1
|
Hu F, Cheng Y, Fan B, Li W, Ye B, Wu Z, Tan Z, He Z. Ruminal microbial metagenomes and host transcriptomes shed light on individual variability in the growth rate of lambs before weaning: the regulated mechanism and potential long-term effect on the host. mSystems 2024; 9:e0087324. [PMID: 39162524 PMCID: PMC11406974 DOI: 10.1128/msystems.00873-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 08/21/2024] Open
Abstract
Weaning weight is a reflection of management during the breastfeeding phase and will influence animal performance in subsequent phases, considered important indicators within production systems. The aims of this study were as follows: (i) to investigate variability in the growth rate among individual lambs from ewes rearing single or twin lambs fed with two different diets and (ii) to explore the molecular mechanisms regulating the growth rate and the potential long-term effects on the host. No significant change in lamb average daily gain (ADG) was observed in litter size and diet treatment, and there were large variations among individual lambs (ranging from 0.13 to 0.41 kg/day). Further analysis was conducted on serum amino acids, rumen fermentation characteristics, rumen metagenomics and transcriptome, and hepatic transcriptome of lambs with extremely high (HA; n = 6) and low (LA; n = 6) ADG. We observed significant increases in serum lysine, leucine, alanine, and phenylalanine in the HA group. The metagenome revealed that the HA group presented a higher rumen propionate molar proportion via increasing gene abundance in the succinate pathway for propionate synthesis. For the rumen transcriptome, higher expressed gene sets in the HA group were mainly related to rumen epithelial growth, including cytokine-cytokine receptor interaction, Jak-STAT signaling pathway, and adherens junction. For the liver transcriptome, the upregulated KEGG pathways in the HA group were primarily associated with fatty acid degradation, glyoxylate and dicarboxylate metabolism, cholesterol metabolism, and the immune system. This research suggests that preweaning lambs with high ADG may benefit from rumen development and enhanced liver metabolic and immune function. IMPORTANCE There is accumulating evidence indicating that the early-life rumen microbiome plays vital roles in rumen development and microbial fermentation, which subsequently affects the growth of young ruminants. The liver is also vital to regulate the metabolism and distribution of nutrients. Our results demonstrate that lambs with high average daily gain (ADG) enhanced microbial volatile fatty acid (VFA) metabolism toward rumen propionate and serum amino acid (AA) production to support host growth. The study highlights that high ADG in the preweaning period is beneficial for the rumen development and liver energy metabolism, leading to better growth later in life. Overall, this study explores the molecular mechanisms regulating the growth rate and the potential long-term effects of increased growth rate on the host metabolism, providing fundamental knowledge about nutrient manipulation in pre-weaning.
Collapse
Affiliation(s)
- Fan Hu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Cheng
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bing Fan
- Hulun Buir State Farm Technology Development, Hailar, China
| | - Wei Li
- Hulun Buir State Farm Tenihe Farm, Hulun Buir, China
| | - Bingsen Ye
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Zhiwu Wu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Bharadwaj A, Holwerda EK, Regan JM, Lynd LR, Richard TL. Enhancing anaerobic digestion of lignocellulosic biomass by mechanical cotreatment. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:76. [PMID: 38831375 PMCID: PMC11149370 DOI: 10.1186/s13068-024-02521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND The aim of this study was to increase the accessibility and accelerate the breakdown of lignocellulosic biomass to methane in an anaerobic fermentation system by mechanical cotreatment: milling during fermentation, as an alternative to conventional pretreatment prior to biological deconstruction. Effluent from a mesophilic anaerobic digester running with unpretreated senescent switchgrass as the predominant carbon source was collected and subjected to ball milling for 0.5, 2, 5 and 10 min. Following this, a batch fermentation test was conducted with this material in triplicate for an additional 18 days with unmilled effluent as the 'status quo' control. RESULTS The results indicate 0.5 - 10 min of cotreatment increased sugar solubilization by 5- 13% when compared to the unmilled control, with greater solubilization correlated with increased milling duration. Biogas concentrations ranged from 44% to 55.5% methane with the balance carbon dioxide. The total biogas production was statistically higher than the unmilled control for all treatments with 2 or more minutes of milling (α = 0.1). Cotreatment also decreased mean particle size. Energy consumption measurements of a lab-scale mill indicate that longer durations of milling offer diminishing benefits with respect to additional methane production. CONCLUSIONS Cotreatment in anaerobic digestion systems, as demonstrated in this study, provides an alternative approach to conventional pretreatments to increase biogas production from lignocellulosic grassy material.
Collapse
Affiliation(s)
- Anahita Bharadwaj
- The Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Evert K Holwerda
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - John M Regan
- The Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Tom L Richard
- The Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
3
|
Kyawt YY, Aung M, Xu Y, Sun Z, Zhou Y, Zhu W, Padmakumar V, Tan Z, Cheng Y. Dynamic changes of rumen microbiota and serum metabolome revealed increases in meat quality and growth performances of sheep fed bio-fermented rice straw. J Anim Sci Biotechnol 2024; 15:34. [PMID: 38419130 PMCID: PMC10900626 DOI: 10.1186/s40104-023-00983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/22/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Providing high-quality roughage is crucial for improvement of ruminant production because it is an essential component of their feed. Our previous study showed that feeding bio-fermented rice straw (BF) improved the feed intake and weight gain of sheep. However, it remains unclear why feeding BF to sheep increased their feed intake and weight gain. Therefore, the purposes of this research were to investigate how the rumen microbiota and serum metabolome are dynamically changing after feeding BF, as well as how their changes influence the feed intake, digestibility, nutrient transport, meat quality and growth performances of sheep. Twelve growing Hu sheep were allocated into 3 groups: alfalfa hay fed group (AH: positive control), rice straw fed group (RS: negative control) and BF fed group (BF: treatment). Samples of rumen content, blood, rumen epithelium, muscle, feed offered and refusals were collected for the subsequent analysis. RESULTS Feeding BF changed the microbial community and rumen fermentation, particularly increasing (P < 0.05) relative abundance of Prevotella and propionate production, and decreasing (P < 0.05) enteric methane yield. The histomorphology (height, width, area and thickness) of rumen papillae and gene expression for carbohydrate transport (MCT1), tight junction (claudin-1, claudin-4), and cell proliferation (CDK4, Cyclin A2, Cyclin E1) were improved (P < 0.05) in sheep fed BF. Additionally, serum metabolome was also dynamically changed, which led to up-regulating (P < 0.05) the primary bile acid biosynthesis and biosynthesis of unsaturated fatty acid in sheep fed BF. As a result, the higher (P < 0.05) feed intake, digestibility, growth rate, feed efficiency, meat quality and mono-unsaturated fatty acid concentration in muscle, and the lower (P < 0.05) feed cost per kg of live weight were achieved by feeding BF. CONCLUSIONS Feeding BF improved the growth performances and meat quality of sheep and reduced their feed cost. Therefore, bio-fermentation of rice straw could be an innovative way for improving ruminant production with minimizing production costs.
Collapse
Affiliation(s)
- Yin Yin Kyawt
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Animal Nutrition, University of Veterinary Science, Nay Pyi Taw 15013, Myanmar
| | - Min Aung
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Animal Nutrition, University of Veterinary Science, Nay Pyi Taw 15013, Myanmar
| | - Yao Xu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhanying Sun
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaqi Zhou
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | | | - Zhankun Tan
- College of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Zhao Y, Yu S, Tan J, Wang Y, Li L, Zhao H, Liu M, Jiang L. Bioconversion of citrus waste by long-term DMSO-cryopreserved rumen fluid to volatile fatty acids and biogas is feasible: A microbiome perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119693. [PMID: 38042069 DOI: 10.1016/j.jenvman.2023.119693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
Preserving rumen fluid as the inoculum for anaerobic digestion of food waste is necessary when access to animal donors or slaughterhouses is limited. This study aims to compare two preservation methods relative to fresh ruminal inoculum: (1) cryoprotected with 5% dimethyl sulfoxide (DMSO) and stored at -20 °C and (2) frozen at -20 °C, both for 6 months. The fermentation activity of different inoculum was evaluated by rumen-based in vitro anaerobic fermentation tests (volatile fatty acids, biomass digestibility, and gas production). Citrus pomace was used as the substrate during a 96-h fermentation. The maximum volatile fatty acids, methane production, and citrus pomace digestibility from fresh rumen fluid were not significantly different from rumen fluid preserved with DMSO. Metagenome analysis revealed a significant difference in the rumen microbial composition and functions between fresh rumen fluid and frozen inoculum without DMSO. Storage of rumen fluid using -20 °C with DMSO demonstrated the less difference compared with fresh rumen fluid in microbial alpha diversity and taxa composition. The hierarchical clustering tree of CAZymes showed that DMSO cryoprotected fluid was clustered much closer to the fresh rumen fluid, showing more similarity in CAZyme profiles than frozen rumen fluid. The abundance of functional genes associated with carbohydrate metabolism and methane metabolism did not differ between fresh rumen fluid and the DMSO-20 °C, whereas the abundance of key functional genes significantly decreased in frozen rumen fluid. These findings suggest that using rumen liquid preserved using DMSO at -20 °C for 180 days is a feasible alternative to fresh rumen fluid. This would reduce the need for laboratories to maintain animal donors and/or reduce the frequency of collecting rumen fluid from slaughterhouses.
Collapse
Affiliation(s)
- Yuchao Zhao
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Shiqiang Yu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Jian Tan
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Ying Wang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Liuxue Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Huiying Zhao
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Ming Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Linshu Jiang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
5
|
Liang Z, Zhang J, Ahmad AA, Han J, Gharechahi J, Du M, Zheng J, Wang P, Yan P, Salekdeh GH, Ding X. Forage lignocellulose is an important factor in driving the seasonal dynamics of rumen anaerobic fungi in grazing yak and cattle. Microbiol Spectr 2023; 11:e0078823. [PMID: 37707448 PMCID: PMC10581131 DOI: 10.1128/spectrum.00788-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/20/2023] [Indexed: 09/15/2023] Open
Abstract
Anaerobic fungi (AF) inhabit the gastrointestinal tract of ruminants and play an important role in the degradation of fiber feed. However, limited knowledge is available on seasonal dynamics and inter-species differences in rumen AF community in yak and cattle under natural grazing systems. Using the random forests model, the null model, and structural equation model, we investigated the seasonal dynamics and key driving factors of fiber-associated rumen AF in grazing yak and cattle throughout the year on the Qinghai-Tibet Plateau (QTP). We found that the richness and diversity of rumen AF of grazing yak and cattle in cold season were significantly higher than those in warm season (P < 0.05). We identified 12 rumen AF genera, among which , Cyllamyces, and Orpinomyces were predominant in the rumen of both grazing yak and cattle. LEfSe and random forest analysis showed that Feramyces, Tahromyces, and Buwchfawromyces were important seasonal indicator of rumen AF in grazing yak (P < 0.05), and Caecomyces, Cyllamyces, and Piromyces in grazing cattle (P < 0.05). Null model analysis revealed that the dynamic changes of rumen AF community structure were mainly affected by deterministic factors. Notably, mantel test and structural equation model revealed that forage physical-chemical properties, including dry matter (DM), neutral detergent fiber (NDF), and hemicellulose contents (HC) were the key factors driving the seasonal variations of the rumen AF community (P < 0.05). The results revealed that forage lignocellulose was probably an important factor affecting the seasonal dynamics and inter-species differences of the rumen AF community under natural grazing conditions. IMPORTANCE The seasonal dynamics of rumen anaerobic fungi in nature grazing yak and cattle were determined during cold and warm seasons based on pasture nutritional quality and environmental data sets. The main driving factors of anaerobic fungi in yak and cattle rumen were explored by combining random forest and structural equation models. In addition, the dynamic differences in the composition of the anaerobic fungi community in the yak and cattle in different seasons were characterized. It was found that some rumen anaerobic fungi have contributed to high fiber degradation rate in yak. These novel findings improve our understanding of the association of environmental and dietary seasonal variations with anaerobic fungal community, facilitating yak adaptation to high altitude.
