1
|
Gutiérrez-Cuevas J, López-Cifuentes D, Sandoval-Rodriguez A, García-Bañuelos J, Armendariz-Borunda J. Medicinal Plant Extracts against Cardiometabolic Risk Factors Associated with Obesity: Molecular Mechanisms and Therapeutic Targets. Pharmaceuticals (Basel) 2024; 17:967. [PMID: 39065815 PMCID: PMC11280341 DOI: 10.3390/ph17070967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity has increasingly become a worldwide epidemic, as demonstrated by epidemiological and clinical studies. Obesity may lead to the development of a broad spectrum of cardiovascular diseases (CVDs), such as coronary heart disease, hypertension, heart failure, cerebrovascular disease, atrial fibrillation, ventricular arrhythmias, and sudden cardiac death. In addition to hypertension, there are other cardiometabolic risk factors (CRFs) such as visceral adiposity, dyslipidemia, insulin resistance, diabetes, elevated levels of fibrinogen and C-reactive protein, and others, all of which increase the risk of CVD events. The mechanisms involved between obesity and CVD mainly include insulin resistance, oxidative stress, inflammation, and adipokine dysregulation, which cause maladaptive structural and functional alterations of the heart, particularly left-ventricular remodeling and diastolic dysfunction. Natural products of plants provide a diversity of nutrients and different bioactive compounds, including phenolics, flavonoids, terpenoids, carotenoids, anthocyanins, vitamins, minerals, fibers, and others, which possess a wide range of biological activities including antihypertensive, antilipidemic, antidiabetic, and other activities, thus conferring cardiometabolic benefits. In this review, we discuss the main therapeutic interventions using extracts from herbs and plants in preclinical and clinical trials with protective properties targeting CRFs. Molecular mechanisms and therapeutic targets of herb and plant extracts for the prevention and treatment of CRFs are also reviewed.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
| | - Daniel López-Cifuentes
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
- Doctorate in Sciences in Molecular Biology in Medicine, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Ana Sandoval-Rodriguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
| | - Jesús García-Bañuelos
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
- Escuela de Medicina y Ciencias de la Salud (EMCS), Tecnologico de Monterrey, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
| |
Collapse
|
2
|
Riaz S, Siddiqui S, Abul Qais F, Mateen S, Moin S. Inhibitory effect of baicalein against glycation in HSA: an in vitro approach. J Biomol Struct Dyn 2024; 42:935-947. [PMID: 37098813 DOI: 10.1080/07391102.2023.2201856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/22/2023] [Indexed: 04/27/2023]
Abstract
Hyperglycaemia accelerates the aging process significantly. Diabetes problems can be mitigated by inhibiting glycation. To learn more about glycation and antiglycation mediated by methyl glyoxal and baicalein, we studied human serum albumin as a model protein. A Methylglyoxal (MGO) incubation period of seven days at 37 degrees Celsius induced glycation of Human Serum Albumin.s Hyperchromicity, decreased tryptophan and intrinsic fluorescence, increased AGE-specific fluorescence, and reduced mobility were all seen in glycated human serum albumin (MGO-HSA) in sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Fourier transform infrared spectroscopy (FT-IR) and then far ultraviolet dichroism were used to detect secondary and tertiary structural perturbations (CD). The Congo red assay (CR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) all verified the presence of amyloid-like clumps. Structure (carbonyl groups on ketoamine moieties) (CO), physiological problems including diabetes mellitus, and cardiovascular disease, etc. are linked to the structural and functional changes in glycated HSA, as proven by these studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sana Riaz
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Sana Siddiqui
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Somaiya Mateen
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Shagufta Moin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
3
|
Le V, Sukhikh A, Larichev T, Ivanova S, Prosekov A, Dmitrieva A. Isolation of the Main Biologically Active Substances and Phytochemical Analysis of Ginkgo biloba Callus Culture Extracts. Molecules 2023; 28:1560. [PMID: 36838548 PMCID: PMC9966355 DOI: 10.3390/molecules28041560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
The work reveals the results of studying the content of biologically active substances in samples of extracts of Ginkgo biloba callus cultures. Callus cultures grown in vitro on liquid nutrient media were the objects of the study. Considering various factors affecting the yield of the target components during extraction, the volume fraction of the organic modifier in the extracting mixture, the temperature factor, and the exposure time were identified as the main ones. The maximum yield of extractive substances (target biologically active substances with a degree of extraction of at least 50%) from the samples of callus culture extracts was detected at a ratio of extragent of 70% ethanol, a temperature of 50 °C, and exposure time of 6 h. Flavonoids, such as luteolin, quercetin, isoramentin, kaempferol, and amentoflavone, were isolated in the extract samples. As a result of column chromatography, fractions of individual biologically active substances (bilobalide, ginkgolide A, B, and C) were determined. The proposed schemes are focused on preserving the nativity while ensuring maximum purification from associated (ballast) components. Sorbents (Sephadex LH-20, poly-amide, silica gel) were used in successive stages of chromatography with rechromatography. The degree of purity of individually isolated substances was at least 95%.
