized lipase (Novozyme 435) at 40 °C to convert triglycerides into fatty acid methyl ester and glycerol. Thus, ultrasonic-assisted lipid extraction was successful in producing biodiesel from both the species.
Collapse
|
14
|
Gupta J, Agarwal M, Dalai A. An overview on the recent advancements of sustainable heterogeneous catalysts and prominent continuous reactor for biodiesel production. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.05.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Developments in the Use of Lipase Transesterification for Biodiesel Production from Animal Fat Waste. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155085] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biodiesel constitutes an attractive source of energy because it is renewable, biodegradable, and non-polluting. Up to 20% biodiesel can be blended with fossil diesel and is being produced and used in many countries. Animal fat waste represents nearly 6% of total feedstock used to produce biodiesel through alkaline catalysis transesterification after its pretreatment. Lipase transesterification has some advantages such as the need of mild conditions, absence of pretreatment, no soap formation, simple downstream purification process and generation of high quality biodiesel. A few companies are using liquid lipase formulations and, in some cases, immobilized lipases for industrial biodiesel production, but the efficiency of the process can be further improved. Recent developments on immobilization support materials such as nanoparticles and magnetic nanomaterials have demonstrated high efficiency and potential for industrial applications. This manuscript reviews the latest advances on lipase transesterification and key operational variables for an efficient biodiesel production from animal fat waste.
Collapse
|
16
|
Ashjari M, Garmroodi M, Amiri Asl F, Emampour M, Yousefi M, Pourmohammadi Lish M, Habibi Z, Mohammadi M. Application of multi-component reaction for covalent immobilization of two lipases on aldehyde-functionalized magnetic nanoparticles; production of biodiesel from waste cooking oil. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Zieniuk B, Wołoszynowska M, Białecka-Florjańczyk E. Enzymatic Synthesis of Biodiesel by Direct Transesterification of Rapeseed Cake. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2019-0089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIncrease in energy demand and limited sources of fossil fuels force the world’s population to seek new energy sources Biodiesel obtained by transesterification of oils with an alcohol in the presence of catalysts is an example of renewable fuel. The aim of the study was to assess the best conditions for enzymatic biodiesel synthesis by direct transesterification of rapeseed cake using Taguchi method. The influence of alcohol (methanol, ethanol, propanol, and butanol), temperature (30–60 °C), C. antarctica lipase B concentration (0.5–2 %), time (6–48 h) and rapeseed cake to alcohol ratio (1:2–1:5) was examined in the synthesis of fatty acid alkyl esters. Optimum conditions for direct enzymatic transesterification of rapeseed cake are: 30 °C, 12 h, 0.5 % of lipase and ethanol in 4:1 ratio to rapeseed cake.
Collapse
Affiliation(s)
- Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., Warsaw02-776, Poland
| | - Małgorzata Wołoszynowska
- Analytical Department, Łukasiewicz Research Network - Institute of Industrial Organic Chemistry, 6 Annopol St., Warsaw03-236, Poland
| | - Ewa Białecka-Florjańczyk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., Warsaw02-776, Poland
| |
Collapse
|
18
|
Muanruksa P, Winterburn J, Kaewkannetra P. A novel process for biodiesel production from sludge palm oil. MethodsX 2019; 6:2838-2844. [PMID: 31871917 PMCID: PMC6911963 DOI: 10.1016/j.mex.2019.09.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/28/2019] [Indexed: 11/16/2022] Open
Abstract
Typically, sludge palm oil (SPO) which discharged from the palm oil refining process, is a low cost material of potential value, due to its high free fatty acid content. Accordingly, there is potential for upgrading low grade oil into valuable biofuel. In this work, we present a novel method for biodiesel production from SPO. The process consists of two steps (i) free fatty acid (FFA) extraction (ii) enzymatic esterification. Firstly, SPO was saponified by hydroalcoholic solution into soap and glycerol. Secondly, the FFAs obtained were further converted into biodiesel via enzymatic esterification catalyzed by immobilised alginate-PVA lipase beads. Biodiesel production from sludge palm oil could be completed. A modified fatty acid extraction was used for SPO fatty acid preparation. Immobilised alginate-PVA lipase beads were used as biocatalyst for esterification reaction.