Collapse
Affiliation(s)
- Zeyi Liang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianbo Zhang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Anum Ali Ahmad
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianlin Han
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mei Du
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Juanshan Zheng
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Peng Wang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
- Department of Molecular Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
6
|
Bandarupalli VVK, St-Pierre B. Metagenomics-Based Analysis of Candidate Lactate Utilizers from the Rumen of Beef Cattle. Microorganisms 2023; 11:microorganisms11030658. [PMID: 36985231 PMCID: PMC10054779 DOI: 10.3390/microorganisms11030658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
In ruminant livestock production, ruminal acidosis is an unintended consequence of the elevated dietary intake of starch-rich feedstuffs. The transition from a state of subacute acidosis (SARA) to acute acidosis is due in large part to the accumulation of lactate in the rumen, which is a consequence of the inability of lactate utilizers to compensate for the increased production of lactate. In this report, we present the 16S rRNA gene-based identification of two bacterial operational taxonomic units (OTUs), Bt-01708_Bf (89.0% identical to Butyrivibrio fibrisolvens) and Bt-01899_Ap (95.3% identical to Anaerococcus prevotii), that were enriched from rumen fluid cultures in which only lactate was provided as an exogenous substrate. Analyses of in-silico-predicted proteomes from metagenomics-assembled contigs assigned to these candidate ruminal bacterial species (Bt-01708_Bf: 1270 annotated coding sequences, 1365 hypothetical coding sequences; Bt-01899_Ap: 871 annotated coding sequences, 1343 hypothetical coding sequences) revealed genes encoding lactate dehydrogenase, a putative lactate transporter, as well as pathways for the production of short chain fatty acids (formate, acetate and butyrate) and for the synthesis of glycogen. In contrast to these shared functions, each OTU also exhibited distinct features, such as the potential for the utilization of a diversified set of small molecules as substrates (Bt-01708_Bf: malate, quinate, taurine and polyamines) or for the utilization of starch (Bt-01899_Ap: alpha-amylase enzymes). Together, these results will contribute to the continued characterization of ruminal bacterial species that can metabolize lactate into distinct subgroups based on other metabolic capabilities.
Collapse
Affiliation(s)
- Venkata Vinay Kumar Bandarupalli
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
- GenMark Diagnostics, 5964 La Place Ct, Carlsbad, CA 92008, USA
| | - Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
- Correspondence:
| |
Collapse
|
7
|
Walls LE, Otoupal P, Ledesma-Amaro R, Velasquez-Orta SB, Gladden JM, Rios-Solis L. Bioconversion of cellulose into bisabolene using Ruminococcus flavefaciens and Rhodosporidium toruloides. BIORESOURCE TECHNOLOGY 2023; 368:128216. [PMID: 36347482 DOI: 10.1016/j.biortech.2022.128216] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In this study, organic acids were demonstrated as a promising carbon source for bisabolene production by the non-conventional yeast, Rhodosporidium toruloides, at microscale with a maximum titre of 1055 ± 7 mg/L. A 125-fold scale-up of the optimal process, enhanced bisabolene titres 2.5-fold to 2606 mg/L. Implementation of a pH controlled organic acid feeding strategy at this scale lead to a further threefold improvement in bisabolene titre to 7758 mg/L, the highest reported microbial titre. Finally, a proof-of-concept sequential bioreactor approach was investigated. Firstly, the cellulolytic bacterium Ruminococcus flavefaciens was employed to ferment cellulose, yielding 4.2 g/L of organic acids. R. toruloides was subsequently cultivated in the resulting supernatant, producing 318 ± 22 mg/L of bisabolene. This highlights the feasibility of a sequential bioprocess for the bioconversion of cellulose, into biojet fuel candidates. Future work will focus on enhancing organic acid yields and the use of real lignocellulosic feedstocks to further enhance bisabolene production.
Collapse
Affiliation(s)
- Laura E Walls
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3BF, UK; Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Peter Otoupal
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Agile BioFoundry, Department of Energy, Emeryville, CA 94608, USA; Biomaterials and Biomanufacturing Department, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | | | - John M Gladden
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Agile BioFoundry, Department of Energy, Emeryville, CA 94608, USA; Biomaterials and Biomanufacturing Department, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3BF, UK; Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH9 3BF, UK; School of Natural and Environmental Sciences, Molecular Biology and Biotechnology Division, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK.
| |
Collapse
|
8
|
Weimer PJ. Degradation of Cellulose and Hemicellulose by Ruminal Microorganisms. Microorganisms 2022; 10:2345. [PMID: 36557598 PMCID: PMC9785684 DOI: 10.3390/microorganisms10122345] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/19/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022] Open
Abstract
As major structural components of plant cell walls, cellulose and hemicellulose are degraded and fermented by anaerobic microbes in the rumen to produce volatile fatty acids, the main nutrient source for the host. Cellulose degradation is carried out primarily by specialist bacteria, with additional contributions from protists and fungi, via a variety of mechanisms. Hemicelluloses are hydrolyzed by cellulolytic bacteria and by generalist, non-cellulolytic microbes, largely via extracellular enzymes. Cellulose hydrolysis follows first-order kinetics and its rate is limited by available substrate surface area. Nevertheless, its rate is at least an order of magnitude more rapid than in anaerobic digesters, due to near-obligatory adherence of microbial cells to the cellulose surface, and a lack of downstream inhibitory effects; in the host animal, fiber degradation rate is also enhanced by the unique process of rumination. Cellulolytic and hemicellulolytic microbes exhibit intense competition and amensalism, but they also display mutualistic interactions with microbes at other trophic levels. Collectively, the fiber-degrading community of the rumen displays functional redundancy, partial niche overlap, and convergence of catabolic pathways that all contribute to stability of the ruminal fermentation. The superior hydrolytic and fermentative capabilities of ruminal fiber degraders make them promising candidates for several fermentation technologies.
Collapse
Affiliation(s)
- Paul J Weimer
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
9
|
Liu X, Gao J, Liu S, Cheng Y, Hao L, Liu S, Zhu W. The uniqueness and superiority of energy utilization in yaks compared with cattle in the highlands: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:138-144. [PMID: 36683881 PMCID: PMC9841238 DOI: 10.1016/j.aninu.2022.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Yaks living on the Qinghai-Tibetan Plateau for a long time have evolved a series of mechanisms to adapt to the unique geographical environment and climate characteristics of the plateau. Compared with other ruminants, yaks have higher energy utilization and metabolic efficiency. This paper presents possible mechanisms responsible for the efficient energy utilization, absorption and metabolism resulting from the unique evolutionary process of yaks. It is hoped that the information discussed in this review will give a better insight into the uniqueness and superiority of yaks in regards to energy metabolism and utilization compared with cattle and open new avenues for the targeted regulation of energy utilization pathways of other ruminants.
Collapse
Affiliation(s)
- Xiaojing Liu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Gao
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Suozhu Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China,Corresponding authors.
| | - Lizhuang Hao
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Plateau Yak Research Center, Qinghai Academy of Animal Science and Veterinary Medicine of Qinghai University, Xining 810016, China,Corresponding authors.
| | - Shujie Liu
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Plateau Yak Research Center, Qinghai Academy of Animal Science and Veterinary Medicine of Qinghai University, Xining 810016, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Ma Y, Chen X, Zahoor Khan M, Xiao J, Liu S, Wang J, Alugongo GM, Cao Z. Biodegradation and hydrolysis of rice straw with corn steep liquor and urea-alkali pretreatment. Front Nutr 2022; 9:989239. [PMID: 35990351 PMCID: PMC9387106 DOI: 10.3389/fnut.2022.989239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
The current study evaluated the corn steep liquor (CSL) and urea-alkali pretreatment effect to enhance biodegradation and hydrolysis of rice straw (RS) by ruminal microbiome. The first used RS (1) without (Con) or with additives of (2) 4% CaO (Ca), (3) 2.5% urea plus 4% CaO (UCa) and (4) 9% corn steep liquor + 2.5% urea + 4% CaO (CUCa), and then the efficacy of CSL plus urea-alkali pretreatment was evaluated both in vitro and in vivo. The Scanning electron microscopy, X-ray diffraction analysis, cellulose degree of polymerization and Fourier-transform infrared spectroscopy, respectively, results showed that Ca, UCa, and CUCa pretreatment altered the physical and chemical structure of RS. CSL plus Urea-alkali pretreated enhanced microbial colonization by improving the enzymolysis efficiency of RS, and specially induced adhesion of Carnobacterium and Staphylococcus. The CUCa pretreatment could be developed to improve RS nutritional value as forage for ruminants, or as feedstock for biofuel production.
Collapse
Affiliation(s)
- Yulin Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xu Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Gibson Maswayi Alugongo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Singhania RR, Patel AK, Singh A, Haldar D, Soam S, Chen CW, Tsai ML, Dong CD. Consolidated bioprocessing of lignocellulosic biomass: Technological advances and challenges. BIORESOURCE TECHNOLOGY 2022; 354:127153. [PMID: 35421566 DOI: 10.1016/j.biortech.2022.127153] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Consolidated bioprocessing (CBP) is characterized by a single-step production of value-added compounds directly from biomass in a single vessel. This strategy has the capacity to revolutionize the whole biorefinery concept as it can significantly reduce the infrastructure input and use of chemicals for various processing steps which can make it economically and environmentally benign. Although the proof of concept has been firmly established in the past, commercialization has been limited due to the low conversion efficiency of the technology. Either a native single microbe, genetically modified microbe or a consortium can be employed. The major challenge in developing a cost-effective and feasible CBP process is the recognition of bifunctional catalysts combining the capability to use the substrates and transform them into value-added products with high efficiency. This article presents an in-depth analysis of the current developments in CBP around the globe and the possibilities of advancements in the future.