Collapse
Affiliation(s)
- Violeta Le
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Kemerovo 650043, Russia
| | - Andrey Sukhikh
- Laboratory of Physico-Chemical Studies of Pharmacologically Active and Natural Compounds, Kemerovo State University, Kemerovo 650043, Russia
| | - Timothy Larichev
- Department of Fundamental and Applied Chemistry, Kemerovo State University, Kemerovo 650043, Russia
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Kemerovo 650043, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Kemerovo 650043, Russia
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Kemerovo 650043, Russia
| | - Anastasia Dmitrieva
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Kemerovo 650043, Russia
| |
Collapse
|
4
|
Mirahmad M, Mohseni S, Tabatabaei-Malazy O, Esmaeili F, Alatab S, Bahramsoltani R, Ejtahed HS, Qulami H, Bitarafan Z, Arjmand B, Nazeri E. Antioxidative hypoglycemic herbal medicines with in vivo and in vitro activity against C-reactive protein; a systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154615. [PMID: 36610136 DOI: 10.1016/j.phymed.2022.154615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Inflammation is a double-edged sword in the pathophysiology of chronic diseases, such as type 2 diabetes mellitus (T2DM). The global rise in the prevalence of T2DM in one hand, and poor disease control with currently-available treatments on the other hand, along with an increased tendency towards the use of natural products make scientists seek herbal medicines for the management of diabetes and its complications by reducing C-reactive protein (CRP) as an inflammatory marker. PURPOSE To systematically review the literature to identify the efficacy of various medicinal plants with antioxidative and anti-inflammatory properties considering their effect on CRP in animal models of T2DM. STUDY DESIGN systematic review. METHODS Electronic databases including PubMed, Scopus, Web of Science and Cochran Library were searched using the search terms "herbal medicine", "diabetes", "c-reactive protein", "antioxidants" till August 2021. The quality of evidence was assessed using the Systematic Review Centre for Laboratory animal Experimentation (SYRCLE's) tool. The study protocol was registered in PROSPERO with an ID number CRD42020207190. A manual search to detect any articles not found in the databases was also made. The identified studies were then critically reviewed and relevant data were extracted and summarized. RESULTS Among total of 9904 primarily-retrieved articles, twenty-three experimental studies were finally included. Our data indicated that numerous herbal medicines, compared to placebo or hypoglycemic medications, are effective in treatment of diabetes and its complications through decreasing CRP concentrations and oxidative stresses levels. Medicinal plants including Psidium guajava L., Punica granatum L., Ginkgo biloba L., Punica granatum L., Dianthus superbusn L.. Moreover, Eichhornia crassipes (Mart.) Solms, Curcuma longa L., Azadirachta indica A. Juss., Morus alba L., and Ficus racemosa L. demonstrated potential neuroprotective effects in animal models of diabetes. CONCLUSION Hypoglycemic medicinal plants discussed in this review seem to be promising regulators of CRP, and oxidative stress. Thus, these plants are suitable candidates for management of diabetes' complications. Nevertheless, further high-quality in vivo studies and clinical trials are required to confirm these effects.
Collapse
Affiliation(s)
- Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Mohseni
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sudabeh Alatab
- Digestive Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Husseyn Qulami
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Bitarafan
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, As 1433, Norway
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Nazeri
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
5
|
Phytochemical Compounds, Antioxidant, and Digestive Enzymes Inhibitory Activities of Different Fractions from Ginkgo biloba L. Nut Shells. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5797727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study was designed to investigate the phytochemical compounds, antioxidant, and digestive enzymes inhibitory activities of the free (F), esterified (E), and insoluble-bound (IB) fractions from Ginkgo biloba L. nut shells. Results showed that a total of twelve compounds were detected in G. biloba nut shells by using UHPLC-ESI-HRMS/MS, including two kinds of organic acids, three kinds of phenolic acids, three kinds of flavonoids, and four kinds of terpene lactones. The F fraction contained all identified compounds and had the highest contents of the total phenolics and total flavonoids. All of the three different fractions exhibited good DPPH radical and ABTS radical cation scavenging activities and strong inhibitory effects on the generation of intracellular reactive oxygen species (ROS). Moreover, these three fractions also had good inhibitory effects towards α-glucosidase and pancreatic lipase. Among the three fractions, the F fraction possessed the strongest bioactivities. The findings obtained in the current study may provide some insights and bases for the further investigation and application of G. biloba nut shells in clinical medicine or the nutraceutical industry.
Collapse
|
6
|
Isolation and characterization of flavonoids from roots of Rauvolfia serpentina and evaluation of their hypotensive potential through angiotensin-converting enzyme (ACE) inhibition mode of action. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02238-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Wei L, Jian P, Erjiong H, Qihan Z. Ginkgetin alleviates high glucose-evoked mesangial cell oxidative stress injury, inflammation, and extracellular matrix (ECM) deposition in an AMPK/mTOR-mediated autophagy axis. Chem Biol Drug Des 2021; 98:620-630. [PMID: 34148304 DOI: 10.1111/cbdd.13915] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/14/2021] [Accepted: 06/12/2021] [Indexed: 11/28/2022]
Abstract
Diabetic nephropathy constitutes the leading cause for end-stage kidney disease. Ginkgetin is a common natural non-toxic biflavone and fulfills pleiotropic pharmacological characterizations, such as anti-inflammation and kidney injury. Nevertheless, its efficacy in diabetic nephropathy remains elusive. Here, ginkgetin exhibited little cytotoxicity in glomerular mesangial cells. Of note, ginkgetin restrained high glucose (HG)-induced mesangial cell proliferation and oxidative stress by inhibiting ROS and malonaldehyde levels, but enhancing antioxidant SOD activity. Additionally, ginkgetin suppressed HG-evoked transcript and release of inflammatory cytokine TNF-α, IL-1β, and IL-6. Concomitantly, the increased extracellular matrix (ECM) deposition in HG-treated glomerular mesangial cells was attenuated by ginkgetin via decreasing expression of collagen IV, fibronectin, and laminin. Intriguingly, ginkgetin-restored HG-impaired autophagy; whereas blocking autophagy by its inhibitor 3-MA overturned ginkgetin function against HG-evoked mesangial cell dysfunction. Mechanistically, ginkgetin-mediated AMPK/mTOR axis accounted for HG-impaired autophagy. Importantly, blockage of AMPK signaling reversed ginkgetin-restored autophagy and its protective efficacy against HG-induced dysfunction in mesangial cells. Thus, these findings highlight that ginkgetin may attenuate HG-evoked mesangial cell hyperplasia, oxidative stress, inflammation, and ECM accumulation by activating AMPk/mTOR-mediated autophagy pathway. Therefore, ginkgetin may alleviate the progression of diabetic nephropathy by regulating glomerular mesangial cell dysfunction, supporting a promising therapeutic agent against diabetic nephropathy.