Collapse
Affiliation(s)
- Papasanee Muanruksa
- Graduate School of Khon Kaen University, Khon Kaen, 40002, Thailand.,Centre for Alternative Energy Research and Development (AERD), Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - James Winterburn
- Department of Chemical Engineering and Analytical Sciences (CEAS), The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Pakawadee Kaewkannetra
- Centre for Alternative Energy Research and Development (AERD), Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand.,Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
19
|
Silica Nanoflowers-Stabilized Pickering Emulsion as a Robust Biocatalysis Platform for Enzymatic Production of Biodiesel. Catalysts 2019. [DOI: 10.3390/catal9121026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enzymatic production of biodiesel had attracted much attention due to its high efficiency, mild conditions and environmental protection. However, the high cost of enzyme, poor solubility of methanol in oil and adsorption of glycerol onto the enzyme limited the popularization of the process. To address these problems, we developed a silica nanoflowers-stabilized Pickering emulsion as a biocatalysis platform with Candida antarctica lipase B (CALB) as model lipase for biodiesel production. Silica nanoflowers (SNFs) were synthesized in microemulsion and served as a carrier for CALB immobilization and then used as an emulsifier for constructing Pickering emulsion. The structure of SNFs and the biocatalytic Pickering emulsion (CALB@SNFs-PE) were characterized in detail. Experimental data about the methanolysis of waste oil to biodiesel was evaluated by response surface methodology. The highest experimental yield of 98.5 ± 0.5% was obtained under the optimized conditions: methanol/oil ratio of 2.63:1, a temperature of 45.97 °C, CALB@SNFs dosage of 33.24 mg and time of 8.11 h, which was closed to the predicted value (100.00%). Reusability test showed that CALB@SNFs-PE could retain 76.68% of its initial biodiesel yield after 15 cycles, which was better than that of free CALB and N435.
Collapse
|
20
|
Lopresto CG, De Paola MG, Albo L, Policicchio MF, Chakraborty S, Calabro V. Comparative analysis of immobilized biocatalyst: study of process variables in trans-esterification reaction. 3 Biotech 2019; 9:443. [PMID: 31763121 DOI: 10.1007/s13205-019-1985-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022] Open
Abstract
This study deals with an experimental investigation into the trans-esterification behavior of two biocatalysts produced by different immobilization techniques of the same lipase from Pseudomonas cepacia. Biocatalysts catalyzed trans-esterification of commercial frying oil. It was verified that no enzyme leaching occurs and stepwise addition of ethanol is needed to improve the process performance. When stoichiometric ethanol has been added completely at the beginning of the reaction, percent mass fraction of esters reached 33% after 9 h and 52% after 30 h. Instead, when ethanol has been added in steps, ester production gradually increased at any time. Moreover, different amounts of biocatalyst were added to the reaction system and it was found that it is not necessary to add more than 3% of biocatalyst with respect to the oil mass to avoid inhibition. The immobilization method influences the reaction progress and the intermediate-glyceride profiles were analyzed. Results showed that the two biocatalysts have the same affinity towards triglycerides, but the covalently immobilized lipase (epobond P. cepacia) has a lower affinity towards diglycerides and monoglycerides and, in general, a lower activity than the absorbed lipase (lipo P. cepacia).
Collapse
|
21
|
Zhang H, Li H, Xu CC, Yang S. Heterogeneously Chemo/Enzyme-Functionalized Porous Polymeric Catalysts of High-Performance for Efficient Biodiesel Production. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02748] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Heng Zhang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
- Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Chunbao Charles Xu
- Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450066, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
22
|
Fathi Z, Doustkhah E, Ebrahimipour G, Darvishi F. Noncovalent Immobilization of Yarrowia lipolytica Lipase on Dendritic-Like Amino Acid-Functionalized Silica Nanoparticles. Biomolecules 2019; 9:biom9090502. [PMID: 31540484 PMCID: PMC6769499 DOI: 10.3390/biom9090502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 11/16/2022] Open
Abstract
Immobilization of enzymes is a promising approach for the cost-effective application of enzymes. Among others, noncovalent but unleachable approaches for immobilization are one of the most favorable and crucial approaches. Herein, silica nanoparticles are modified by (3-aminopropyl)triethoxysilane (APTES) to generate amino-functionalized silica nanoparticles. Then, the amine functionalities are converted to bifunctional amino acid via post-modification that has zwitterionic properties. This nanostructure with the new functional theme is employed to immobilize Yarrowia lipolytica lipase at room temperature with no further post-modification or cross-linking. This immobilization method is further compared with the metal chelate-based immobilization approach on the same support. The biocatalytic activity of the immobilized lipase is examined under various conditions. The encapsulation of lipase through amino acid-functionalized silica nanoparticles exhibited enhanced stability for the immobilized lipase at higher temperatures and unneutral pHs.
