1
|
Contreras E, Flores R, Gutiérrez A, Cerro D, Sepúlveda LA. Agro-industrial wastes revalorization as feedstock: production of lignin-modifying enzymes extracts by solid-state fermentation using white rot fungi. Prep Biochem Biotechnol 2022; 53:488-499. [PMID: 35980820 DOI: 10.1080/10826068.2022.2109048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The purpose of the study was to evaluate the production of lignin-modifying enzyme extracts and delignified biomass from agro-industrial wastes using white rot fungi (Inonotus sp. Sp2, Stereum hirsutum Ru-104, Bjerkandera sp. BOS55, Pleurotus eryngii IJFM 169 and Phanerochaete chrysosporium BKM-F-1767). These were screened based on their adaptability and colonization ability on different substrates, as well as by the Laccase, Manganese peroxidase, and Lignin peroxidase enzymatic production. Native strains (Inonotus sp. Sp2 and S. hirsutum Ru-104) showed the highest growth kinetics under the solid-substrate fermentation conditions and the growth rate parameters of the kinetic logistic model for the different substrates were between 0.39-0.81 (1/d) and 0.42-0.83 (1/d), respectively; the determination coefficients were ≥0.99. Inonotus sp. Sp2 was subsequently cultured in static flasks to produce crude enzyme extracts, obtaining manganese peroxidase activity levels of 18.5 and 31.3 (U/g) when growing in corn cob husk and spent tea leaves, respectively. Besides, it was to establish that the best conditions for lignin-modifying enzymes production using corn cob husk are 70% of initial moisture and 2.12 mm of particle size; reaching after 30 incubation days a manganese peroxidase activity of 21 ± 6 (U/g) under these conditions; enzyme that showed a suitable thermostability.
Collapse
Affiliation(s)
- Elsa Contreras
- Department of Chemical Engineering, Universidad de Santiago de Chile, Santiago, Chile
| | - Rodrigo Flores
- Department of Chemical Engineering, Universidad de Santiago de Chile, Santiago, Chile
| | - Aníbal Gutiérrez
- Department of Chemical Engineering, Universidad de Santiago de Chile, Santiago, Chile
| | - Daniela Cerro
- Department of Chemical Engineering, Universidad de Santiago de Chile, Santiago, Chile
| | - Luisa A Sepúlveda
- Department of Chemical Engineering, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
2
|
Fabrication and Catalytic Characterization of Laccase-Loaded Calcium-Alginate Beads for Enhanced Degradation of Dye-Contaminated Aqueous Solutions. Catal Letters 2021. [DOI: 10.1007/s10562-021-03765-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Kumar A. Biobleaching: An eco-friendly approach to reduce chemical consumption and pollutants generation. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2019-0044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The pulp and paper industry is known to be a large contributor to environmental pollution due to the huge consumption of chemicals and energy. Several chemicals including H2SO4, Cl2, ClO2, NaOH, and H2O2 are used during the bleaching process. These chemicals react with lignin and carbohydrates to generate a substantial amount of pollutants in bleach effluents. Environmental pressure has compelled the pulp and paper industry to reduce pollutant generation from the bleaching section. Enzymes have emerged as simple, economical, and eco-friendly alternatives for bleaching of pulp. The pretreatment of pulp with enzymes is termed as biobleaching or pre-bleaching. Different microbial enzymes such as xylanases, pectinases, laccases, manganese peroxidases (MnP), and lignin peroxidases are used for biobleaching. Xylanases depolymerize the hemicelluloses precipitated on pulp fiber surfaces and improves the efficiency of bleaching chemicals. Xylanase treatment also increases the pulp fibrillation and reduces the beating time of the pulp. Pectinases hydrolyze pectin available in the pulp fibers and improve the papermaking process. Laccase treatment is found more effective along with mediator molecules (as a laccase-mediator system). Biobleaching of pulp results in the superior quality of pulp along with lower consumption of chlorine-based chemicals and lower generation of adsorbable organic halidesadsorbable organic halides (AOX. An enzyme pretreatment reduces the kappa number of pulp and improves ISO brightness significantly. Better physical strength properties and pulp viscosity have also been observed during biobleaching of pulp.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Biotechnology , Debre Markos University College of Natural and Computational Science , Debre Markos 269 Gojjam , Ethiopia
| |
Collapse
|
4
|