Collapse
Affiliation(s)
- Lin Wei
- Departments of General Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pan Jian
- Departments of Ophthalmology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huang Erjiong
- Departments of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhu Qihan
- Departments of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Thikekar AK, Thomas AB, Chitlange SS. Herb-drug interactions in diabetes mellitus: A review based on pre-clinical and clinical data. Phytother Res 2021; 35:4763-4781. [PMID: 33908677 DOI: 10.1002/ptr.7108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/23/2021] [Indexed: 01/22/2023]
Abstract
Global diabetes epidemic is the major cause of fatality and lethality. As per IDF 2019 report, diabetes caused 4.2 million deaths, approximately 463 million people are living with diabetes and by 2045, this will rise to 700 million. Nowadays, the physicians and common people in both developed and developing countries are using medicinal plants and their formulations to treat diseases with the postulation that organic commodities are safe for consumption. These plants may act as inhibitors or inducers of the Cytochrome P450 or transport and efflux proteins or both and may alter gastrointestinal, renal functions leading to Herb-Drug Interactions. This review intends to focus on the frequently employed medicinal plants, their traditional uses, their Cytochrome P450 inhibition or induction activity, phytochemical, and pharmacological effects, established HDI with the help of in vitro tools, in vivo pharmacokinetics and pharmacodynamics studies to understand the impact of herbs on ADME of the drug and whether it is beneficial, harmful or has no effect respectively. This review will help the physicians and other health care professionals as a reference guide to update their knowledge and expertise about HDI. However, more quality research in this area is needed to evaluate the efficacy of many herbal medicines, thereby reducing side effects and improving the safety of patients.
Collapse
Affiliation(s)
- Archana K Thikekar
- Department of Pharmaceutical Chemistry, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, Maharashtra, India
| | - Asha B Thomas
- Department of Pharmaceutical Chemistry, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, Maharashtra, India
| | - Sohan S Chitlange
- Department of Pharmaceutical Chemistry, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, Maharashtra, India
| |
Collapse
|
9
|
Atya ME, El-Hawiet A, Alyeldeen MA, Ghareeb DA, Abdel-Daim MM, El-Sadek MM. In vitro biological activities and in vivo hepatoprotective role of brown algae-isolated fucoidans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19664-19676. [PMID: 33405141 DOI: 10.1007/s11356-020-11892-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Brown seaweeds are rich in polysaccharides, such as fucoidan (FUC) which has shown beneficial effects in several medical conditions. The aim of the present study was to assess the antioxidant, anti-inflammatory, and hepatoprotective properties of Colpomenia sinuosa- and Sargassum prismaticum-isolated FUC in vitro and in vivo. The hot acid extraction method was used to isolate FUC from C. sinuosa (FCS) and S. prismaticum (FSP) species. The antioxidant, anticancer, as well as the effect on neurotransmitter-degrading enzyme and disaccharidase activities were measured using standard protocols. Moreover, the hepatoprotective effect of two FCS doses (100 and 200 mg/kg) on paracetamol-administered rats (one dose of 1 g/kg) were evaluated by measuring blood liver function markers, hepatic pro-oxidants as malondialdehyde (MDA) and nitric oxide (NO), antioxidants as glutathione (GSH) and glutathione peroxidase (GPx), proinflammatory markers as inducible nitric oxide synthase (iNOS), interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α), and liver histology. The crude fucoidan yield was 15.6% and 14.8% of C. sinuosa and S. prismaticum dry weights, respectively. The antioxidant effects and cytotoxic activity on hepatic cancer cell were higher for FCS than FSP. Moreover, in vivo data showed that FCS administration at both doses significantly improved liver functions and alleviated histological alterations, hepatic inflammation, and oxidative stress following paracetamol intake. In conclusion, fucoidan exerts anti-inflammatory, antidigestive enzyme activity, antioxidant, anticancer, and hepatoprotective effects.
Collapse
Affiliation(s)
- Marwa E Atya
- National Institute of Oceanography and Fishers, Alexandria, Egypt
| | - Amr El-Hawiet
- Pharmacognosy Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
- Pharmaceutical and Fermentation Industries Development Centre, City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt.
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Mohamed M El-Sadek
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Sarkar D, Christopher A, Shetty K. Phenolic Bioactives From Plant-Based Foods for Glycemic Control. Front Endocrinol (Lausanne) 2021; 12:727503. [PMID: 35116002 PMCID: PMC8805174 DOI: 10.3389/fendo.2021.727503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Plant-based foods containing phenolic bioactives have human health protective functions relevant for combating diet and lifestyle-influenced chronic diseases, including type 2 diabetes (T2D). The molecular structural features of dietary phenolic bioactives allow antioxidant functions relevant for countering chronic oxidative stress-induced metabolic breakdown commonly associated with T2D. In addition to antioxidant properties, phenolic bioactives of diverse plant foods have therapeutic functional activities such as improving insulin sensitivity, reducing hepatic glucose output, inhibiting activity of key carbohydrate digestive enzymes, and modulating absorption of glucose in the bloodstream, thereby subsequently improving post-prandial glycemic control. These therapeutic functional properties have direct implications and benefits in the dietary management of T2D. Therefore, plant-based foods that are rich in phenolic bioactives are excellent dietary sources of therapeutic targets to improve overall glycemic control by managing chronic hyperglycemia and chronic oxidative stress, which are major contributing factors to T2D pathogenesis. However, in studies with diverse array of plant-based foods, concentration and composition of phenolic bioactives and their glycemic control relevant bioactivity can vary widely between different plant species, plant parts, and among different varieties/genotypes due to the different environmental and growing conditions, post-harvest storage, and food processing steps. This has allowed advances in innovative strategies to screen and optimize whole and processed plant derived foods and their ingredients based on their phenolic bioactive linked antioxidant and anti-hyperglycemic properties for their effective integration into T2D focused dietary solutions. In this review, different pre-harvest and post-harvest strategies and factors that influence phenolic bioactive-linked antioxidant and anti-hyperglycemic properties in diverse plant derived foods and derivation of extracts with therapeutic potential are highlighted and discussed. Additionally, novel bioprocessing strategies to enhance bioavailability and bioactivity of phenolics in plant-derived foods targeting optimum glycemic control and associated T2D therapeutic benefits are also advanced.