Collapse
Affiliation(s)
- Zahra Fathi
- Department of Microbiology, Faculty of Biological Technology, Shahid Beheshti University, Tehran 19839-63113, Iran
| | - Esmail Doustkhah
- Young Researchers and Elite Club, Maragheh Branch Islamic Azad University, Maragheh 55197-47591, Iran.
| | - Golamhossein Ebrahimipour
- Department of Microbiology, Faculty of Biological Technology, Shahid Beheshti University, Tehran 19839-63113, Iran.
| | - Farshad Darvishi
- Microbial Biotechnology and Bioprocess Engineering (MBBE) Group, Department of Microbiology, Faculty of Science, University of Maragheh, Maragheh 55181-83111, Iran.
| |
Collapse
|
23
|
Cui C, Li L, Li M. Improvement of lipase activity by synergistic immobilization on polyurethane and its application for large-scale synthesizing vitamin A palmitate. Prep Biochem Biotechnol 2019; 49:485-492. [PMID: 30888264 DOI: 10.1080/10826068.2019.1587625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have developed an improved and effective method to immobilize lipase on hydrophobic polyurethane foam (PUF) with different modifications. PUF was treated with hydrochloric acid to increase the active sites and then the active carboxyl groups and amino groups were exposed. Enzyme activity of lipase immobilized on PUF-HCL (8000 U/g) was 50% higher than that of lipase immobilized on PUF (5300 U/g). There is an increase in the activity of the immobilized lipase on AA/PEI-modified support (115,000 U/g), a 2.17-fold increase compared to lipase immobilized on the native support was observed. The activity of immobilized lipases was dependent on the PEI molecular weight, with best results from enzyme immobilized on PUF-HCL-AA/PEI (MW 70,000 Da, 12,800 U/g)), which was 2.41 times higher compared to that of the same enzyme immobilized on PUF. These results suggest that the activity of immobilized lipase is influenced by the support surface properties, and a moderate support surface micro-environment is crucial for improving enzyme activity. Finally, the immobilized lipase was used for the production of vitamin A palmitate. The immobilized lipase can be reused for up to 18 times with a conversion rate above 90% for 12 h in a 3 L bioreactor. Research highlights An efficient immobilization protocol on polyurethane foam was developed Polyethyleneimine and acetic acid were used to regulate the micro-environment concurrently The activity of lipase immobilized on PUF-HCL-AA/PEI was improved by 2.41 times Immobilized lipase exhibited excellent operational stability for vitamin A palmitate synthesis.
Collapse
Affiliation(s)
- Caixia Cui
- a Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology , Xinxiang Medical University , Xinxiang , People's Republic of China
| | - Linjing Li
- a Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology , Xinxiang Medical University , Xinxiang , People's Republic of China
| | - Mingjie Li
- a Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology , Xinxiang Medical University , Xinxiang , People's Republic of China
| |
Collapse
|
24
|
Roucher A, Roussarie E, Gauvin RM, Rouhana J, Gounel S, Stines-Chaumeil C, Mano N, Backov R. Bilirubin oxidase-based silica macrocellular robust catalyst for on line dyes degradation. Enzyme Microb Technol 2019; 120:77-83. [DOI: 10.1016/j.enzmictec.2018.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 11/24/2022]
|
25
|
Fathi Z, Doustkhah E, Rostamnia S, Darvishi F, Ghodsi A, Ide Y. Interaction of Yarrowia lipolytica lipase with dithiocarbamate modified magnetic carbon Fe3O4@C-NHCS2H core-shell nanoparticles. Int J Biol Macromol 2018; 117:218-224. [DOI: 10.1016/j.ijbiomac.2018.05.156] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 01/19/2023]
|
26
|
Badgujar VC, Badgujar KC, Yeole PM, Bhanage BM. Enhanced biocatalytic activity of immobilized steapsin lipase in supercritical carbon dioxide for production of biodiesel using waste cooking oil. Bioprocess Biosyst Eng 2018; 42:47-61. [DOI: 10.1007/s00449-018-2013-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/14/2018] [Indexed: 01/15/2023]
|
27
|
Li L, Dyer PW, Greenwell HC. Biodiesel Production via Trans-Esterification Using Pseudomonas cepacia Immobilized on Cellulosic Polyurethane. ACS OMEGA 2018; 3:6804-6811. [PMID: 30023961 PMCID: PMC6044566 DOI: 10.1021/acsomega.8b00110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/23/2018] [Indexed: 06/01/2023]
Abstract
In this work, Pseudomonas cepacia lipase immobilized on cellulosic polyurethane was used as a catalyst for biodiesel production via trans-esterification reactions in order to provide cost-effective methods of enzyme recycling. The efficacy of the immobilized enzyme catalyst at low loading (6.2 wt %) and the effects of temperature, water content, and reaction time in model trans-esterification of glyceryl trioctanoate were investigated extensively. It was found that water was necessary for the reaction of glyceryl trioctanoate with ethanol to proceed. A high conversion of glyceryl trioctanoate (∼70%) was obtained at 35 °C, with only 5.0 wt % of water content over a reaction period of 12 h.