Collapse
Affiliation(s)
- Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Anusuiya Singh
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
| | - Shveta Soam
- Department of Building Engineering, Energy Systems and Sustainability Science, University of Gävle, Kungsbäcksvägen 47, 80176 Gävle, Sweden
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
12
|
Khairunisa BH, Susanti D, Loganathan U, Teutsch CD, Campbell BT, Fiske D, Wilkinson CA, Aylward FO, Mukhopadhyay B. Dominant remodelling of cattle rumen microbiome by Schedonorus arundinaceus (tall fescue) KY-31 carrying a fungal endophyte. Access Microbiol 2022; 4:000322. [PMID: 35355877 PMCID: PMC8941964 DOI: 10.1099/acmi.0.000322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Tall fescue KY-31 is an important primary forage for beef cattle. It carries a fungal endophyte that produces ergovaline, the main cause of tall fescue toxicosis that leads to major revenue loss for livestock producers. The MaxQ, an engineered cultivar, hosts an ergovaline nonproducing strain of the fungus and consequently is nontoxic. However, it is less attractive economically. It is not known how rumen microbiome processes these two forages towards nutrient generation and ergovaline transformation. We have analysed the rumen microbiome compositions of cattle that grazed MaxQ with an intervening KY-31 grazing period using the 16S rRNA-V4 element as an identifier and found that KY-31 remodelled the microbiome substantially, encompassing both cellulolytic and saccharolytic functions. The effect was not evident at the whole microbiome levels but was identified by analysing the sessile and planktonic fractions separately. A move from MaxQ to KY-31 lowered the Firmicutes abundance in the sessile fraction and increased it in planktonic part and caused an opposite effect for Bacteroidetes, although the total abundances of these dominant rumen organisms remained unchanged. The abundances of Fibrobacter , which degrades less degradable fibres, and certain cellulolytic Firmicutes such as Pseudobutyrivibrio and Butyrivibrio 2, dropped in the sessile fraction, and these losses were apparently compensated by increased occurrences of Eubacterium and specific Ruminococcaceae and Lachnospiraceae . A return to MaxQ restored the original Firmicutes and Bacteroidetes distributions. However, several KY-31 induced changes, such as the low abundance of Fibrobacter and Butyrivibrio two remained in place, and their substitutes maintained significant presence. The rumen microbiome was distinct from previously reported faecal microbiomes. In summary, KY-31 and MaxQ were digested in the cattle rumen with distinct consortia and the KY-31-specific features were dominant. The study also identified candidate ergovaline transforming bacteria. It highlighted the importance of analysing sessile and planktonic fractions separately.
Collapse
Affiliation(s)
- Bela Haifa Khairunisa
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Dwi Susanti
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Present address: Elanco Animal Health, Greenfield, IN, USA
| | - Usha Loganathan
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Christopher D Teutsch
- Southern Piedmont Agricultural Research and Extension Center, Virginia Tech, Blackstone, VA 23824, USA
- Present address: University of Kentucky Research and Education Center, Princeton, KY, USA
| | - Brian T Campbell
- Southern Piedmont Agricultural Research and Extension Center, Virginia Tech, Blackstone, VA 23824, USA
- Present address: Archer Daniels Midland Company, Decatur, IL, USA
| | - David Fiske
- Shennandoah Valley Agricultural Research and Extension Center, Virginia Tech, Raphine, VA, 24472, USA
| | - Carol A Wilkinson
- Southern Piedmont Agricultural Research and Extension Center, Virginia Tech, Blackstone, VA 23824, USA
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | |
Collapse
|
13
|
Holtzapple MT, Wu H, Weimer PJ, Dalke R, Granda CB, Mai J, Urgun-Demirtas M. Microbial communities for valorizing biomass using the carboxylate platform to produce volatile fatty acids: A review. BIORESOURCE TECHNOLOGY 2022; 344:126253. [PMID: 34728351 DOI: 10.1016/j.biortech.2021.126253] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The carboxylate platform employs a diverse microbial consortium of anaerobes in which the methanogens are inhibited. Nearly all biomass components are digested to a mixture of C1-C8 monocarboxylic acids and their corresponding salts. The methane-arrested anaerobic digestion proceeds readily without needing to sterilize biomass or equipment. It accepts a wide range of feedstocks (e.g., agricultural residues, municipal solid waste, sewage sludge, animal manure, food waste, algae, and energy crops), and produces high product yields. This review highlights several important aspects of the platform, including its thermodynamic underpinnings, influences of inoculum source and operating conditions on product formation, and downstream chemical processes that convert the carboxylates to hydrocarbon fuels and oxygenated chemicals. This review further establishes the carboxylate platform as a viable and economical route to industrial biomass utilization.
Collapse
Affiliation(s)
- Mark T Holtzapple
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | - Haoran Wu
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA; Applied Materials Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA
| | - Paul J Weimer
- Department of Bacteriology, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Rachel Dalke
- Applied Materials Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA
| | - Cesar B Granda
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | - Jesse Mai
- Applied Materials Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA
| | - Meltem Urgun-Demirtas
- Applied Materials Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA.
| |
Collapse
|
14
|
Comparison of Ruminal Degradability, Indigestible Neutral Detergent Fiber, and Total-Tract Digestibility of Three Main Crop Straws with Alfalfa Hay and Corn Silage. Animals (Basel) 2021; 11:ani11113218. [PMID: 34827950 PMCID: PMC8614524 DOI: 10.3390/ani11113218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Corn straw (Zea mays, CS), rice straw (Oryza sativa, RS), and wheat straw (Triticum aestivum, WS) are the three main crop straws worldwide. Few studies on indigestible neutral detergent fiber (iNDF) and total-tract digestibility (TTD) of crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) of these crop straws are available, which limits their utilization in dairy diets. Here, we compared the ruminal degradability, iNDF288 content, intestinal digestibility, and TTD for the CP, NDF, and ADF of these three crop straws with alfalfa hay (Medicago sativa, AH) and corn silage (Zea mays, CSil). The results showed that CS, RS, and WS had higher ruminal potential NDF degradation, intestinal digestible CP, and lower iNDF288 content compared to AH. Greater accuracies for regression equations capable of predicting the iNDF288 content and TTD were also generated based on chemical composition and ruminal degradation kinetics. Incorporating this information into rations could improve our ability to optimize the utilization of main crop straws in balanced dairy diets. Abstract Three main crop straws including corn straw (Zea mays, CS), rice straw (Oryza sativa, RS), and wheat straw (Triticum aestivum, WS), and two forages including alfalfa hay (Medicago sativa, AH) and corn silage (Zea mays, CSil) were analyzed in order to compare their ruminal degradability, indigestible neutral detergent fiber (iNDF), intestinal digestibility (ID), and their total-tract digestibility (TTD) of crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) using both an in situ nylon bag technique and a mobile nylon bag technique. The forage samples were incubated in the rumen for 6, 12, 16, 24, 36, 48, 72, and 288 h, respectively, to determine their ruminal degradability. Prior to intestinal incubation, forage samples were incubated in the rumen for 12 h and 24 h to determine the ruminal degradable content of CP, NDF, and ADF, respectively, and for 288 h to determine their iNDF288 content. Residues from the ruminal undegradable fractions (12 h for CP, 24 h for NDF and ADF) were subsequently inserted into the duodenum through a cannula to determine their intestinal digestible content. Here, the TTD of CP, NDF, and ADF were determined as the ruminal degradable content + intestinal digestible content. The results showed that AH had the highest iNDF2.4 (calculated as acid detergent lignin content × 2.4) and iNDF288 values (379.42 and 473.40 g/kg of NDF), while CS and CSil had the lowest iNDF2.4 values (177.44 and 179.43 g/kg of NDF). The ruminal degradability of CP, NDF, and ADF for CS, RS, and WS were lower than those of AH and Csil during the first 48 h of incubation. The potential degradation fraction of CP, NDF, and ADF for CSil was the highest; CS, RS, and WS were intermediate; and AH was the lowest (p < 0.05). CS, RS, and WS had a lower intestinal digestibility with respect to their rumen undegradable content of NDF (p < 0.05), and lower TTD of CP, NDF, and ADF (p < 0.05) compared to AH and CSil. General regression equations with satisfactory accuracy (R2 ≥ 0.828) were derived to predict iNDF288 and TTD based on their chemical compositions and the ruminal degradation kinetics of different forages. Incorporating this information into rations could improve our ability to optimize main crop straws utilization and milk production.
Collapse
|
15
|
Raffrenato E, Badenhorst M, Shipandeni M, van Zyl W. Rumen fluid handling affects measurements of its enzymatic activity and in vitro digestibility. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Xu Q, Qiao Q, Gao Y, Hou J, Hu M, Du Y, Zhao K, Li X. Gut Microbiota and Their Role in Health and Metabolic Disease of Dairy Cow. Front Nutr 2021; 8:701511. [PMID: 34422882 PMCID: PMC8371392 DOI: 10.3389/fnut.2021.701511] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Ruminants are mostly herbivorous animals that employ rumen fermentation for the digestion of feed materials, including dairy cows. Ruminants consume plant fibre as their regular diet, but lack the machinery for their digestion. For this reason, ruminants maintain a symbiotic relation with microorganisms that are capable of producing enzymes to degrade plant polymers. Various species of microflora including bacteria, protozoa, fungi, archaea, and bacteriophages are hosted at distinct concentrations for accomplishing complete digestion. The ingested feed is digested at a defined stratum. The polysaccharic plant fibrils are degraded by cellulolytic bacteria, and the substrate formed is acted upon by other bacteria. This sequential degradative mechanism forms the base of complete digestion as well as harvesting energy from the ingested feed. The composition of microbiota readily gets tuned to the changes in the feed habits of the dairy cow. The overall energy production as well as digestion is decided by the intactness of the resident communal flora. Disturbances in the homogeneity gastrointestinal microflora has severe effects on the digestive system and various other organs. This disharmony in communal relationship also causes various metabolic disorders. The dominance of methanogens sometimes lead to bloating, and high sugar feed culminates in ruminal acidosis. Likewise, disruptive microfloral constitution also ignites reticuloperitonitis, ulcers, diarrhoea, etc. The role of symbiotic microflora in the occurrence and progress of a few important metabolic diseases are discussed in this review. Future studies in multiomics provides platform to determine the physiological and phenotypical upgradation of dairy cow for milk production.