Collapse
|
11
|
Petersen MJ, de Cássia Lemos Lima R, Kjaerulff L, Staerk D. Immobilized α-amylase magnetic beads for ligand fishing: Proof of concept and identification of α-amylase inhibitors in Ginkgo biloba. PHYTOCHEMISTRY 2019; 164:94-101. [PMID: 31103779 DOI: 10.1016/j.phytochem.2019.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Diabetes mellitus is a widespread metabolic disorder that affects millions of people around the world. The disease is a major burden on both economic and social levels, and there is a need for improved drugs with fewer side effects in the management of the disease. Current methods for isolation of anti-diabetic lead compounds from complex mixtures suffer from low resolution and sensitivity, and there is a need for improved alternatives. In this work, magnetic ligand fishing combined with high-performance liquid chromatography - photodiode-array detection - high-resolution mass spectrometry - solid-phase extraction - nuclear magnetic resonance spectroscopy (HPLC-PDA-HRMS-SPE-NMR) was developed and validated, with the aim of accelerating discovery of natural products targeting α-amylase. The enzyme was successfully immobilized onto magnetic beads and retained its catalytic activity for a period of 75 days, and the specificity of this method was successfully validated by testing the N-terminus coupled α-amylase immobilized magnetic beads on an artificial mixture. A proof of concept experiment, using a crude ethyl acetate extract of Ginkgo biloba leaves, proved that it was possible to fish out four α-amylase ligands. HPLC-PDA-HRMS-SPE-NMR analysis confirmed the presence of bilobetin, isoginkgetin, ginkgetin and sciadopitysin in the solutions resulting from α-amylase ligand fishing with Ginkgo biloba. IC50 curves revealed a reversed relationship between concentration of sciadopitysin and inhibition of α-amylase activity, suggesting that this compound activated the enzyme instead of inhibiting it.
Collapse
Affiliation(s)
- Malene J Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Rita de Cássia Lemos Lima
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Louise Kjaerulff
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
12
|
Popular functional foods and herbs for the management of type-2-diabetes mellitus: A comprehensive review with special reference to clinical trials and its proposed mechanism. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
13
|
Chukwuma CI, Matsabisa MG, Ibrahim MA, Erukainure OL, Chabalala MH, Islam MS. Medicinal plants with concomitant anti-diabetic and anti-hypertensive effects as potential sources of dual acting therapies against diabetes and hypertension: A review. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:329-360. [PMID: 30769039 DOI: 10.1016/j.jep.2019.02.024] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes and hypertension are pathophysiologically related diseases that co-exist with a wider complex of metabolic diseases having similar set of risk factors. There are numerous ethnopharmacological evidences on the anti-diabetic and/or anti-hypertensive properties of medicinal plants from various parts of the world, which are used as therapies to concomitantly manage diabetes and hypertension. AIM OF THE REVIEW This article reviewed findings on medicinal plants with both anti-diabetic and anti-hypertensive effects reported in same experimental study to facilitate the development of dual-acting therapies against diabetes and hypertension. MATERIALS AND METHODS A literature search was carried out on different scientific search engines including, but not limited to "PubMed", "Google Scholar", "Scopus" and ScienceDirect to identify published data in which plants in same experimental studies were reported to possess both anti-hyperglycemic and anti-hypertensive effects. Subsequently, the anti-diabetic/anti-hypertensive potency ratio (ψ) of the medicinal plants was computed. RESULTS Sixty-four studies with 102 plant species matched the selection criteria. Members of the Fabaceae family were the most investigated plants, while the ψ greatly varied across the plants, with only 11 plants having a ψ ≃ 1. Withania somnifera Dunal was the only plant reported to show blood glucose-lowering and diuretic effects in humans, comparable to daonil. Caffeic acid, chlorogenic acid, caftaric acid, cichoric acid, verbascoside, leucosceptoside A, isoacteoside, fucoxanthin and nicotinamide were the reported dual acting anti-diabetic and anti-hypertensive compounds identified and/or isolated in the plants. CONCLUSIONS This review suggests that medicinal plants possess varied therapeutic dynamics against hypertension and diabetes that could be exploited for the discovery of therapeutic preparation(s) or agent(s) for treating the two diseases.
Collapse
Affiliation(s)
- Chika Ifeanyi Chukwuma
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
| | - Motlalepula G Matsabisa
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
| | | | - Ochuko L Erukainure
- Biomedical Research Laboratory, Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Matimbha H Chabalala
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Md Shahidul Islam
- Biomedical Research Laboratory, Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
14
|
Wubshet SG, Liu B, Kongstad KT, Böcker U, Petersen MJ, Li T, Wang J, Staerk D. Combined magnetic ligand fishing and high-resolution inhibition profiling for identification of α-glucosidase inhibitory ligands: A new screening approach based on complementary inhibition and affinity profiles. Talanta 2019; 200:279-287. [PMID: 31036185 DOI: 10.1016/j.talanta.2019.03.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
Abstract
Plants are well-recognized sources of inhibitors for α-glucosidase - a key target enzyme for management of type 2 diabetes. Recently, two advanced bioactivity-profiling techniques, i.e., ligand fishing and high-resolution inhibition profiling, have shown great promises for accelerating identification of α-glucosidase inhibitors from complex plant extracts. Non-specific affinities and non-specific inhibitions are major sources of false positive hits from ligand fishing and high-resolution inhibition profiling, respectively. In an attempt to minimize such false positive hits, we describe a new screening approach based on ligand fishing and high-resolution inhibition profiling for detection of high-affinity ligands and assessment of inhibitory activity, respectively. The complementary nature of ligand fishing and high-resolution inhibition profiling was explored to identify α-glucosidase inhibitory ligands from a complex mixture, and proof-of-concept was demonstrated with crude ethyl acetate extract of Ginkgo biloba. In addition to magnetic beads with a 3-carbon aliphatic linker, α-glucosidase was immobilized on magnetic beads with a 21-carbon aliphatic linker; and the two different types of magnetic beads were compared for their hydrolytic activity and fishing efficiency.
Collapse
Affiliation(s)
- Sileshi G Wubshet
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Nofima AS-Norwegian Institute of Food, Fisheries and Aquaculture Research, PB 210, N-1431 Ås, Norway.
| | - Bingrui Liu
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; College of Chemistry and Technology, Hebei Agricultural University, Huanghua 061100, China; Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A & F University, Yangling 712100, China
| | - Kenneth T Kongstad
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Ulrike Böcker
- Nofima AS-Norwegian Institute of Food, Fisheries and Aquaculture Research, PB 210, N-1431 Ås, Norway.
| | - Malene J Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Tuo Li
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Junru Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A & F University, Yangling 712100, China.