Collapse
Affiliation(s)
- Li Li
- Centre
for Sustainable Chemical Processes, Department of Chemistry, Department of Chemistry, and Department of
Earth Sciences, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Philip W. Dyer
- Centre
for Sustainable Chemical Processes, Department of Chemistry, Department of Chemistry, and Department of
Earth Sciences, Durham University, South Road, Durham DH1 3LE, U.K.
| | - H. Christopher Greenwell
- Centre
for Sustainable Chemical Processes, Department of Chemistry, Department of Chemistry, and Department of
Earth Sciences, Durham University, South Road, Durham DH1 3LE, U.K.
| |
Collapse
|
28
|
Synthesis, characterization and application of lipase-conjugated citric acid-coated magnetic nanoparticles for ester synthesis using waste frying oil. 3 Biotech 2018; 8:211. [PMID: 29651376 DOI: 10.1007/s13205-018-1228-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/23/2018] [Indexed: 10/17/2022] Open
Abstract
In the present work, magnetic nanoparticles (MNPs) were prepared by chemical precipitation of trivalent and divalent iron ions which were functionalized using citric acid. The bacterial isolate Staphylococcus epidermidis KX781317 was isolated from oil-contaminated site. The isolate produced lipase, which was purified and immobilized on magnetic nanoparticles (MNPs) for ester synthesis from waste frying oil (WFO). The characterization of MNPs employed conventional TEM, XRD and FTIR techniques. TEM analysis of MNPs showed the particle size in the range of 20-50 nm. FTIR spectra revealed the binding of citric acid to Fe3O4 and lipase on citric acid-coated MNPs. The citric acid-coated MNPs and lipase-conjugated citric acid-coated MNPs had similar XRD patterns which indicate MNPs could preserve their magnetic properties. The maximum immobilization efficiency 98.21% of lipase-containing citric acid-coated MNPs was observed at ratio 10:1 of Cit-MNPs:lipase. The pH and temperature optima for lipase conjugated with Cit-MNPs were 7 and 35 °C, respectively. Isobutanol was found to be an effective solvent for ester synthesis and 1:2 ratio of oil:alcohol observed significant for ester formation. The ester formation was determined using TLC and the % yield of ester conversion was calculated. The rate of ester formation is directly proportional to the enzyme load. Formed esters were identified as isobutyl laurate ester and isobutyl myristate ester through GC-MS analysis.
Collapse
|
29
|
Malekabadi S, Badoei-dalfard A, Karami Z. Biochemical characterization of a novel cold-active, halophilic and organic solvent-tolerant lipase from B. licheniformis KM12 with potential application for biodiesel production. Int J Biol Macromol 2018; 109:389-398. [DOI: 10.1016/j.ijbiomac.2017.11.173] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 11/15/2022]
|
30
|
Cho HJ, Jang WJ, Moon SY, Lee JM, Kim JH, Han HS, Kim KW, Lee BJ, Kong IS. Immobilization of β-1,3-1,4-glucanase from Bacillus sp. on porous silica for production of β-glucooligosaccharides. Enzyme Microb Technol 2018; 110:30-37. [DOI: 10.1016/j.enzmictec.2017.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/26/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
|
31
|
Yi S, Dai F, Wu Y, Zhao C, Si Y, Sun G. Scalable fabrication of sulfated silk fibroin nanofibrous membranes for efficient lipase adsorption and recovery. Int J Biol Macromol 2018; 111:738-745. [PMID: 29339287 DOI: 10.1016/j.ijbiomac.2018.01.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 01/23/2023]
Abstract
Fabricating adsorptive materials for fast and high efficient adsorption of enzymes is critical to match the great demands for separation and recovery of enzymes used as biocatalysts. However, it has proven extremely challenging. Here, we report a cost-effective strategy to construct the sulfated group surface-functionalized silk fibroin nanofibrous membranes (SS-SFNM) under mild conditions for positively charged Candida rugosa lipase adsorption. The naturally abundant silk is thus reconstructed into nanofibrous membranes with tunable surface functions. Thereby, the resultant SS-SFNM exhibited excellent adsorption performance towards lipase, including a superior adsorption capacity of 148 mg g-1, fast adsorption equilibrium within 3 h and good reversibility. The fabrication of such fascinating silk-based materials may provide new chance into the design and development of multi-functional membranes for various separated applications.