Luo X, Al-Antaki AHM, Igder A, Stubbs KA, Su P, Zhang W, Weiss GA, Raston CL. Vortex Fluidic-Mediated Fabrication of Fast Gelated Silica Hydrogels with Embedded Laccase Nanoflowers for Real-Time Biosensing under Flow. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51999-52007. [PMID: 33151682 PMCID: PMC9943686 DOI: 10.1021/acsami.0c15669] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The fabrication of hybrid protein-Cu3(PO4)2 nanoflowers (NFs) via an intermediate toroidal structure is dramatically accelerated under shear using a vortex fluidic device (VFD), which possesses a rapidly rotating angled tube. As-prepared laccase NFs (LNFs) exhibit ≈1.8-fold increase in catalytic activity compared to free laccase under diffusion control, which is further enhanced by ≈ 2.9-fold for the catalysis under shear in the VFD. A new LNF immobilization platform, LNF@silica incorporated in a VFD tube, was subsequently developed by mixing the LNFs for 15 min with silica hydrogel resulting in gelation along the VFD tube surface. The resulting LNFs@silica coating is highly stable and reusable, which allows a dramatic 16-fold enhancement in catalytic rates relative to LNF@silica inside glass vials. Ultraviolet-visible spectroscopy-based real-time monitoring within the LNFs@silica-coated tube reveals good stability of the coating in continuous flow processing. The results demonstrate the utility of the VFD microfluidic platform, further highlighting its ability to control chemical and enzymatic processes.
Collapse
Affiliation(s)
- Xuan Luo
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Ahmed Hussein Mohammed Al-Antaki
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Aghil Igder
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
- School of Engineering, Edith Cowan University, Joondalup, Perth, WA 6027, Australia
| | - Keith A. Stubbs
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Peng Su
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, South Australia 5042, Australia
| | - Wei Zhang
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, South Australia 5042, Australia
| | - Gregory A. Weiss
- Department of Chemistry, University of California Irvine, CA, 92697-2025, USA
| | - Colin L. Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
5
|
Use of Feruloyl Esterase as Laccase-Mediator System in Paper Bleaching. Appl Biochem Biotechnol 2019; 190:721-731. [DOI: 10.1007/s12010-019-03122-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/25/2019] [Indexed: 10/26/2022]
|
6
|
Singh G, Arya SK. Utility of laccase in pulp and paper industry: A progressive step towards the green technology. Int J Biol Macromol 2019; 134:1070-1084. [DOI: 10.1016/j.ijbiomac.2019.05.168] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 01/31/2023]
|
7
|
Chaurasia SK, Bhardwaj NK. Biobleaching - An ecofriendly and environmental benign pulp bleaching technique: A review. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1581888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Nishi K. Bhardwaj
- Avantha Centre for Industrial Research and Development, Yamuna Nagar, Haryana, India
| |
Collapse
|
8
|
Bilal M, Asgher M, Hu H, Zhang X. Kinetic characterization, thermo-stability and Reactive Red 195A dye detoxifying properties of manganese peroxidase-coupled gelatin hydrogel. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:1809-1820. [PMID: 27789882 DOI: 10.2166/wst.2016.363] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An indigenous and industrially important manganese peroxidase (MnP) was isolated from solid-state bio-processing of wheat bran by white-rot fungal strain Ganoderma lucidum IBL-05 under pre-optimized growth conditions. Crude MnP extract was partially purified (2.34-fold) to apparent homogeneity by ammonium sulphate precipitation and dialysis. The homogeneous enzyme preparation was encapsulated on gelatin matrix using glutaraldehyde as a cross-linking agent. Optimal conditions for highest immobilization (82.5%) were: gelatin 20% (w/v), glutaraldehyde 0.25% (v/v) and 2 h activation time using 0.6 mg/mL of protein concentration. Gelatin-encapsulated MnP presented its maximum activity at pH 6.0 and 60 °C. Thermo-stability was considerably improved after immobilization. The optimally active MnP fraction was tested against MnSO4 as a substrate to calculate kinetic parameters. More than 90% decolorization of Sandal-fix Red C4BLN (Reactive Red 195A) dye was achieved with immobilized MnP in 5 h. It also preserved more than 50% of its original activity after the sixth reusability cycle. The water quality parameters (pH, chemical oxygen demand, total organic carbon) and cytotoxicity (brine shrimp and Daphnia magna) studies revealed the non-toxic nature of the bio-treated dye sample. A lower Km, higher Vmax, greater acidic and thermal-resistant up to 60 °C were the improved catalytic features of immobilized MnP suggesting its suitability for a variety of biotechnological applications.