Collapse
Affiliation(s)
- Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qinqin Qiao
- College of Information Engineering, Fuyang Normal University, Fuyang, China
| | - Ya Gao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinxiu Hou
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingyang Hu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yufeng Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ke Zhao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiang Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Potential Valorization of Organic Waste Streams to Valuable Organic Acids through Microbial Conversion: A South African Case Study. Catalysts 2021. [DOI: 10.3390/catal11080964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The notion of a “biobased economy” in the context of a developing country such as South Africa (SA) necessitates the development of technologies that utilize sustainable feedstocks, have simple and robust operations, are feasible at small scale and produce a variety of valuable bioproducts, thus fitting the biorefinery concept. This case study focuses on the microbial production of higher-value products from selected organic waste streams abundant in the South African agricultural sector using microbes adapted to utilize different parts of biomass waste streams. A ruminant-based carboxylate platform based on mixed or undefined anaerobic co-cultures of rumen microorganisms can convert the carbohydrate polymers in the lignocellulosic part of organic waste streams to carboxylic acids that can be upgraded to biofuels or green chemicals. Furthermore, yeast and fungi can convert the simpler carbohydrates (such as the sugars and malic acid in grape and apple pomace) to ethanol and high-value carboxylic acids, such as lactic, fumaric, succinic and citric acid. This review will discuss the combinational use of the ruminal carboxylate platform and native or recombinant yeasts to valorize biomass waste streams through the production of higher-value organic acids with various applications.
Collapse
|
18
|
Adaptation Mechanisms of Yak ( Bos grunniens) to High-Altitude Environmental Stress. Animals (Basel) 2021; 11:ani11082344. [PMID: 34438801 PMCID: PMC8388626 DOI: 10.3390/ani11082344] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Living at a high altitude involves many environmental challenges. The combined effects of hypoxia and cold stress impose severe physiological challenges on endothermic animals. The yak is integral to the livelihood of the people occupying the vast, inhospitable Qinghai-Tibetan plateau and the surrounding mountainous region. Due to long-term selection, the yak exhibits stable and unique genetic characteristics which enable physiological, biochemical, and morphological adaptations to a high altitude. Thus, the yak is a representative model for mammalian plateau-adaptability studies. Understanding coping mechanisms provides unique insights into adaptive evolution, thus informing the breeding of domestic yaks. This review provides an overview of genetic adaptations in Bos grunniens to high-altitude environmental stress. Combined genomics and theoretical advances have informed the genetic basis of high-altitude adaptations.
Collapse
|
19
|
Murali N, Srinivas K, Ahring BK. Increasing the Production of Volatile Fatty Acids from Corn Stover Using Bioaugmentation of a Mixed Rumen Culture with Homoacetogenic Bacteria. Microorganisms 2021; 9:337. [PMID: 33567655 PMCID: PMC7914532 DOI: 10.3390/microorganisms9020337] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/03/2022] Open
Abstract
Volatile fatty acids (VFA) are industrially versatile chemicals and have a major market. Although currently produced from petrochemicals, chemical industries are moving towards more bio-based VFA produced from abundant, cheap and renewable sources such as lignocellulosic biomass. In this study, we examined the effect of bioaugmentation with homoacetogenic bacteria for increasing VFA production in lignocellulose fermentation process. The central hypothesis of this study was that inhibition of methanogenesis in an in vitro rumen bioreactor fed with lignocellulosic biomass hydrolysate increases the hydrogen partial pressure, which can be redirected towards increased VFA production, particularly acetic acid, through targeted bioaugmentation with known homoacetogenic bacteria. In this study, methanogenesis during ruminal fermentation of wet exploded corn stover was initially inhibited with 10 mM of 2-bromoethanesulfonate (BES), followed by bioaugmentation with either Acetitomaculum ruminis and Acetobacterium woodii in two separate bioreactors. During the inhibition phase, we found that addition of BES decreased the acetic acid yield by 24%, while increasing headspace hydrogen from 1% to 60%. After bioaugmentation, the headspace hydrogen was consumed in both bioreactors and the concentration of acetic acids increased 45% when A. ruminis was added and 70% with A. woodii added. This paper demonstrates that mixed microbial fermentation can be manipulated to increase VFA production through bioaugmentation.
Collapse
Affiliation(s)
- Nanditha Murali
- Department of Chemical Engineering, Voiland College of Engineering and Architecture, Washington State University, Pullman, WA 99163, USA; (N.M.); (K.S.)
- Bio-Products, Sciences and Engineering Laboratory, Washington State University, Richland, WA 99354, USA
| | - Keerthi Srinivas
- Department of Chemical Engineering, Voiland College of Engineering and Architecture, Washington State University, Pullman, WA 99163, USA; (N.M.); (K.S.)
- Bio-Products, Sciences and Engineering Laboratory, Washington State University, Richland, WA 99354, USA
| | - Birgitte K. Ahring
- Department of Chemical Engineering, Voiland College of Engineering and Architecture, Washington State University, Pullman, WA 99163, USA; (N.M.); (K.S.)
- Bio-Products, Sciences and Engineering Laboratory, Washington State University, Richland, WA 99354, USA
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
20
|
Njokweni SG, Weimer PJ, Botes M, van Zyl WH. Effects of preservation of rumen inoculum on volatile fatty acids production and the community dynamics during batch fermentation of fruit pomace. BIORESOURCE TECHNOLOGY 2021; 321:124518. [PMID: 33316699 DOI: 10.1016/j.biortech.2020.124518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Rumen fluid (RF) as inocula is useful for evaluating biomass digestibility and has potential for producing volatile fatty acids (VFA) via the carboxylate platform. However, RF is not readily available, necessitating evaluation of potential preservation methods. Glycerol (50% v/v) and DMSO (5% v/v) were used to preserve rumen inocula for 3 months at -80 °C. Effects of cryo-preservation on digestibility, VFA production and community composition with β-diversity distance metrics were compared to fresh RF using apple, citrus and grape pomace as substrates. For all substrates, DMSO cryo-preserved rumen digestibility parameters, VFA yield and product distribution were more significantly comparable to fresh RF (P > 0.05) than was glycerol cryo-preserved RF. Similarly, β-diversity coefficient (unweighted unifrac) between DMSO cryo-preserved RF and fresh RF was 0.250 while the coefficient was 0.359 for the glycerol cryo-preserved RF compared to fresh RF. This showed that a DMSO cryo-preserved RF is less affected by preservation effects and is a more promising alternative to fresh RF.
Collapse
Affiliation(s)
- Sesethu G Njokweni
- Department of Microbiology, University of Stellenbosch, Stellenbosch 7600, South Africa
| | - Paul J Weimer
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| | - Marelize Botes
- Department of Microbiology, University of Stellenbosch, Stellenbosch 7600, South Africa.
| | - Willem H van Zyl
- Department of Microbiology, University of Stellenbosch, Stellenbosch 7600, South Africa
| |
Collapse
|
21
|
Walls LE, Rios-Solis L. Sustainable Production of Microbial Isoprenoid Derived Advanced Biojet Fuels Using Different Generation Feedstocks: A Review. Front Bioeng Biotechnol 2020; 8:599560. [PMID: 33195174 PMCID: PMC7661957 DOI: 10.3389/fbioe.2020.599560] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/09/2020] [Indexed: 01/17/2023] Open
Abstract
As the fastest mode of transport, the aircraft is a major driver for globalization and economic growth. The development of alternative advanced liquid fuels is critical to sustainable development within the sector. Such fuels should be compatible with existing infrastructure and derived from second generation feedstocks to avoid competition with food markets. With properties similar to petroleum based fuels, isoprenoid derived compounds such as limonene, bisabolane, farnesane, and pinene dimers are of increasing interest as "drop-in" replacement jet fuels. In this review potential isoprenoid derived jet fuels and progress toward their microbial production was discussed in detail. Although substantial advancements have been achieved, the use of first generation feedstocks remains ubiquitous. Lignocellulosic biomass is the most abundant raw material available for biofuel production, however, technological constraints associated with its pretreatment and saccharification hinder its economic feasibility for low-value commodity production. Non-conventional microbes with novel characteristics including cellulolytic bacteria and fungi capable of highly efficient lignocellulose degradation and xylose fermenting oleaginous yeast with enhanced lignin-associated inhibitor tolerance were investigated as alternatives to traditional model hosts. Finally, innovative bioprocessing methods including consolidated bioprocessing and sequential bioreactor approaches, with potential to capitalize on such unique natural capabilities were considered.
Collapse
Affiliation(s)
- Laura Ellen Walls
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Ma Y, Li Y, Li Y, Cheng Y, Zhu W. The enrichment of anaerobic fungi and methanogens showed higher lignocellulose degrading and methane producing ability than that of bacteria and methanogens. World J Microbiol Biotechnol 2020; 36:125. [PMID: 32712756 DOI: 10.1007/s11274-020-02894-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 07/12/2020] [Indexed: 12/20/2022]
Abstract
In this study, rumen content was used to obtain three enrichments of anaerobic fungi and methanogens (F + M enrichment), bacteria and methanogens (B + M enrichment), and whole rumen content (WRC enrichment), to evaluate their respective ability to degrade lignocellulose and produce methane. Among the treatments, F + M enrichment elicited the strongest lignocellulose degradation and methane production ability with both rice straw and wheat straw as substrates. Quantitative real-time PCR analysis and diversity analyses of methanogens in the three enrichment treatments demonstrated that F + M had larger number of 16S rRNA gene copies of methanogens and higher relative abundance of Methanobrevibacter, the predominant methanogen found in all enrichments. Caecomyces was the main anaerobic fungal genus for co-culturing to provide substrates for methanogens in this enrichment. Importantly, the F + M enrichment was stable and could be maintained with transfers supplied every 3 days, confirming its potential utility in anaerobic digestion for lignocellulose degradation and methane production.
Collapse
Affiliation(s)
- Yuping Ma
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanfei Li
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuqi Li
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
23
|
Li J, Zhong H, Ramayo-Caldas Y, Terrapon N, Lombard V, Potocki-Veronese G, Estellé J, Popova M, Yang Z, Zhang H, Li F, Tang S, Yang F, Chen W, Chen B, Li J, Guo J, Martin C, Maguin E, Xu X, Yang H, Wang J, Madsen L, Kristiansen K, Henrissat B, Ehrlich SD, Morgavi DP. A catalog of microbial genes from the bovine rumen unveils a specialized and diverse biomass-degrading environment. Gigascience 2020; 9:5849033. [PMID: 32473013 PMCID: PMC7260996 DOI: 10.1093/gigascience/giaa057] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/07/2019] [Accepted: 05/06/2020] [Indexed: 01/10/2023] Open
Abstract
Background The rumen microbiota provides essential services to its host and, through its role in ruminant production, contributes to human nutrition and food security. A thorough knowledge of the genetic potential of rumen microbes will provide opportunities for improving the sustainability of ruminant production systems. The availability of gene reference catalogs from gut microbiomes has advanced the understanding of the role of the microbiota in health and disease in humans and other mammals. In this work, we established a catalog of reference prokaryote genes from the bovine rumen. Results Using deep metagenome sequencing we identified 13,825,880 non-redundant prokaryote genes from the bovine rumen. Compared to human, pig, and mouse gut metagenome catalogs, the rumen is larger and richer in functions and microbial species associated with the degradation of plant cell wall material and production of methane. Genes encoding enzymes catalyzing the breakdown of plant polysaccharides showed a particularly high richness that is otherwise impossible to infer from available genomes or shallow metagenomics sequencing. The catalog expands the dataset of carbohydrate-degrading enzymes described in the rumen. Using an independent dataset from a group of 77 cattle fed 4 common dietary regimes, we found that only <0.1% of genes were shared by all animals, which contrast with a large overlap for functions, i.e., 63% for KEGG functions. Different diets induced differences in the relative abundance rather than the presence or absence of genes, which explains the great adaptability of cattle to rapidly adjust to dietary changes. Conclusions These data bring new insights into functions, carbohydrate-degrading enzymes, and microbes of the rumen to complement the available information on microbial genomes. The catalog is a significant biological resource enabling deeper understanding of phenotypes and biological processes and will be expanded as new data are made available.