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
15
|
Atchan Nwakiban AP, Sokeng AJ, Dell'Agli M, Bossi L, Beretta G, Gelmini F, Deutou Tchamgoue A, Agbor Agbor G, Kuiaté JR, Daglia M, Magni P. Hydroethanolic plant extracts from Cameroon positively modulate enzymes relevant to carbohydrate/lipid digestion and cardio-metabolic diseases. Food Funct 2019; 10:6533-6542. [DOI: 10.1039/c9fo01664c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cameroonian plant extracts inhibit enzymes involved in digestion of sugars and fats, showing potential relevance for cardio-metabolic diseases.
Collapse
Affiliation(s)
| | - Arold Jorel Sokeng
- Dipartimento di Farmacia
- Università degli Studi di Napoli Federico II
- Naples
- Italy
| | - Mario Dell'Agli
- Dipartimento di Scienze Farmacologiche e Biomolecolari
- Università degli Studi di Milano
- Milan
- Italy
| | - Lorenzo Bossi
- Dipartimento di Scienze Farmacologiche e Biomolecolari
- Università degli Studi di Milano
- Milan
- Italy
| | - Giangiacomo Beretta
- Department of Environmental Science and Policy
- Università degli Studi di Milano
- Milan
- Italy
| | - Fabrizio Gelmini
- Department of Environmental Science and Policy
- Università degli Studi di Milano
- Milan
- Italy
| | | | - Gabriel Agbor Agbor
- Institute of Medical Research and Medicinal Plants Studies (IMPM)
- Yaoundé
- Cameroon
| | - Jules-Roger Kuiaté
- Department of Biochemistry
- Faculty of Science
- University of Dschang
- Cameroon
| | - Maria Daglia
- Dipartimento di Farmacia
- Università degli Studi di Napoli Federico II
- Naples
- Italy
- International Research Center for Food Nutrition and Safety
| | - Paolo Magni
- Dipartimento di Scienze Farmacologiche e Biomolecolari
- Università degli Studi di Milano
- Milan
- Italy
- IRCCS MultiMedica
| |
Collapse
|
16
|
Identification of Hypotensive Biofunctional Compounds of Coriandrum sativum and Evaluation of Their Angiotensin-Converting Enzyme (ACE) Inhibition Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4643736. [PMID: 30581531 PMCID: PMC6276458 DOI: 10.1155/2018/4643736] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/29/2022]
Abstract
The aim of this study was to identify and characterize the bioactive compounds of Coriandrum sativum responsible for the treatment of hypertension and to explore their mechanism of action as angiotensin-converting enzyme (ACE) inhibitors. Bioactive fractions like alkaloids, flavonoids, steroids, and tannins were extracted and evaluated for their ACE inhibition potential. Among them, only flavonoid-rich fraction showed high ACE inhibition potential with IC50 value of 28.91 ± 13.42 μg/mL. The flavonoids were characterized through LC-ESI-MS/MS. Seventeen flavonoids were identified in this fraction of Coriandrum sativum in negative ionization mode which includes pinocembrin, apigenin, pseudobaptigenin, galangin-5-methyl ether, quercetin, baicalein trimethyl ether, kaempferol dimethyl ether, pinobanksin-5-methylether-3-O-acetate, pinobanksin-3-O-pentenoate, pinobanksin-3-O-phenylpropionate, pinobanksin-3-O-pentanoate, apigenin-7-O-glucuronoide, quercetin-3-O-glucoside, apigenin-3-O-rutinoside, rutin, isorhamnetin-3-O-rutinoside, and quercetin dimethyl ether-3-O-rutinoside, while six flavonoids including daidzein, luteolin, pectolinarigenin, apigenin-C-glucoside, kaempferol-3-7-dimethyl ether-3-O-glucoside, and apigenin-7-O-(6-methyl-beta-D-glucoside) were identified in positive ionization mode. The results of this study revealed that Coriandrum sativum is a valuable functional food that possesses a number of therapeutic flavonoids with ACE inhibition potential that can manage blood pressure very efficiently.
Collapse
|
17
|
Bilal Shah S, Sartaj L, Ali F, Ali Shah SI, Tahir Khan M. Plant extracts are the potential inhibitors of α-amylase: a review. ACTA ACUST UNITED AC 2018. [DOI: 10.15406/mojbb.2018.05.00113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Flavonoid-Rich Extract of Actinidia macrosperma (A Wild Kiwifruit) Inhibits Angiotensin-Converting Enzyme In Vitro. Foods 2018; 7:foods7090146. [PMID: 30189590 PMCID: PMC6164066 DOI: 10.3390/foods7090146] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 11/20/2022] Open
Abstract
Increasing interest in flavonoids in kiwifruit is due to the health-promoting properties of these bioactives. Inhibition of the angiotensin-converting enzyme (ACE) is one of the main therapeutic targets in controlling hypertension. The present study investigated the ACE inhibitory activity of flavonoid-rich extracts obtained from different kiwifruit genotypes. The flavonoid-rich extracts were prepared from fruits of Actinidia macrosperma, Actinidia deliciosa cv Hayward (Green kiwifruit), and Actinidia chinensis cv Hort 16A (Gold kiwifruit) by steeping the lyophilized fruit samples in 70% aqueous acetone, followed by partitioning the crude extracts with hexane. The composition of each extract was analyzed using ultrahigh-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). The ACE inhibitory activity of the fruit extracts was performed using a fluorescence-based biochemical assay. The subclass flavonol was the most abundant group of flavonoids detected in all the extracts tested from three different kiwifruit cultivars. Quercetin-3-O-galactoside, quercetin-3-O-glucoside, quercetin-3-O-rhamnoside, quercetin-3-O-rutinoside, quercetin-3-O-arabinoglucoside, catechin, epigallocatechin gallate, epigallocatechin, chlorogenic, ferulic, isoferulic, and caffeic acid were prominent phenolics found in A. macrosperma kiwifruit. Overall, the flavonoid-rich extract from A. macrosperma showed a significantly (p < 0.05) high percentage of inhibition (IC50 = 0.49 mg/mL), and enzyme kinetic studies suggested that it inhibits ACE activity in vitro. The kiwifruit extracts tested were found to be moderately effective as ACE inhibitors in vitro when compared to the other plant extracts reported in the literature. Further studies should be carried out to identify the active compounds from A. macrosperma and to validate the findings using experimental animal models of hypertension.