Collapse
Affiliation(s)
- Muhammad Bilal
- Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan E-mail: ; State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Asgher
- Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan E-mail:
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Daâssi D, Zouari-Mechichi H, Belbahri L, Barriuso J, Martínez MJ, Nasri M, Mechichi T. Phylogenetic and metabolic diversity of Tunisian forest wood-degrading fungi: a wealth of novelties and opportunities for biotechnology. 3 Biotech 2016; 6:46. [PMID: 28330115 PMCID: PMC4742418 DOI: 10.1007/s13205-015-0356-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/24/2015] [Indexed: 12/07/2022] Open
Abstract
In this study, 51 fungal strains were isolated from decaying wood samples collected from forests located in the Northwest of Tunisia in the vicinity of Bousalem, Ain Draham and Kef. Phylogenetic analysis based on the sequences of the internal transcribed spacers of the ribosomal DNA showed a high diversity among the 51 fungal isolates collection. Representatives of 25 genera and 29 species were identified, most of which were members of one of the following phyla (Ascomycota, Basidiomycota and Zygomycota). In addition to the phylogenetic diversity, a high diversity of secreted enzyme profiles was also detected among the fungal isolates. All fungal strains produced at least one of the following enzymes: laccase, cellulase, protease and/or lipase.
Collapse
Affiliation(s)
- Dalel Daâssi
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Route de Soukra Km 4,5, BP 1173, 3038, Sfax, Tunisia.
- Department of Biology, Faculty of Sciences and Arts, Khulais, University of Jeddah, Jeddah, Saudi Arabia.
| | - Héla Zouari-Mechichi
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Route de Soukra Km 4,5, BP 1173, 3038, Sfax, Tunisia
| | - Lassaad Belbahri
- Laboratory of Soil Biology, University of Neuchatel, Rue Emile Argand 11, 2009, Neuchâtel, Switzerland
- NextBiotech, Agareb, Tunisia
| | - Jorge Barriuso
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María Jesús Martínez
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Route de Soukra Km 4,5, BP 1173, 3038, Sfax, Tunisia
| | - Tahar Mechichi
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Route de Soukra Km 4,5, BP 1173, 3038, Sfax, Tunisia.
| |
Collapse
|
10
|
Asgher M, Ramzan M, Bilal M. Purification and characterization of manganese peroxidases from native and mutant Trametes versicolor IBL-04. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(15)61044-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Bilal M, Asgher M, Shahid M, Bhatti HN. Characteristic features and dye degrading capability of agar-agar gel immobilized manganese peroxidase. Int J Biol Macromol 2016; 86:728-40. [PMID: 26854887 DOI: 10.1016/j.ijbiomac.2016.02.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 11/25/2022]
Abstract
Immobilization of enzymes has been regarded as an efficient approach to develop biocatalyst with improved activity and stability characteristics under reaction conditions. In the present study, purified manganese peroxidase (MnP) from Ganoderma lucidum IBL-05 was immobilized in agar-agar support using entrapment technique. Maximum immobilization yield was accomplished at 4.0% agar-agar gel. The immobilized MnP exhibited better resistance to changes in pH and temperature than the free enzyme, with optimal conditions being pH 6.0 and 50 °C. The kinetic parameters Km and Kcat/Km for free and entrapped MnP were calculated to be 65.6 mM and 6.99 M(-1) s(-1), and 82 mM and 8.15 M(-1) s(-1), respectively. Thermo-stability was significantly improved after immobilization. After 120 h, the insolubilized MnP retained its activity up to 71.9% and 60.3% at 30 °C and 40 °C, respectively. It showed activity until 10th cycle and retained 74.3% residual activity after 3th cycle. The effects of H2O2, ionic strength and potential inhibitors on activity of free and immobilized enzyme were investigated. Moreover, the decolorization of three structurally different dyes was monitored in order to assess the degrading capability of the entrapped MnP. The decolorization efficiencies for all the tested dyes were 78.6-84.7% after 12h. The studies concluded that the toxicity of dyes aqueous solutions was significantly reduced after treatment. The remarkable catalytic, thermo-stability and re-cycling features of the agar-agar immobilized MnP display a high potential for biotechnological applications.