Collapse
Affiliation(s)
- Junhua Li
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Huanzi Zhong
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Yuliaxis Ramayo-Caldas
- INRAE, Génétique Animale et Biologie Intégrative, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.,Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, Caldes de Montbui 08140, Spain
| | - Nicolas Terrapon
- CNRS UMR 7257, Aix-Marseille University, 13288 Marseille, France.,INRAE, USC 1408 AFMB, 13288 Marseille, France
| | - Vincent Lombard
- CNRS UMR 7257, Aix-Marseille University, 13288 Marseille, France.,INRAE, USC 1408 AFMB, 13288 Marseille, France
| | | | - Jordi Estellé
- INRAE, Génétique Animale et Biologie Intégrative, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Milka Popova
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès Champanelle, France
| | - Ziyi Yang
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Hui Zhang
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Fang Li
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Shanmei Tang
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Fangming Yang
- BGI-Shenzhen, Shenzhen 518083, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | | | - Bing Chen
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Jiyang Li
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jing Guo
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Cécile Martin
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès Champanelle, France
| | - Emmanuelle Maguin
- INRAE, Micalis Institute, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Lise Madsen
- BGI-Shenzhen, Shenzhen 518083, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark.,Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817 Bergen, Norway
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen 518083, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Bernard Henrissat
- CNRS UMR 7257, Aix-Marseille University, 13288 Marseille, France.,INRAE, USC 1408 AFMB, 13288 Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Stanislav D Ehrlich
- BGI-Shenzhen, Shenzhen 518083, China.,MGP MetaGenoPolis, INRAE, Université Paris-Saclay, 78350 Jouy en Josas, France.,Centre for Host Microbiome Interactions, Dental Institute, King's College London, London, UK
| | - Diego P Morgavi
- BGI-Shenzhen, Shenzhen 518083, China.,Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès Champanelle, France
| |
Collapse
|
24
|
Brethauer S, Shahab RL, Studer MH. Impacts of biofilms on the conversion of cellulose. Appl Microbiol Biotechnol 2020; 104:5201-5212. [PMID: 32337627 PMCID: PMC7275028 DOI: 10.1007/s00253-020-10595-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 12/02/2022]
Abstract
Abstract Lignocellulose is a widely available renewable carbon source and a promising feedstock for the production of various chemicals in biorefineries. However, its recalcitrant nature is a major hurdle that must be overcome to enable economic conversion processes. Deconstruction of lignocellulose is part of the global carbon cycle, and efficient microbial degradation systems have evolved that might serve as models to improve commercial conversion processes. Biofilms—matrix encased, spatially organized clusters of microbial cells and the predominating lifestyle in nature—have been recognized for their essential role in the degradation of cellulose in nature, e.g., in soils or in the digestive tracts of ruminant animals. Cellulolytic biofilms allow for a high concentration of enzymes at the boundary layer between the solid substrate and the liquid phase and the more complete capture of hydrolysis products directly at the hydrolysis site, which is energetically favorable. Furthermore, enhanced expression of genes for carbohydrate active enzymes as a response to the attachment on solid substrate has been demonstrated for cellulolytic aerobic fungi and anerobic bacteria. In natural multispecies biofilms, the vicinity of different microbial species allows the creation of efficient food webs and synergistic interactions thereby, e.g., avoiding the accumulation of inhibiting metabolites. In this review, these topics are discussed and attempts to realize the benefits of biofilms in targeted applications such as the consolidated bioprocessing of lignocellulose are highlighted. Key Points Multispecies biofilms enable efficient lignocellulose destruction in the biosphere. Cellulose degradation by anaerobic bacteria often occurs by monolayered biofilms. Fungal biofilms immobilize enzymes and substrates in an external digestion system. Surface attached cultures typically show higher expression of cellulolytic enzymes.
Collapse
Affiliation(s)
- Simone Brethauer
- School of Agricultural, Forest and Food Sciences, Laboratory of Biofuels and Biochemicals, Bern University of Applied Sciences (BFH), 3052, Zollikofen, Switzerland
| | - Robert L Shahab
- School of Agricultural, Forest and Food Sciences, Laboratory of Biofuels and Biochemicals, Bern University of Applied Sciences (BFH), 3052, Zollikofen, Switzerland
| | - Michael H Studer
- School of Agricultural, Forest and Food Sciences, Laboratory of Biofuels and Biochemicals, Bern University of Applied Sciences (BFH), 3052, Zollikofen, Switzerland.
| |
Collapse
|
25
|
Furman O, Shenhav L, Sasson G, Kokou F, Honig H, Jacoby S, Hertz T, Cordero OX, Halperin E, Mizrahi I. Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome assembly dynamics. Nat Commun 2020; 11:1904. [PMID: 32312972 PMCID: PMC7170844 DOI: 10.1038/s41467-020-15652-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
How complex communities assemble through the animal's life, and how predictable the process is remains unexplored. Here, we investigate the forces that drive the assembly of rumen microbiomes throughout a cow's life, with emphasis on the balance between stochastic and deterministic processes. We analyse the development of the rumen microbiome from birth to adulthood using 16S-rRNA amplicon sequencing data and find that the animals shared a group of core successional species that invaded early on and persisted until adulthood. Along with deterministic factors, such as age and diet, early arriving species exerted strong priority effects, whereby dynamics of late successional taxa were strongly dependent on microbiome composition at early life stages. Priority effects also manifest as dramatic changes in microbiome development dynamics between animals delivered by C-section vs. natural birth, with the former undergoing much more rapid species invasion and accelerated microbiome development. Overall, our findings show that together with strong deterministic constrains imposed by diet and age, stochastic colonization in early life has long-lasting impacts on the development of animal microbiomes.
Collapse
Affiliation(s)
- Ori Furman
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, Beer-Sheva, Israel
| | - Liat Shenhav
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Goor Sasson
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, Beer-Sheva, Israel
| | - Fotini Kokou
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, Beer-Sheva, Israel
| | - Hen Honig
- Institute of Animal Sciences, Agricultural Research Organization, Rishon Letziyon, Israel
| | - Shamay Jacoby
- Institute of Animal Sciences, Agricultural Research Organization, Rishon Letziyon, Israel
| | - Tomer Hertz
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, Beer-Sheva, Israel
| | - Otto X Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Eran Halperin
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, Beer-Sheva, Israel.
| |
Collapse
|
26
|
Pacheco D, Muetzel S, Lewis S, Dalley D, Bryant M, Waghorn GC. Rumen digesta and products of fermentation in cows fed varying proportions of fodder beet (Beta vulgaris) with fresh pasture or silage or straw. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an18002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context Fodder beet (FB) is a popular feed for dairy cows in temperate climates due to its high yields, high digestibility, low nitrogen (N) content in the dry matter (DM) and convenience of feeding (grazing in situ). However, the risk of ruminal acidosis requires research to design feeding regimes that capture these benefits without compromising animal health. Aims To understand aspects of rumen function when FB is offered in conditions representative of practical feeding in temperate pastoral systems. Methods Two indoor experiments were undertaken; one with cows in late lactation fed fresh perennial ryegrass with three proportions of FB (0, 0.23 and 0.45) and another with non-lactating cows fed pasture silage with 0.65 FB or barley straw with 0.86 FB. Measurements included rumen pH, short-chain fatty acid (SCFA) and ammonia concentrations determined at 2-h intervals, as well as daily individual cow intakes, estimates of microbial growth and rumen dynamics. Key results The inclusion of 0, 0.23 and 0.45 FB with fresh pasture in the did not affect daily DM intakes (~14.6 kg), milk yield (~10.7 kg), microbial synthesis (129 g of N/d) or fractional outflow rates of digesta (0.16/h; 11.2 L/h) of lactating cows. The non-lactating cow ration comprising 0.86 FB with straw was inappropriate and resulted in low intakes and insufficient dietary N. Microbial growth was approximately one-third of that in cows fed pasture silage with 0.65 FB. The ruminal pH reached lower values in all treatments where FB was offered. Rumen ammonia concentrations averaged 4.4 mmol/L in cows fed pasture but was sometimes undetectable in lactating cows fed 0.45 FB and in non-lactating cows. The amount of FB in the diet affected the extent of the circadian changes in molar proportions of SCFA. Conclusions Based on the results presented here, feeding fresh FB to dairy cows should not exceed ~0.4 of their DMI with pasture (late lactation), or ~0.6 of their intake with silage (non-lactating). Implications These findings could support evidence-based recommendations for FB use, considering its effects on aspects of rumen function, such as microbial protein synthesis and pH.
Collapse
|
27
|
Zamorano-López N, Borrás L, Giménez JB, Seco A, Aguado D. Acclimatised rumen culture for raw microalgae conversion into biogas: Linking microbial community structure and operational parameters in anaerobic membrane bioreactors (AnMBR). BIORESOURCE TECHNOLOGY 2019; 290:121787. [PMID: 31323513 DOI: 10.1016/j.biortech.2019.121787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Ruminal fluid was inoculated in an Anaerobic Membrane Reactor (AnMBR) to produce biogas from raw Scenedesmus. This work explores the microbial ecology of the system during stable operation at different solids retention times (SRT). The 16S rRNA amplicon analysis revealed that the acclimatised community was mainly composed of Anaerolineaceae, Spirochaetaceae, Lentimicrobiaceae and Cloacimonetes fermentative and hydrolytic members. During the highest biodegradability achieved in the AnMBR (62%) the dominant microorganisms were Fervidobacterium and Methanosaeta. Different microbial community clusters were observed at different SRT conditions. Interestingly, syntrophic bacteria Gelria and Smithella were enhanced after increasing 2-fold the organic loading rate, suggesting their importance in continuous systems producing biogas from raw microalgae.