Collapse
|
19
|
Qi J, Sun LQ, Qian SY, Yu BY. A novel multi-hyphenated analytical method to simultaneously determine xanthine oxidase inhibitors and superoxide anion scavengers in natural products. Anal Chim Acta 2017; 984:124-133. [PMID: 28843555 DOI: 10.1016/j.aca.2017.07.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 01/07/2023]
Abstract
Natural products, such as rosmarinic acid and apigenin, can act as xanthine oxidase inhibitors (XOIs) as well as superoxide anion scavengers, and have potential for treatment of diseases associated with high uric acid levels and oxidative stress. However, efficient simultaneous screening of these two bioactivities in natural products has been challenging. We have developed a novel method by assembling a multi-hyphenated high performance liquid chromatography (HPLC) system that combines a photo-diode array, chemiluminescence detector and a HPLC system with a variable wavelength detector, to simultaneously detect components that act as both XOIs and superoxide anion scavengers in natural products. Superoxide anion scavenging activity in the analyte was measured by on-line chemiluminescence chromatography based on pyrogallol-luminol oxidation, while xanthine oxidase inhibitory activity was determined by semi-on-line HPLC analysis. After optimizing multiple elements, including chromatographic conditions (e.g., organic solvent concentration and mobile phase pH), concentrations of xanthine/xanthine oxidase and reaction temperature, our validated analytical method was capable of mixed sample analysis. The final results from our method are presented in an easily understood visual format including comprehensive bioactivity data of natural products.
Collapse
Affiliation(s)
- Jin Qi
- Department of Complex Prescription of Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translation Research, China Pharmaceutical University, Nanjing 211198, PR China
| | - Li-Qiong Sun
- Department of Complex Prescription of Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China; Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Steven Y Qian
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Bo-Yang Yu
- Department of Complex Prescription of Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translation Research, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
20
|
Mohd Bukhari DA, Siddiqui MJ, Shamsudin SH, Rahman MM, So'ad SZM. α-Glucosidase Inhibitory Activity of Selected Malaysian Plants. J Pharm Bioallied Sci 2017; 9:164-170. [PMID: 28979070 PMCID: PMC5621178 DOI: 10.4103/jpbs.jpbs_35_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Diabetes is a common metabolic disease indicated by unusually high plasma glucose level that can lead to major complications such as diabetic neuropathy, retinopathy, and cardiovascular diseases. One of the effective therapeutic managements of the disease is to reduce postprandial hyperglycemia through inhibition of α-glucosidase, a carbohydrate-hydrolyzing enzyme to retard overall glucose absorption. In recent years, a plenty of research works have been conducted looking for novel and effective α-glucosidase inhibitors (AGIs) from natural sources as alternatives for the synthetic AGI due to their unpleasant side effects. Plants and herbs are rich with secondary metabolites that have massive pharmaceutical potential. Besides, studies showed that phytochemicals such as flavonoids, alkaloids, terpenoids, anthocyanins, glycosides, and phenolic compounds possess significant inhibitory activity against α-glucosidase enzyme. Malaysia is a tropical country that is rich with medicinal herbs. In this review, we focus on eight Malaysian plants with the potential as AGI to develop a potential functional food or lead compounds against diabetes.
Collapse
Affiliation(s)
- Dzatil Awanis Mohd Bukhari
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Mohammad Jamshed Siddiqui
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Siti Hadijah Shamsudin
- Department of Pharmacy Practice, Kulliyyah of Pharmacy, International Islamic University Malaysia, Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Md Mukhlesur Rahman
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Siti Zaiton Mat So'ad
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| |
Collapse
|
21
|
Grzegorczyk-Karolak I, Gołąb K, Gburek J, Wysokińska H, Matkowski A. Inhibition of Advanced Glycation End-Product Formation and Antioxidant Activity by Extracts and Polyphenols from Scutellaria alpina L. and S. altissima L. Molecules 2016; 21:molecules21060739. [PMID: 27314314 PMCID: PMC6273165 DOI: 10.3390/molecules21060739] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 05/24/2016] [Accepted: 06/01/2016] [Indexed: 12/23/2022] Open
Abstract
Methanolic extracts from the aerial parts and roots of two Scutellaria species, S. alpina and S. altissima, and five polyphenols from these plants demonstrated a significant ability to inhibit the formation of advanced glycation end-products (AGE) in vitro. S. alpina, which is richer in polyphenolic compounds, had strong antiglycation properties. These extracts demonstrated also high activity in the FRAP (ferric-reducing antioxidant power), antiradical (DPPH) and lipid peroxidation inhibition assays. Among the pure compounds, baicalin was the strongest glycation inhibitor (90.4% inhibition at 100 μg/mL), followed by luteolin (85.4%). Two other flavone glycosides had about half of this activity. Verbascoside was similar to the reference drug aminoguanidine (71.2% and 75.9%, respectively). The strong correlation observed between AGE inhibition and total flavonoid content indicated that flavonoids contribute significantly to antiglycation properties. A positive correlation was also observed between antiglycative and antioxidant activities. The studied skullcap species can be considered as a potential source of therapeutic agents for hyperglycemia-related disorders.