Collapse
Affiliation(s)
- Shixiong Yi
- College of Textile and Garment & State Key Laboratory of Silkworm Genome Biology & College of Biotechnology, Southwest University, Chongqing 400715, PR China
| | - Fangyin Dai
- College of Textile and Garment & State Key Laboratory of Silkworm Genome Biology & College of Biotechnology, Southwest University, Chongqing 400715, PR China
| | - Yuehan Wu
- Fiber and Polymer Science, University of California, Davis, CA 95616, USA
| | - Cunyi Zhao
- Fiber and Polymer Science, University of California, Davis, CA 95616, USA
| | - Yang Si
- Fiber and Polymer Science, University of California, Davis, CA 95616, USA.
| | - Gang Sun
- Fiber and Polymer Science, University of California, Davis, CA 95616, USA
| |
Collapse
|
32
|
Zhang N, Xue H, Hu R. The activity and stability of CeO2@CaO catalysts for the production of biodiesel. RSC Adv 2018; 8:32922-32929. [PMID: 35547696 PMCID: PMC9086313 DOI: 10.1039/c8ra06884d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/11/2018] [Indexed: 11/27/2022] Open
Abstract
A novel CeO2@CaO catalyst was prepared via a hydrothermal method. The physicochemical properties and morphologies of the prepared CeO2@CaO catalysts were characterized by X-ray diffraction, N2 physisorption, CO2 temperature-programmed desorption, X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray analysis. It was found that the prepared CeO2@CaO catalyst had a distinct core–shell structure. The catalytic activity of the CeO2@CaO sample as a heterogeneous catalyst for the transesterification of soybean oil to produce biodiesel has been studied. The results showed that the optimum yield of biodiesel can reach 98% over the CeO2@CaO-60 catalyst under the reaction conditions of 3 wt% catalyst, methanol to oil molar ratio of 6 : 1, reaction temperature of 70 °C and reaction time of 6 h. Stability tests indicated that the biodiesel yield can reach more than 80% even after 9 reaction cycles due to the strong synergic interaction between CaO and CeO2. The stability test results for the CaO, CeO2@CaO-60 and CeO2–CaO-60 catalysts for biodiesel production.![]()
Collapse
Affiliation(s)
- Ni Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an
- China
| | - Huiyuan Xue
- Key Laboratory of Applied Surface and Colloid Chemistry
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an
- China
| | - Rongrong Hu
- Key Laboratory of Applied Surface and Colloid Chemistry
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an
- China
| |
Collapse
|
33
|
Roucher A, Depardieu M, Pekin D, Morvan M, Backov R. Inorganic, Hybridized and Living Macrocellular Foams: "Out of the Box" Heterogeneous Catalysis. CHEM REC 2017; 18:776-787. [PMID: 29194938 DOI: 10.1002/tcr.201700075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/14/2017] [Indexed: 11/10/2022]
Abstract
With this personal account we show how the Integrative Chemistry, when combining the sol-gel process and concentrated emulsions, allows to trigger inorganic, hybrid or living materials when dedicated toward heterogeneous catalysis applications. In here we focus on 3D-macrocellular monolithic foams bearing hierarchical porosities and applications thereof toward heterogeneous catalysis where both activities and mass transport are enhanced. We thereby first depict the general background of emulsions, focusing on concentrated ones, acting as soft templates for the design of solid (HIPE) foams, HIPE being the acronym for High Internal Phase Emulsions while encompassing both sol-gel and polymer chemistry. Secondly we extend this approach toward the design of inorganic cellular materials labeled Si(HIPE) and hybrid organic-inorganic foams, labeled Organo-Si(HIPE), where heterogeneous catalysis applications are addressed considering acidic, metallic, enzymatic and bacterial-based modified Si-HIPE. Along, we will show how the fluid hydrodynamic within the macrocellular foams is offering advanced "out of the box" heterogeneous catalytic capabilities.