Collapse
Affiliation(s)
- Núria Zamorano-López
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain.
| | - Luis Borrás
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Juan B Giménez
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Aurora Seco
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Daniel Aguado
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
28
|
Njokweni SG, Weimer PJ, Warburg L, Botes M, van Zyl WH. Valorisation of the invasive species, Prosopis juliflora, using the carboxylate platform to produce volatile fatty acids. BIORESOURCE TECHNOLOGY 2019; 288:121602. [PMID: 31195362 DOI: 10.1016/j.biortech.2019.121602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Biomass derived from low-value, high-volume invasive plant species is an attractive, alternative feedstock to produce biofuels and biochemicals. This study aimed to use the carboxylate platform to valorize the invasive leguminous shrub, Prosopis juliflora (Mesquite), by utilizing in vitro rumen fermentations without chemical pretreatment to produce volatile fatty acids. The three fractions of the mesquite: leaves (ProL), stems (ProS) and branches (ProB) were compared regarding chemical composition, neutral detergent fiber (NDF) digestibility at 7 time points and VFA production after 72 h with sugarcane bagasse (SCB) as a reference. NDF digestibility was significantly (P < 0.05) higher in ProL (35.8%) than ProS (30.4%) and ProB (20.9%) compared to SCB (21.9%). VFA concentrations from 20 g biomass L-1 showed significant differences with 8.07, 6.71 and 6.51 g L-1 for ProL, ProS and ProB respectively, while SCB yielded 4.02 g L-1. These concentrations were comparable with other platforms that employ chemically pretreated biomass for VFA production.
Collapse
Affiliation(s)
- Sesethu G Njokweni
- Department of Microbiology, University of Stellenbosch, Stellenbosch 7600, South Africa
| | - Paul J Weimer
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Lisa Warburg
- Department of Microbiology, University of Stellenbosch, Stellenbosch 7600, South Africa
| | - Marelize Botes
- Department of Microbiology, University of Stellenbosch, Stellenbosch 7600, South Africa.
| | - Willem H van Zyl
- Department of Microbiology, University of Stellenbosch, Stellenbosch 7600, South Africa
| |
Collapse
|
29
|
Sheppard P, Garcia-Garcia G, Angelis-Dimakis A, Campbell GM, Rahimifard S. Synergies in the co-location of food manufacturing and biorefining. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Lin M, Dai X, Weimer PJ. Shifts in fermentation end products and bacterial community composition in long-term, sequentially transferred in vitro ruminal enrichment cultures fed switchgrass with and without ethanol as a co-substrate. BIORESOURCE TECHNOLOGY 2019; 285:121324. [PMID: 30981010 DOI: 10.1016/j.biortech.2019.121324] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
In vitro ruminal fermentations resemble in vivo fermentations with respect to substrate consumption and distribution of fermentation products in short term (1-5 d) incubations. However, little is known regarding changes in in vitro fermentations over prolonged incubation or multiple transfers. Gas production, pH, fermentation products, and bacterial community composition were examined in duplicate in vitro fermentations of switchgrass plus distillers grains that were transferred at 3-4 d intervals over 900 d. Additionally, duplicate fermentations inoculated from 160 d-old enrichments into the same medium but supplemented with ethanol, and transferred at 3-4 d over a 730 d period were characterized. SWG and SWG + E fermentation showed marked differences in community composition, pH, total product concentrations and ratios, relative to each other and to the original inoculum. The results have implications for the use of ruminal inocula for industrial production of short- and medium-chain fatty acids via the carboxylate platform.
Collapse
Affiliation(s)
- Miao Lin
- Department of Animal Sciences and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Xiaoxia Dai
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Paul J Weimer
- United States Department of Agriculture, Agricultural Research Service, US Dairy Forage Research Center, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
31
|
Ciesielski PN, Wagner R, Bharadwaj VS, Killgore J, Mittal A, Beckham GT, Decker SR, Himmel ME, Crowley MF. Nanomechanics of cellulose deformation reveal molecular defects that facilitate natural deconstruction. Proc Natl Acad Sci U S A 2019; 116:9825-9830. [PMID: 31036649 PMCID: PMC6525519 DOI: 10.1073/pnas.1900161116] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Technologies surrounding utilization of cellulosic materials have been integral to human society for millennia. In many materials, controlled introduction of defects provides a means to tailor properties, introduce reactivity, and modulate functionality for various applications. The importance of defects in defining the behavior of cellulose is becoming increasingly recognized. However, fully exploiting defects in cellulose to benefit biobased materials and conversion applications will require an improved understanding of the mechanisms of defect induction and corresponding molecular-level consequences. We have identified a fundamental relationship between the macromolecular structure and mechanical behavior of cellulose nanofibrils whereby molecular defects may be induced when the fibrils are subjected to bending stress exceeding a certain threshold. By nanomanipulation, imaging, and molecular modeling, we demonstrate that cellulose nanofibrils tend to form kink defects in response to bending stress, and that these macromolecular features are often accompanied by breakages in the glucan chains. Direct observation of deformed cellulose fibrils following partial enzymatic digestion reveals that processive cellulases exploit these defects as initiation sites for hydrolysis. Collectively, our findings provide a refined understanding of the interplay between the structure, mechanics, and reactivity of cellulose assemblies.
Collapse
Affiliation(s)
- Peter N Ciesielski
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401;
| | - Ryan Wagner
- Material Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO
| | - Vivek S Bharadwaj
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401
| | - Jason Killgore
- Material Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO
| | - Ashutosh Mittal
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401
| | - Gregg T Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401
| | - Stephen R Decker
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401
| | - Michael F Crowley
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401;
| |
Collapse
|
32
|
Nagler M, Kozjek K, Etemadi M, Insam H, Podmirseg SM. Simple yet effective: Microbial and biotechnological benefits of rumen liquid addition to lignocellulose-degrading biogas plants. J Biotechnol 2019; 300:1-10. [PMID: 31082412 DOI: 10.1016/j.jbiotec.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/30/2023]
Abstract
In biogas plants, lignocellulose-rich biomass (LCB) is particularly slowly degraded, causing high hydraulic retention times. This fact lowers the interests for such substrates. To enhance LCB-degradation, cattle rumen fluid, a highly active microbial resource accruing in the growing meat industry, might be used as a potential source for bioaugmentation. This study compares 0%, 20% and 40% rumen liquid in a batch anaerobic digestion approach. Moreover, it determines the biogas- and methane-potentials as well as degradation-speeds of corn straw, co-digested with cattle manure. It inspects microbial communities via marker-gene sequencing, qPCR and RNA-DGGE and draws attention on possible beneficial effects of rumen addition on the biogas-producing community. Bioaugmentation with 20% and 40% v/v rumen liquid accelerated methane yields by 5 and 6 days, respectively (i.e. reaching 90% of total methane production). It also enhanced LCB- as well as (hemi)cellulose- and volatile fatty acid degradation. These results are supported by increased abundances of bacteria, methanogens and anaerobic fungi in treatments with rumen liquid amendment, and point towards the persistence of specific rumen-borne microorganisms especially during the first phase of the experiment. The results suggest that rumen liquid addition is a promising strategy for enhanced and accelerated exploitation of LCB for biomethanisation.
Collapse
Affiliation(s)
- Magdalena Nagler
- Institute of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria; ACIB Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.
| | - Katja Kozjek
- Institute of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria; ACIB Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Mohammad Etemadi
- Institute of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Heribert Insam
- Institute of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Sabine Marie Podmirseg
- Institute of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria; ACIB Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
33
|
Lira-Casas R, Efren Ramirez-Bribiesca J, Zavaleta-Mancera HA, Hidalgo-Moreno C, Cruz-Monterrosa RG, Crosby-Galvan MM, Mendez-Rojas MA, Domínguez-Vara IA. Designing and evaluation of urea microcapsules in vitro to improve nitrogen slow release availability in rumen. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2541-2547. [PMID: 30387165 DOI: 10.1002/jsfa.9464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND There is a growing interest in the development of novel and innovative vehicles for controlled release of urea into the rumen, aiming to provide ammonia-N for the biosynthesis of proteins of bacterial origin and to prevent urea intoxication by direct feeding to livestock. Urea microencapsulation is a system that can control the release of urea to be slow and steady. RESULTS The amount of encapsulated urea was 69% of CSU (calcium silicate + urea + Eudragit RS100® + dichloromethane) and 71% of ACU (activated charcoal + urea + Eudragit RS100® + dichloromethane) groups (p > 0.05) The buoyancy of the microcapsules was over 50% after 12 h of agitation in both groups (CSU and ACU), producing significant differences in the volume of the organic phase factor, which was 20 mL at the lowest value (p = 0.0005). The morphology of the microcapsules produced with CSU and ACU showed no significant differences in microcapsule morphology (p > 0.05). The lower temperature (35 versus 40 °C, p = 0.035) retained better morphology of the microcapsules. Regarding the in vitro ammonia-N release kinetics, unprotected urea reached a maximal peak after 6 h, while CSU and ACU took more than 24 h to reach ammonia-N released concentration. CONCLUSIONS We stabilized the physical factors in the microencapsulation of urea that can allow slow release of rumen fluid. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Raymundo Lira-Casas
- Programa de Ganadería, Colegio de Postgraduados, Montecillo Texcoco Estado de México
| | | | | | | | - Rosy G Cruz-Monterrosa
- Ciencia de los Alimentos, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, México
| | - María M Crosby-Galvan
- Programa de Ganadería, Colegio de Postgraduados, Montecillo Texcoco Estado de México
| | | | | |
Collapse
|
34
|
A cellulolytic fungal biofilm enhances the consolidated bioconversion of cellulose to short chain fatty acids by the rumen microbiome. Appl Microbiol Biotechnol 2019; 103:3355-3365. [PMID: 30847541 PMCID: PMC6449290 DOI: 10.1007/s00253-019-09706-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 11/23/2022]
Abstract
The ability of the multispecies biofilm membrane reactors (MBM reactors) to provide distinguished niches for aerobic and anaerobic microbes at the same time was used for the investigation of the consolidated bioprocessing of cellulose to short chain fatty acids (SCFAs). A consortium based consolidated bioprocess (CBP) was designed. The rumen microbiome was used as the converting microbial consortium, co-cultivated with selected individual aerobic fungi which formed a biofilm on the tubular membrane flushed with oxygen. The beneficial effect of the fungal biofilm on the process yields and productivities was attributed to the enhanced cellulolytic activities compared with those achieved by the rumen microbiome alone. At 30 °C, the MBM system with Trichoderma reesei biofilm reached a concentration 39% higher (7.3 g/L SCFAs), than the rumen microbiome alone (5.1 g/L) using 15 g/L crystalline cellulose as the substrate. Fermentation temperature was crucial especially for the composition of the short chain fatty acids produced. The temperature increase resulted in shorter fatty acids produced. While a mixture of acetic, propionic, butyric, and caproic acids was produced at 30 °C with Trichoderma reesei biofilm, butyric and caproic acids were not detected during the fermentations at 37.5 °C carried out with Coprinopsis cinerea as the biofilm forming fungus. Apart from the presence of the fungal biofilm, no parameter studied had a significant impact on the total yield of organic acids produced, which reached 0.47 g of total SCFAs per g of cellulose (at 30 °C and at pH 6, with rumen inoculum to total volume ratio equal to 0.372).