Collapse
Affiliation(s)
- Izabela Grzegorczyk-Karolak
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, ul. Muszynskiego 1, Lodz 90-151, Poland.
| | - Krzysztof Gołąb
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, ul. Borowska 211A, Wroclaw 50-556, Poland.
| | - Jakub Gburek
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, ul. Borowska 211A, Wroclaw 50-556, Poland.
| | - Halina Wysokińska
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, ul. Muszynskiego 1, Lodz 90-151, Poland.
| | - Adam Matkowski
- Department of Biology and Pharmaceutical Botany, Wroclaw Medical University, ul. Borowska 211, Wroclaw 50-556, Poland.
| |
Collapse
|
22
|
PEG-based ultrasound-assisted enzymatic extraction of polysaccharides from Ginkgo biloba leaves. Int J Biol Macromol 2015; 80:644-50. [PMID: 26188295 DOI: 10.1016/j.ijbiomac.2015.07.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/24/2015] [Accepted: 07/11/2015] [Indexed: 01/21/2023]
Abstract
In this study, one kind of environmentally friendly solvents named polyethylene glycol (PEG) was developed for the ultrasound-assisted enzymatic extraction (UAEE) of polysaccharides from Gingko biloba leaves (GBLP). Box-Behnken design (BBD) was used to optimize the UAEE conditions of GBLP. Results showed that the optimal extraction conditions were: a pH of 4.34, an extraction temperature of 51.88 °C and an extraction time of 37.13 min. Under these optimal extraction conditions, the GBLP yield was 7.29±0.21%, which was well in agreement with the value predicted by the mathematical model.
Collapse
|
23
|
Lee JH, Choi HR, Lee SJ, Lee MJ, Ko YJ, Kwon JW, Lee HK, Jeong JT, Lee TB. Blood Pressure Modulating Effects of Black Raspberry Extracts in vitro and in vivo. ACTA ACUST UNITED AC 2014. [DOI: 10.9721/kjfst.2014.46.3.375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Tyl CE, Bunzel M. Activity-Guided Fractionation to Identify Blue Wheat (UC66049Triticum aestivumL.) Constituents Capable of Inhibiting In Vitro Starch Digestion. Cereal Chem 2014. [DOI: 10.1094/cchem-07-13-0138-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Catrin E. Tyl
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, U.S.A
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany
- Corresponding author. Phone: +49-721-608-42936. E-mail:
| |
Collapse
|
25
|
Phoboo S, Bhowmik PC, Jha PK, Shetty K. Phenolic-Linked Antioxidant, anti-Diabetic, and anti-Hypertensive Potential of Wild and CultivatedSwertia chirayita(Roxb. ex Flem.) Karst. Usingin vitroAssays. ACTA ACUST UNITED AC 2013. [DOI: 10.1080/10496475.2013.822448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Treating type 2 diabetes mellitus with traditional chinese and Indian medicinal herbs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:343594. [PMID: 23737828 PMCID: PMC3662109 DOI: 10.1155/2013/343594] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/01/2013] [Indexed: 12/19/2022]
Abstract
Type II diabetes mellitus (T2DM) is a fast-growing epidemic affecting people globally. Furthermore, multiple complications and comorbidities are associated with T2DM. Lifestyle modifications along with pharmacotherapy and patient education are the mainstay of therapy for patients afflicted with T2DM. Western medications are frequently associated with severe adverse drug reactions and high costs of treatment. Herbal medications have long been used in the treatment and prevention of T2DM in both traditional Chinese medicine (TCM) and traditional Indian medicine (TIM). This review examines in vivo, in vitro, and clinical evidence supporting the use of various herbs used in TCM and TIM. The problems, challenges, and opportunities for the incorporation of herbal frequently used in TCM and TIM into Western therapy are presented and discussed.
Collapse
|
27
|
Oboh G, Akinyemi AJ, Ademiluyi AO. Inhibition of α-amylase and α-glucosidase activities by ethanolic extract of Telfairia occidentalis (fluted pumpkin) leaf. Asian Pac J Trop Biomed 2012; 2:733-8. [PMID: 23570004 PMCID: PMC3609380 DOI: 10.1016/s2221-1691(12)60219-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 06/27/2012] [Accepted: 09/28/2012] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To investigate the inhibitory effect of Telfairia occidentalis Hook f. (Curcubitaceae) (T. occidentalis) leaf on key enzyme linked to type-2 diabetes (α - amylase and α - glucosidase) as well as assess the effect of blanching (a commonly practiced food processing technique) of the vegetable on these key enzymes. METHODS Fresh leaves of T. occidentalis were blanched in hot water for 10 minutes, and the extracts of both the fresh and blanched vegetables were prepared and used for subsequent analysis. The inhibitory effect of the extract on α - amylase and α - glucosidase activities as well as some antioxidant parameter was determined in vitro. RESULTS The result revealed that unprocessed T. occidentalis leaf reduce Fe(3+) to Fe(2+) and also inhibited α - amylase and α - glucosidase activities in a dose dependent manner. However, blanching of the leafy vegetables caused a significant (P<0.05) increase in the antioxidant properties but decrease their ability to inhibit α - amylase and α - glucosidase activities. CONCLUSIONS This antioxidant properties and enzyme inhibition could be part of the mechanism by which they are used in the treatment/prevention of type-2 diabetes. However, the blanched vegetable reduces their ability to inhibit both α - amylase and α - glucosidase activity in vitro.
Collapse
Affiliation(s)
- G Oboh
- Department of Biochemistry,Federal University of Technology, Akure, NigeriaP.M.B., 704, Akure 340001, Nigeria
| | | | | |
Collapse
|
28
|
Tropical plant extracts as potential antihyperglycemic agents. Molecules 2012; 17:5915-23. [PMID: 22609782 PMCID: PMC6268806 DOI: 10.3390/molecules17055915] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 04/28/2012] [Accepted: 04/30/2012] [Indexed: 11/17/2022] Open
Abstract
Preliminary investigations on 14 plant extracts (obtained by ethanolic and aqueous extraction) identified those having high antioxidant and a significant total phenolic content. Antihyperglycemic, α-amylase and α-glucosidase inhibition activities were also observed. A correlation between the antihyperglycemic activity, total phenolic content and antioxidant (DPPH scavenging) activity was established. To further substantiate these findings, the possibility of tannins binding non-specifically to enzymes and thus contributing to the antihyperglycemic activity was also investigated. Our study clearly indicated that the antihyperglycemic activity observed in the plant extracts was indeed not due to non-specific tannin absorption.