Collapse
Affiliation(s)
- Armand Roucher
- Université de Bordeaux, CRPP-UPR CNRS 8641 115 Avenue Albert Schweitzer, 33600, Pessac, FRANCE
| | - Martin Depardieu
- Université de Bordeaux, CRPP-UPR CNRS 8641 115 Avenue Albert Schweitzer, 33600, Pessac, FRANCE
| | - Deniz Pekin
- Université de Bordeaux, CRPP-UPR CNRS 8641 115 Avenue Albert Schweitzer, 33600, Pessac, FRANCE
| | - Mickaël Morvan
- Université de Bordeaux, CRPP-UPR CNRS 8641 115 Avenue Albert Schweitzer, 33600, Pessac, FRANCE
| | - Rénal Backov
- Université de Bordeaux, CRPP-UPR CNRS 8641 115 Avenue Albert Schweitzer, 33600, Pessac, FRANCE.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
34
|
Using Canola Oil Biodiesel as an Alternative Fuel in Diesel Engines: A Review. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7090881] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Wang X, Qin X, Li D, Yang B, Wang Y. One-step synthesis of high-yield biodiesel from waste cooking oils by a novel and highly methanol-tolerant immobilized lipase. BIORESOURCE TECHNOLOGY 2017; 235:18-24. [PMID: 28351728 DOI: 10.1016/j.biortech.2017.03.086] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 05/21/2023]
Abstract
This study reported a novel immobilized MAS1 lipase from marine Streptomyces sp. strain W007 for synthesizing high-yield biodiesel from waste cooking oils (WCO) with one-step addition of methanol in a solvent-free system. Immobilized MAS1 lipase was selected for the transesterification reactions with one-step addition of methanol due to its much more higher biodiesel yield (89.50%) when compared with the other three commercial immobilized lipases (<10%). The highest biodiesel yield (95.45%) was acquired with one-step addition of methanol under the optimized conditions. Moreover, it was observed that immobilized MAS1 lipase retained approximately 70% of its initial activity after being used for four batch cycles. Finally, the obtained biodiesel was further characterized using FT-IR, 1H and 13C NMR spectroscopy. These findings indicated that immobilized MAS1 lipase is a promising catalyst for biodiesel production from WCO with one-step addition of methanol under high methanol concentration.
Collapse
Affiliation(s)
- Xiumei Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaoli Qin
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Daoming Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bo Yang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
36
|
Shuai W, Das RK, Naghdi M, Brar SK, Verma M. A review on the important aspects of lipase immobilization on nanomaterials. Biotechnol Appl Biochem 2017; 64:496-508. [DOI: 10.1002/bab.1515] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/27/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Weitao Shuai
- College of Environmental Sciences and Engineering; Peking University; Beijing People's Republic of China
- INRS-ETE; Université du Québec; Québec Canada
| | | | | | | | | |
Collapse
|
37
|
Khan FI, Lan D, Durrani R, Huan W, Zhao Z, Wang Y. The Lid Domain in Lipases: Structural and Functional Determinant of Enzymatic Properties. Front Bioeng Biotechnol 2017; 5:16. [PMID: 28337436 PMCID: PMC5343024 DOI: 10.3389/fbioe.2017.00016] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/22/2017] [Indexed: 01/08/2023] Open
Abstract
Lipases are important industrial enzymes. Most of the lipases operate at lipid–water interfaces enabled by a mobile lid domain located over the active site. Lid protects the active site and hence responsible for catalytic activity. In pure aqueous media, the lid is predominantly closed, whereas in the presence of a hydrophobic layer, it is partially opened. Hence, the lid controls the enzyme activity. In the present review, we have classified lipases into different groups based on the structure of lid domains. It has been observed that thermostable lipases contain larger lid domains with two or more helices, whereas mesophilic lipases tend to have smaller lids in the form of a loop or a helix. Recent developments in lipase engineering addressing the lid regions are critically reviewed here. After on, the dramatic changes in substrate selectivity, activity, and thermostability have been reported. Furthermore, improved computational models can now rationalize these observations by relating it to the mobility of the lid domain. In this contribution, we summarized and critically evaluated the most recent developments in experimental and computational research on lipase lids.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology , Guangzhou , China
| | - Rabia Durrani
- School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Weiqian Huan
- School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Zexin Zhao
- School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology , Guangzhou , China
| |
Collapse
|
38
|
Ishak ZI, Sairi NA, Alias Y, Aroua MKT, Yusoff R. A review of ionic liquids as catalysts for transesterification reactions of biodiesel and glycerol carbonate production. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2017. [DOI: 10.1080/01614940.2016.1268021] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zati Ismah Ishak
- Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Ionic Liquids, Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Nor Asrina Sairi
- Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Ionic Liquids, Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Yatimah Alias
- Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Ionic Liquids, Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohamed Kheireddine Taieb Aroua
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Separation Science & Technology (CSST), Department of Chemical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Rozita Yusoff