Collapse
|
35
|
Li Y, Li Y, Jin W, Sharpton TJ, Mackie RI, Cann I, Cheng Y, Zhu W. Combined Genomic, Transcriptomic, Proteomic, and Physiological Characterization of the Growth of Pecoramyces sp. F1 in Monoculture and Co-culture With a Syntrophic Methanogen. Front Microbiol 2019; 10:435. [PMID: 30894845 PMCID: PMC6414434 DOI: 10.3389/fmicb.2019.00435] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/19/2019] [Indexed: 11/13/2022] Open
Abstract
In this study, the effects of a syntrophic methanogen on the growth of Pecoramyces sp. F1 was investigated by characterizing fermentation profiles, as well as functional genomic, transcriptomic, and proteomic analysis. The estimated genome size, GC content, and protein coding regions of strain F1 are 106.83 Mb, 16.07%, and 23.54%, respectively. Comparison of the fungal monoculture with the methanogen co-culture demonstrated that during the fermentation of glucose, the co-culture initially expressed and then down-regulated a large number of genes encoding both enzymes involved in intermediate metabolism and plant cell wall degradation. However, the number of up-regulated proteins doubled at the late-growth stage in the co-culture. In addition, we provide a mechanistic understanding of the metabolism of this fungus in co-culture with a syntrophic methanogen. Further experiments are needed to explore this interaction during degradation of more complex plant cell wall substrates.
Collapse
Affiliation(s)
- Yuanfei Li
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Yuqi Li
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Wei Jin
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China.,Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China
| | - Thomas J Sharpton
- Department of Microbiology - Department of Statistics, Oregon State University, Corvallis, OR, United States
| | - Roderick I Mackie
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Isaac Cann
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Department of Microbiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China.,Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China.,Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
36
|
Elghandour MMMY, Adegbeye MJ, Barbabosa-Pilego A, Perez NR, Hernández SR, Zaragoza-Bastida A, Salem AZM. Equine Contribution in Methane Emission and Its Mitigation Strategies. J Equine Vet Sci 2018; 72:56-63. [PMID: 30929784 DOI: 10.1016/j.jevs.2018.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 11/26/2022]
Abstract
Greenhouses gas emission mitigation is a very important aspect of earth sustainability with greenhouse gasses reduction, a focus of agricultural and petrochemical industries. Methane is produced in nonruminant herbivores such as horses because they undergo hindgut fermentation. Although equine produce less methane than ruminant, increasing population of horses might increase their contribution to the present 1.2 to 1.7 Tg, estimate. Diet, feeding frequency, season, genome, and protozoa population influence methane production equine. In population, Methanomicrobiales, Methanosarcinales, Methanobacteriales, and Methanoplasmatales are the clade identified in equine. Methanocorpusculum labreanum is common among hindgut fermenters like horses and termite. Naturally, acetogenesis and interrelationship between the host and the immune-anatomical interaction are responsible for the reduced methane output in horses. However, to reduce methane output in equine, and increase energy derived from feed intake, the use of biochar, increase in acetogens, inclusion of fibre enzymes and plant extract, and recycling of fecal energy through anaerobic gas fermentation. These might be feasible ways to reducing methane contribution from horse and could be applied to ruminants too.
Collapse
Affiliation(s)
- Mona M M Y Elghandour
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Estado de México, México
| | - Moyosore Joseph Adegbeye
- Department of Animal Science, College of Agriculture, Joseph Ayo Babalola University, Ilesha, Nigeria
| | - Alberto Barbabosa-Pilego
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Estado de México, México
| | - Nallely Rivero Perez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuaria, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
| | - Saúl Rojas Hernández
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | - Adrian Zaragoza-Bastida
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuaria, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
| | - Abdelfattah Z M Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Estado de México, México.
| |
Collapse
|
37
|
Free A, McDonald MA, Pagaling E. Diversity-Function Relationships in Natural, Applied, and Engineered Microbial Ecosystems. ADVANCES IN APPLIED MICROBIOLOGY 2018; 105:131-189. [PMID: 30342721 DOI: 10.1016/bs.aambs.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The connection between ecosystem function and taxonomic diversity has been of interest and relevance to macroecologists for decades. After many years of lagging behind due to the difficulty of assigning both taxonomy and function to poorly distinguishable microscopic cells, microbial ecology now has access to a suite of powerful molecular tools which allow its practitioners to generate data relating to diversity and function of a microbial community on an unprecedented scale. Instead, the problem facing today's microbial ecologists is coupling the ease of generation of these datasets with the formulation and testing of workable hypotheses relating the diversity and function of environmental, host-associated, and engineered microbial communities. Here, we review the current state of knowledge regarding the links between taxonomic alpha- and beta-diversity and ecosystem function, comparing our knowledge in this area to that obtained by macroecologists who use more traditional techniques. We consider the methodologies that can be applied to study these properties and how successful they are at linking function to diversity, using examples from the study of model microbial ecosystems, methanogenic bioreactors (anaerobic digesters), and host-associated microbiota. Finally, we assess ways in which our newly acquired understanding might be used to manipulate diversity in ecosystems of interest in order to improve function for the benefit of us or the environment in general through the provision of ecosystem services.
Collapse
Affiliation(s)
- Andrew Free
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Michael A McDonald
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Eulyn Pagaling
- The James Hutton Institute, Craigiebuckler, Aberdeen, United Kingdom
| |
Collapse
|
38
|
Leng RA. Unravelling methanogenesis in ruminants, horses and kangaroos: the links between gut anatomy, microbial biofilms and host immunity. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an15710] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present essay aims to resolve the question as to why macropod marsupials (e.g. kangaroos and wallabies, hereinafter termed ‘macropods) and horses produce much less methane (CH4) than do ruminants when digesting the same feed. In herbivores, gases produced during fermentation of fibrous feeds do not pose a major problem in regions of the gut that have mechanisms to eliminate them (e.g. eructation in the rumen and flatus in the lower bowel). In contrast, gas pressure build-up in the tubiform forestomach of macropods or in the enlarged tubiform caecum of equids would be potentially damaging. It is hypothesised that, to prevent this problem, evolution has favoured development of controls over gut microbiota that enable enteric gas production (H2 and CH4) to be differently regulated in the forestomach of macropods and the caecum of all three species, from the forestomach of ruminants. The hypothesised regulation depends on interactions between their gut anatomy and host-tissue immune responses that have evolved to modify the species composition of their gut microbiota which, importantly, are mainly in biofilms. Obligatory H2 production during forage fermentation is, thus, captured in CH4 in the ruminant where ruminal gases are readily released by eructation, or in acetate in the macropod forestomach and equid caecum–colon where a build-up in gas pressure could potentially damage these organs. So as to maintain appropriate gut microbiota in different species, it is hypothesised that blind sacs at the cranial end of the haustral anatomy of the macropod forestomach and the equid caecum are sites of release of protobiofilm particles that develop in close association with the mucosal lymphoid tissues. These tissues release immune secretions such as antimicrobial peptides, immunoglobulins, innate lymphoid cells and mucin that eliminate or suppress methanogenic Archaea and support the growth of acetogenic microbiota. The present review draws on microbiological studies of the mammalian gut as well as other microbial environments. Hypotheses are advanced to account for published findings relating to the gut anatomy of herbivores and humans, the kinetics of digesta in ruminants, macropods and equids, and also the composition of biofilm microbiota in the human gut as well as aquatic and other environments where the microbiota exist in biofilms.
Collapse
|
39
|
Bomble YJ, Lin CY, Amore A, Wei H, Holwerda EK, Ciesielski PN, Donohoe BS, Decker SR, Lynd LR, Himmel ME. Lignocellulose deconstruction in the biosphere. Curr Opin Chem Biol 2017; 41:61-70. [DOI: 10.1016/j.cbpa.2017.10.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/18/2022]
|
40
|
Cheng Y, Wang Y, Li Y, Zhang Y, Liu T, Wang Y, Sharpton TJ, Zhu W. Progressive Colonization of Bacteria and Degradation of Rice Straw in the Rumen by Illumina Sequencing. Front Microbiol 2017; 8:2165. [PMID: 29163444 PMCID: PMC5681530 DOI: 10.3389/fmicb.2017.02165] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/23/2017] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to improve the utilization of rice straw as forage in ruminants by investigating the degradation pattern of rice straw in the dairy cow rumen. Ground up rice straw was incubated in situ in the rumens of three Holstein cows over a period of 72 h. The rumen fluid at 0 h and the rice straw at 0.5, 1, 2, 4, 6, 12, 24, 48, and 72 h were collected for analysis of the bacterial community and the degradation of the rice straw. The bacterial community and the carbohydrate-active enzymes in the rumen fluid were analyzed by metagenomics. The diversity of bacteria loosely and tightly attached to the rice straw was investigated by scanning electron microscopy and Miseq sequencing of 16S rRNA genes. The predominant genus in the rumen fluid was Prevotella, followed by Bacteroides, Butyrivibrio, unclassified Desulfobulbaceae, Desulfovibrio, and unclassified Sphingobacteriaceae. The main enzymes were members of the glycosyl hydrolase family, divided into four categories (cellulases, hemicellulases, debranching enzymes, and oligosaccharide-degrading enzymes), with oligosaccharide-degrading enzymes being the most abundant. No significant degradation of rice straw was observed between 0.5 and 6 h, whereas the rice straw was rapidly degraded between 6 and 24 h. The degradation then gradually slowed between 24 and 72 h. A high proportion of unclassified bacteria were attached to the rice straw and that Prevotella, Ruminococcus, and Butyrivibrio were the predominant classified genera in the loosely and tightly attached fractions. The composition of the loosely attached bacterial community remained consistent throughout the incubation, whereas a significant shift in composition was observed in the tightly attached bacterial community after 6 h of incubation. This shift resulted in a significant reduction in numbers of Bacteroidetes and a significant increase in numbers of Firmicutes. In conclusion, the degradation pattern of rice straw in the dairy cow rumen indicates a strong contribution by tightly attached bacteria, especially after 6 h incubation, but most of these bacteria were not taxonomically characterized. Thus, these bacteria should be further identified and subjected to functional analysis to improve the utilization of crop residues in ruminants.