Collapse
|
29
|
Etxeberria U, de la Garza AL, Campión J, Martínez JA, Milagro FI. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opin Ther Targets 2012; 16:269-97. [PMID: 22360606 DOI: 10.1517/14728222.2012.664134] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The increasing prevalence of type 2 diabetes mellitus and the negative clinical outcomes observed with the commercially available anti-diabetic drugs have led to the investigation of new therapeutic approaches focused on controlling postprandrial glucose levels. The use of carbohydrate digestive enzyme inhibitors from natural resources could be a possible strategy to block dietary carbohydrate absorption with less adverse effects than synthetic drugs. AREAS COVERED This review covers the latest evidence regarding in vitro and in vivo studies in relation to pancreatic alpha-amylase inhibitors of plant origin, and presents bioactive compounds of phenolic nature that exhibit anti-amylase activity. EXPERT OPINION Pancreatic alpha-amylase inhibitors from traditional plant extracts are a promising tool for diabetes treatment. Many studies have confirmed the alpha-amylase inhibitory activity of plants and their bioactive compounds in vitro, but few studies corroborate these findings in rodents and very few in humans. Thus, despite some encouraging results, more research is required for developing a valuable anti-diabetic therapy using pancreatic alpha-amylase inhibitors of plant origin.
Collapse
Affiliation(s)
- Usune Etxeberria
- University of Navarra, Department of Nutrition, Food Science, Physiology and Toxicology, C/Irunlarrea, 1 31008, Pamplona, Spain
| | | | | | | | | |
Collapse
|
30
|
Mukherjee PK, Ponnusankar S, Venkatesh P, Gantait A, Pal BC. Marker Profiling: An Approach for Quality Evaluation of Indian Medicinal Plants. ACTA ACUST UNITED AC 2011. [DOI: 10.1177/009286151104500101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Manaharan T, Teng LL, Appleton D, Ming CH, Masilamani T, Palanisamy UD. Antioxidant and antiglycemic potential of Peltophorum pterocarpum plant parts. Food Chem 2011. [DOI: 10.1016/j.foodchem.2011.05.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Palanisamy U, Manaharan T, Teng LL, Radhakrishnan AK, Subramaniam T, Masilamani T. Rambutan rind in the management of hyperglycemia. Food Res Int 2011. [DOI: 10.1016/j.foodres.2011.01.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Palanisamy UD, Ling LT, Manaharan T, Appleton D. Rapid isolation of geraniin from Nephelium lappaceum rind waste and its anti-hyperglycemic activity. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.12.070] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 2010; 11:1365-402. [PMID: 20480025 PMCID: PMC2871121 DOI: 10.3390/ijms11041365] [Citation(s) in RCA: 681] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/24/2010] [Accepted: 03/25/2010] [Indexed: 12/12/2022] Open
Abstract
Polyphenols, including flavonoids, phenolic acids, proanthocyanidins and resveratrol, are a large and heterogeneous group of phytochemicals in plant-based foods, such as tea, coffee, wine, cocoa, cereal grains, soy, fruits and berries. Growing evidence indicates that various dietary polyphenols may influence carbohydrate metabolism at many levels. In animal models and a limited number of human studies carried out so far, polyphenols and foods or beverages rich in polyphenols have attenuated postprandial glycemic responses and fasting hyperglycemia, and improved acute insulin secretion and insulin sensitivity. The possible mechanisms include inhibition of carbohydrate digestion and glucose absorption in the intestine, stimulation of insulin secretion from the pancreatic β–cells, modulation of glucose release from the liver, activation of insulin receptors and glucose uptake in the insulin-sensitive tissues, and modulation of intracellular signalling pathways and gene expression. The positive effects of polyphenols on glucose homeostasis observed in a large number of in vitro and animal models are supported by epidemiological evidence on polyphenol-rich diets. To confirm the implications of polyphenol consumption for prevention of insulin resistance, metabolic syndrome and eventually type 2 diabetes, human trials with well-defined diets, controlled study designs and clinically relevant end-points together with holistic approaches e.g., systems biology profiling technologies are needed.
Collapse
|
35
|
Ling LT, Radhakrishnan AK, Subramaniam T, Cheng HM, Palanisamy UD. Assessment of antioxidant capacity and cytotoxicity of selected Malaysian plants. Molecules 2010; 15:2139-51. [PMID: 20428033 PMCID: PMC6257288 DOI: 10.3390/molecules15042139] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/12/2010] [Accepted: 03/03/2010] [Indexed: 11/16/2022] Open
Abstract
Thirteen Malaysian plants; Artocarpus champeden, Azadirachta indica, Fragaria x ananassa, Garcinia mangostana, Lawsonia inermis, Mangifera indica, Nephelium lappaceum, Nephelium mutobile, Peltophorum pterocarpum, Psidium guajava and Syzygium aqueum, selected for their use in traditional medicine, were subjected to a variety of assays. Antioxidant capability, total phenolic content, elemental composition, as well as it cytotoxity to several cell lines of the aqueous and ethanolic extracts from different parts of these selected Malaysian plants were determined. In general, the ethanolic extracts were better free radical scavengers than the aqueous extracts and some of the tested extracts were even more potent than a commercial grape seed preparation. Similar results were seen in the lipid peroxidation inhibition studies. Our findings also showed a strong correlation of antioxidant activity with the total phenolic content. These extracts when tested for its heavy metals content, were found to be below permissible value for nutraceutical application. In addition, most of the extracts were found not cytotoxic to 3T3 and 4T1 cells at concentrations as high as 100 μg/mL. We conclude that although traditionally these plants are used in the aqueous form, its commercial preparation could be achieved using ethanol since a high total phenolic content and antioxidant activity is associated with this method of preparation.
Collapse
Affiliation(s)
- Lai Teng Ling
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia; E-Mail: (L.T.L.)
| | - Ammu Kutty Radhakrishnan
- Department of Pathology, Faculty of Medicine, Pharmacy and Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; E-Mail: (A.K.R.)
| | | | - Hwee Ming Cheng
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia; E-Mail: (L.T.L.)
| | - Uma D. Palanisamy
- School of Medicine and Health Sciences, Monash University Sunway Campus, Jalan Lagoon Selatan, 46150, Bandar Sunway, Malaysia
- Author to whom correspondence should be addressed; E-Mail:
| |
Collapse
|