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Separation Science & Technology (CSST), Department of Chemical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
39
|
Suhendra D, Gunawan ER, Nurita AD, Komalasari D, Ardianto T. Optimization of the Enzymatic Synthesis of Biodiesel from Terminalia cattapa L. Kernel Oil Using Response Surface Methodology. J Oleo Sci 2017; 66:209-215. [DOI: 10.5650/jos.ess16167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dedy Suhendra
- Chemistry Department, Faculty of Mathematics and Science, University of Mataram
| | | | - Arista Dewi Nurita
- Chemistry Department, Faculty of Mathematics and Science, University of Mataram
| | - Desy Komalasari
- Mathematic Department, Faculty of Mathematics and Science, University of Mataram
| | - Teguh Ardianto
- Physics Department, Faculty of Mathematics and Science, University of Mataram
| |
Collapse
|
40
|
Liu C, Yuan J, Gao H, Liu C. Biodiesel production from waste cooking oil by immobilized lipase on superparamagnetic Fe3O4 hollow sub-microspheres. BIOCATAL BIOTRANSFOR 2016. [DOI: 10.1080/10242422.2016.1265948] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Changxia Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Jinlei Yuan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Huafeng Gao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Chunqiao Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| |
Collapse
|
41
|
Cui C, Guan N, Xing C, Chen B, Tan T. Immobilization of Yarrowia lipolytica lipase Ylip2 for the biocatalytic synthesis of phytosterol ester in a water activity controlled reactor. Colloids Surf B Biointerfaces 2016; 146:490-7. [DOI: 10.1016/j.colsurfb.2016.05.083] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/26/2016] [Accepted: 05/28/2016] [Indexed: 11/25/2022]
|
42
|
Immobilization of Candida antarctica lipase B onto Purolite® MN102 and its application in solvent-free and organic media esterification. Bioprocess Biosyst Eng 2016; 40:23-34. [DOI: 10.1007/s00449-016-1671-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/10/2016] [Indexed: 10/21/2022]
|
43
|
Remonatto D, Santin CM, de Oliveira D, Di Luccio M, de Oliveira JV. FAME Production from Waste Oils Through Commercial Soluble Lipase Eversa® Catalysis. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1089/ind.2016.0002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Daniela Remonatto
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Claudia M.T. Santin
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Marco Di Luccio
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - J. Vladimir de Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
44
|
Khan FI, Nizami B, Anwer R, Gu KR, Bisetty K, Hassan MI, Wei DQ. Structure prediction and functional analyses of a thermostable lipase obtained from Shewanella putrefaciens. J Biomol Struct Dyn 2016; 35:2123-2135. [PMID: 27366981 DOI: 10.1080/07391102.2016.1206837] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Previous experimental studies on thermostable lipase from Shewanella putrefaciens suggested the maximum activity at higher temperatures, but with little information on its conformational profile. In this study, the three-dimensional structure of lipase was predicted and a 60 ns molecular dynamics (MD) simulation was carried out at temperatures ranging from 300 to 400 K to better understand its thermostable nature at the molecular level. MD simulations were performed in order to predict the optimal activity of thermostable lipase. The results suggested strong conformational temperature dependence. The thermostable lipase maintained its bio-active conformation at 350 K during the 60 ns MD simulations.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- a School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , Henan , China
| | - Bilal Nizami
- b School of Pharmacy and Pharmacology , University of KwaZulu-Natal , Durban 4000 , South Africa
| | - Razique Anwer
- c Department of Anatomy (Microbiology) , Al-Imam Muhammad Ibn Saud Islamic University , Riyadh , Saudi Arabia
| | - Ke-Ren Gu
- a School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , Henan , China
| | - Krishna Bisetty
- d Department of Chemistry , Durban University of Technology , Durban 4000 , South Africa
| | - Md Imtaiyaz Hassan
- e Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia , New Delhi 110025 , India
| | - Dong-Qing Wei
- a School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , Henan , China
| |
Collapse
|
45
|
Kumar A, Dhar K, Kanwar SS, Arora PK. Lipase catalysis in organic solvents: advantages and applications. Biol Proced Online 2016; 18:2. [PMID: 26766927 PMCID: PMC4711063 DOI: 10.1186/s12575-016-0033-2] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/03/2016] [Indexed: 12/17/2022] Open
Abstract
Lipases are industrial biocatalysts, which are involved in several novel reactions, occurring in aqueous medium as well as non-aqueous medium. Furthermore, they are well-known for their remarkable ability to carry out a wide variety of chemo-, regio- and enantio-selective transformations. Lipases have been gained attention worldwide by organic chemists due to their general ease of handling, broad substrate tolerance, high stability towards temperatures and solvents and convenient commercial availability. Most of the synthetic reactions on industrial scale are carried out in organic solvents because of the easy solubility of non-polar compounds. The effect of organic system on their stability and activity may determine the biocatalysis pace. Because of worldwide use of lipases, there is a need to understand the mechanisms behind the lipase-catalyzed reactions in organic solvents. The unique interfacial activation of lipases has always fascinated enzymologists and recently, biophysicists and crystallographers have made progress in understanding the structure-function relationships of these enzymes. The present review describes the advantages of lipase-catalyzed reactions in organic solvents and various effects of organic solvents on their activity.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Biotechnology, Himachal Pradesh University, Shimla, 171 005 India