Collapse
Affiliation(s)
- Yanfen Cheng
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, China
| | - Ying Wang
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, China
| | - Yuanfei Li
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, China
| | - Yipeng Zhang
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, China
| | - Tianyi Liu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, China
| | - Yu Wang
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, China
| | - Thomas J Sharpton
- Departments of Microbiology and Statistics, Oregon State University, Corvallis, OR, United States
| | - Weiyun Zhu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, China
| |
Collapse
|
41
|
Agematu H, Takahashi T, Hamano Y. Continuous volatile fatty acid production from lignocellulosic biomass by a novel rumen-mimetic bioprocess. J Biosci Bioeng 2017; 124:528-533. [DOI: 10.1016/j.jbiosc.2017.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/12/2017] [Accepted: 06/16/2017] [Indexed: 11/26/2022]
|
42
|
Fermentation of model hemicelluloses by Prevotella strains and Butyrivibrio fibrisolvens in pure culture and in ruminal enrichment cultures. Appl Microbiol Biotechnol 2017; 101:4269-4278. [DOI: 10.1007/s00253-017-8150-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/12/2017] [Accepted: 01/22/2017] [Indexed: 11/27/2022]
|
43
|
Leng RA. Biofilm compartmentalisation of the rumen microbiome: modification of fermentation and degradation of dietary toxins. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an17382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Many deleterious chemicals in plant materials ingested by ruminants produce clinical effects, varying from losses of production efficiency through to death. Many of the effects are insidious, often going unrecognised by animal managers. When secondary plant compounds enter the rumen, they may undergo modification by rumen microbes, which often removes the deleterious compounds, but in specific instances, the deleterious effect may be enhanced. Improved understanding of rumen ecology, particularly concerning the biofilm mode of microbial fermentation, has led to major advances in our understanding of fermentation. In the present review, the potential impact of the physical structuring of the rumen microbiome is discussed in relation to how several economically important secondary plant compounds and other toxins are metabolised by the rumen microbiome and how their toxic effects may be remedied by providing inert particles with a large surface area to weight ratio in the diet. These particles provide additional surfaces for attachment of rumen microorganisms that help alleviate toxicity problems associated with deleterious compounds, including fluoroacetate, mimosine, mycotoxins, cyanoglycosides and hydrogen cyanide. The review first summarises the basic science of biofilm formation and describes the properties of biofilms and their roles in the rumen. It then addresses how biofilms on inert solids and fermentable particulates may assist in detoxification of potentially toxic compounds. A hypothesis that explains how nitrate poisoning may occur as a result of compartmentalisation of nitrate and nitrite reduction in the rumen is included.
Collapse
|
44
|
Advances in Consolidated Bioprocessing Using Clostridium thermocellumand Thermoanaerobacter saccharolyticum. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch10] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
45
|
Carrillo-Reyes J, Barragán-Trinidad M, Buitrón G. Biological pretreatments of microalgal biomass for gaseous biofuel production and the potential use of rumen microorganisms: A review. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Priji P, Sajith S, Unni KN, Anderson RC, Benjamin S. Pseudomonas sp. BUP6, a novel isolate from Malabari goat produces an efficient rhamnolipid type biosurfactant. J Basic Microbiol 2016; 57:21-33. [PMID: 27400277 DOI: 10.1002/jobm.201600158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/20/2016] [Indexed: 01/02/2023]
Abstract
This study describes the characteristics of a biosurfactant produced by Pseudomonas sp. BUP6, a rumen bacterium, and optimization of parameters required for its production. Initial screening of five parameters (pH, temperature, agitation, incubation, and substrate concentration) was carried out employing Plackett-Burman design, which reduced the number of parameters to 3 (pH, temperature, and incubation) according to their significance on the yield of biosurfactant. A suitable statistical model for the production of biosurfactant by Pseudomonas sp. BUP6 was established according to Box-Behnken design, which resulted in 11% increase (at pH 7, 35 °C, incubation 75 h) in the yield (2070 mg L-1 ) of biosurfactant. The biosurfactant was found stable at a wide range of pH (3-9) with 48 mg L-1 critical micelle concentration; and maintained over 90% of its emulsification ability even after boiling and in presence of sodium chloride (0.5%). The highest cell hydrophobicity (37%) and emulsification (69%) indices were determined with groundnut oil and kerosene, respectively. The biosurfactant was found to inhibit the growth and adhesion of E. coli and S. aureus significantly. From the phytotoxicity studies, the biosurfactant did not show any adverse effect on the germinating seeds of rice and green gram. The structural characterization of biosurfactant employing orcinol method, thin layer chromatography and FT-IR indicated that it is a rhamnolipid (glycolipid). Thus, Pseudomonas sp. BUP6, a novel isolate from Malabari goat is demonstrated as a producer of an efficient rhamnolipid type biosurfactant suitable for application in various industries.
Collapse
Affiliation(s)
- Prakasan Priji
- Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, University of Calicut, Kerala, India
| | - Sreedharan Sajith
- Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, University of Calicut, Kerala, India
| | - Kizhakkepowathial Nair Unni
- Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, University of Calicut, Kerala, India
| | - Robin C Anderson
- United States Department of Agriculture, Agricultural Research Service, College Station, TX 77845, USA
| | - Sailas Benjamin
- Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, University of Calicut, Kerala, India
| |
Collapse
|
47
|
Liao JC, Mi L, Pontrelli S, Luo S. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 2016; 14:288-304. [DOI: 10.1038/nrmicro.2016.32] [Citation(s) in RCA: 386] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
48
|
Impacts of ruminal microorganisms on the production of fuels: how can we intercede from the outside? Appl Microbiol Biotechnol 2016; 100:3389-98. [DOI: 10.1007/s00253-016-7358-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/20/2016] [Accepted: 01/24/2016] [Indexed: 11/26/2022]
|
49
|
Yeast hydrolysate product enhances ruminal fermentation in vitro. JOURNAL OF APPLIED ANIMAL NUTRITION 2016. [DOI: 10.1017/jan.2015.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SummaryThe present study examined the mode of action of a patented Saccharomyces cerevisiae yeast hydrolysate product (YHP) on the fermentation of bovine rumen in vitro. Three experiments were conducted. Fresh fluid from rumen-cannulated dairy cows was used as an inoculum to ferment a mixture of grass silage and concentrate feed with or without YHP. The first two experiments were batch fermentations of 12–24 h duration while the third experiment was a semi-continuous fermentation of six days. Production of gas, concentration of short chain fatty acids (SCFAs), microbial cell density and pH were measured from the fermentation medium as a function of time. In experiment 1, YHP dose-dependently stimulated the production of gas, and increased the density of microbial cells and concentration of SCFAs. Experiment 2 studied the effect of YHP on the ruminal fermentation using three ratios of concentrate feed to grass silage (25:75, 50:50, and 75:25). Both YHP and the elevated proportion of concentrate in the feed mixture significantly increased the production of gas, microbial populations and SCFAs, including propionic acid, by the ruminal microbiota. In experiment 3, YHP increased the concentration and relative proportion of propionic acid in the fermentation medium. YHP stimulated the rate of microbial fermentation of bovine ruminal microbiota, indicated by the effects on gas and SCFA production and microbial mass in these experiments. In particular, YHP increased the production of propionic acid. These results, which were likely due to modulation of microbial community by YHP, suggest that YHP enhances bovine ruminal fermentation and may thus improve the performance of these animals.
Collapse
|
50
|
Paye JMD, Guseva A, Hammer SK, Gjersing E, Davis MF, Davison BH, Olstad J, Donohoe BS, Nguyen TY, Wyman CE, Pattathil S, Hahn MG, Lynd LR. Biological lignocellulose solubilization: comparative evaluation of biocatalysts and enhancement via cotreatment. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:8. [PMID: 26759604 PMCID: PMC4709877 DOI: 10.1186/s13068-015-0412-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/04/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Feedstock recalcitrance is the most important barrier impeding cost-effective production of cellulosic biofuels. Pioneer commercial cellulosic ethanol facilities employ thermochemical pretreatment and addition of fungal cellulase, reflecting the main research emphasis in the field. However, it has been suggested that it may be possible to process cellulosic biomass without thermochemical pretreatment using thermophilic, cellulolytic bacteria. To further explore this idea, we examine the ability of various biocatalysts to solubilize autoclaved but otherwise unpretreated cellulosic biomass under controlled but not industrial conditions. RESULTS Carbohydrate solubilization of mid-season harvested switchgrass after 5 days ranged from 24 % for Caldicellulosiruptor bescii to 65 % for Clostridium thermocellum, with intermediate values for a thermophilic horse manure enrichment, Clostridium clariflavum, Clostridium cellulolyticum, and simultaneous saccharification and fermentation (SSF) featuring a fungal cellulase cocktail and yeast. Under a variety of conditions, solubilization yields were about twice as high for C. thermocellum compared to fungal cellulase. Solubilization of mid-season harvested switchgrass was about twice that of senescent switchgrass. Lower yields and greater dependence on particle size were observed for Populus as compared to switchgrass. Trends observed from data drawn from six conversion systems and three substrates, including both time course and end-point data, were (1) equal fractional solubilization of glucan and xylan, (2) no biological solubilization of the non-carbohydrate fraction of biomass, and (3) higher solubilization for three of the four bacterial cultures tested as compared to the fungal cellulase system. Brief (5 min) ball milling of solids remaining after fermentation of senescent switchgrass by C. thermocellum nearly doubled carbohydrate solubilization upon reinnoculation as compared to a control without milling. Greater particle size reduction and solubilization were observed for milling of partially fermented solids than for unfermented solids. Physical disruption of cellulosic feedstocks after initiation of fermentation, termed cotreatment, warrants further study. CONCLUSIONS While the ability to achieve significant solubilization of minimally pretreated switchgrass is widespread, a fivefold difference between the most and least effective biocatalyst-feedstock combinations was observed. Starting with nature's best biomass-solubilizing systems may enable a reduction in the amount of non-biological processing required, and in particular substitution of cotreatment for pretreatment.
Collapse
Affiliation(s)
- Julie M. D. Paye
- />Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- />BioEnergy Science Center Oak Ridge National Laboratory Oak Ridge, Oak Ridge, TN USA
| | - Anna Guseva
- />Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- />BioEnergy Science Center Oak Ridge National Laboratory Oak Ridge, Oak Ridge, TN USA
| | - Sarah K. Hammer
- />Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- />BioEnergy Science Center Oak Ridge National Laboratory Oak Ridge, Oak Ridge, TN USA
| | - Erica Gjersing
- />BioEnergy Science Center Oak Ridge National Laboratory Oak Ridge, Oak Ridge, TN USA
- />National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Mark F. Davis
- />BioEnergy Science Center Oak Ridge National Laboratory Oak Ridge, Oak Ridge, TN USA
- />National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Brian H. Davison
- />BioEnergy Science Center Oak Ridge National Laboratory Oak Ridge, Oak Ridge, TN USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Jessica Olstad
- />BioEnergy Science Center Oak Ridge National Laboratory Oak Ridge, Oak Ridge, TN USA
- />National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Bryon S. Donohoe
- />BioEnergy Science Center Oak Ridge National Laboratory Oak Ridge, Oak Ridge, TN USA
- />National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Thanh Yen Nguyen
- />BioEnergy Science Center Oak Ridge National Laboratory Oak Ridge, Oak Ridge, TN USA
- />Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA USA
| | - Charles E. Wyman
- />BioEnergy Science Center Oak Ridge National Laboratory Oak Ridge, Oak Ridge, TN USA
- />Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA USA
| | - Sivakumar Pattathil
- />BioEnergy Science Center Oak Ridge National Laboratory Oak Ridge, Oak Ridge, TN USA
- />Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens GA, 30602 USA
| | - Michael G. Hahn
- />BioEnergy Science Center Oak Ridge National Laboratory Oak Ridge, Oak Ridge, TN USA
- />Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens GA, 30602 USA
| | - Lee R. Lynd
- />Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- />BioEnergy Science Center Oak Ridge National Laboratory Oak Ridge, Oak Ridge, TN USA
| |
Collapse
|