| | - Kartik Dhar
- Departmentof Microbiology, University of Chittagong, Chittagong, Bangladesh
| | | | - Pankaj Kumar Arora
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| |
Collapse
|
46
|
Razack SA, Duraiarasan S. Response surface methodology assisted biodiesel production from waste cooking oil using encapsulated mixed enzyme. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 47:98-104. [PMID: 26248487 DOI: 10.1016/j.wasman.2015.07.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/29/2015] [Accepted: 07/20/2015] [Indexed: 06/04/2023]
Abstract
In the recent scenario, consumption of petroleum fuels has increased to greater height which has led to deforestation and decline in fossil fuels. In order to tackle the perilous situation, alternative fuel has to be generated. Biofuels play a vital role in substituting the diesel fuels as they are renewable and ecofriendly. Biodiesel, often referred to as green fuel, could be a potential replacement as it could be synthesized from varied substrates, advantageous being the microalgae in several ways. The present investigation was dealt with the interesterification of waste cooking oil using immobilised lipase from mixed cultures for biodiesel production. In order to standardize the production for a scale up process, the parameters necessary for interesterification had been optimized using the statistical tool, Central Composite Design - Response Surface Methodology. The optimal conditions required to generate biodiesel were 2 g enzyme load, 1:12 oil to methyl acetate ratio, 60 h reaction time and 35 °C temperature, yielding a maximum of 93.61% biodiesel. The immobilised lipase beads remain stable without any changes in their function and structure even after 20 cycles which made this study, less cost intensive. In conclusion, the study revealed that the cooking oil, a residue of many dining centers, left as waste product, can be used as a potential raw material for the production of ecofriendly and cost effective biofuel, the biodiesel.
Collapse
Affiliation(s)
- Sirajunnisa Abdul Razack
- Bioprocess Laboratory, Department of Chemical Engineering, Annamalai University, Annamalainagar, Tamil Nadu 608002, India.
| | - Surendhiran Duraiarasan
- Bioprocess Laboratory, Department of Chemical Engineering, Annamalai University, Annamalainagar, Tamil Nadu 608002, India.
| |
Collapse
|
47
|
Choi N, Lee JS, Kwak J, Lee J, Kim IH. Production of Biodiesel from Acid Oil via a Two-Step Enzymatic Transesterification. J Oleo Sci 2016; 65:913-921. [DOI: 10.5650/jos.ess16092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nakyung Choi
- Department of Food and Nutrition, Korea University
- BK21PLUS Program in Embodiment: Health-Society Interaction, Department of Public Health Sciences, Graduate School, Korea University
| | - Jeom-Sig Lee
- National Institute of Crop Science, Rural Development Administration
| | - Jieun Kwak
- National Institute of Crop Science, Rural Development Administration
| | - Junsoo Lee
- Department of Food Science and Technology, Chungbuk National University
| | - In-Hwan Kim
- Department of Food and Nutrition, Korea University
- BK21PLUS Program in Embodiment: Health-Society Interaction, Department of Public Health Sciences, Graduate School, Korea University
| |
Collapse
|
48
|
Integrative chemistry: Positioning chemical reactors within the geometric space as a tool for the design of advanced functional materials. CR CHIM 2016. [DOI: 10.1016/j.crci.2015.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Abd-Alla MH, Bagy MMK, Morsy FM, Hassan EA. Improvement of fungal lipids esterification process by bacterial lipase for biodiesel synthesis. FUEL 2015; 160:196-204. [DOI: 10.1016/j.fuel.2015.07.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
50
|
In situ immobilized lipase on the surface of intracellular polyhydroxybutyrate granules: preparation, characterization, and its promising use for the synthesis of fatty acid alkyl esters. Appl Biochem Biotechnol 2015; 177:1553-64. [PMID: 26378013 DOI: 10.1007/s12010-015-1836-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
Abstract
Photobacterium lipolyticum M37 lipase (LipM37) was immobilized on the surface of intracellular polyhydroxybutyrate (PHB) granules in Escherichia coli. LipM37 was genetically fused to Cupriavidus necator PHA synthase (PhaC Cn ), and the engineered PHB operon containing the lip M37 -phaC Cn successfully mediated the accumulation of PHB granules (85 wt.%) inside E. coli cells. The PHB granules were isolated from the crude cell extract, and the immobilized LipM37 was comparable with the free form of LipM37 except for a favorable increase in thermostability. The immobilized LipM37 was used to synthesize oleic acid methyl ester (biodiesel) and oleic acid dodecyl ester (wax ester), and yielded 98.0 % conversion in esterification of oleic acid and dodecanol. It was suggested that the LipM37-PhaCCn fusion protein successfully exhibited bifunctional activities in E. coli and that in situ immobilization of lipase to the intracellular PHB could be a promising approach for expanding the biocatalytic toolbox for industrial chemical synthesis.
Collapse
|