Collapse
Affiliation(s)
- Muhammad Bilal
- Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan.
| | - Muhammad Asgher
- Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shahid
- Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Haq Nawaz Bhatti
- Environmental & Material Chemistry Laboratory, Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
| |
Collapse
|
12
|
Singh G, Kaur K, Puri S, Sharma P. Critical factors affecting laccase-mediated biobleaching of pulp in paper industry. Appl Microbiol Biotechnol 2014; 99:155-64. [PMID: 25421562 DOI: 10.1007/s00253-014-6219-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
Abstract
Next to xylanases, laccases from fungi and alkali-tolerant bacteria are the most important biocatalysts that can be employed for eco-friendly biobleaching of hard and soft wood pulps in the paper industry. Laccases offer a potential alternative to conventional, environmental-polluting chlorine and chlorine-based bleaching and has no reductive effect on the final yield of pulp as compared to hemicellulases (xylanases and mannanases). In the last decade, reports on biobleaching with laccases are based on laboratory observations only. There are several critical challenges before this enzyme can be implemented for pulp bleaching at the industrial scale. This review discusses significant factors like redox potential, laccase mediator system (LMS)-synthetic or natural, pH, temperature, stability of enzyme, unwanted grafting reactions of laccase, and cost-intensive production at large scale which constitute a great hitch for the successful implementation of laccases at industrial level.
Collapse
Affiliation(s)
- Gursharan Singh
- Biotechnology Branch, University Institute of Engineering and Technology, Panjab University, Chandigarh, India,
| | | | | | | |
Collapse
|
13
|
Moreira S, Milagres AM, Mussatto SI. Reactive dyes and textile effluent decolorization by a mediator system of salt-tolerant laccase from Peniophora cinerea. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Laccase applications in biofuels production: current status and future prospects. Appl Microbiol Biotechnol 2014; 98:6525-42. [DOI: 10.1007/s00253-014-5810-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 11/27/2022]
|
15
|
Mazzonna M, Bietti M, DiLabio GA, Lanzalunga O, Salamone M. Importance of π-Stacking Interactions in the Hydrogen Atom Transfer Reactions from Activated Phenols to Short-Lived N-Oxyl Radicals. J Org Chem 2014; 79:5209-18. [DOI: 10.1021/jo500789v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Marco Mazzonna
- Dipartimento
di Chimica and Istituto CNR di Metodologie
Chimiche (IMC−CNR), Sezione Meccanismi di Reazione, c/o Dipartimento
di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Massimo Bietti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Gino A. DiLabio
- National
Institute for Nanotechnology, National Research Council of Canada, 11421
Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2M9
- Department
of Chemistry, University of British Columbia, Okanagan, 3333 University
Way, Kelowna, British Columbia, Canada V1V 1V7
| | - Osvaldo Lanzalunga
- Dipartimento
di Chimica and Istituto CNR di Metodologie
Chimiche (IMC−CNR), Sezione Meccanismi di Reazione, c/o Dipartimento
di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Michela Salamone
- Dipartimento
di Scienze e Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| |
Collapse
|
16
|
Comparing the catalytic efficiency of ring substituted 1-hydroxybenzotriazoles as laccase mediators. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.02.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Nasir M, Gupta A, Hossen Beg MD, Chua GK, Asim M. Laccase application in medium density fibreboard to prepare a bio-composite. RSC Adv 2014. [DOI: 10.1039/c3ra40593a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Laccase efficacy as a biological tool for the removal of lignin in pulp industries is evident and has scope for a wider application.
Collapse
Affiliation(s)
- Mohammed Nasir
- Faculty of Chemical and Natural Resource Engineering
- University Malaysia Pahang
- , Malaysia
| | - Arun Gupta
- Faculty of Chemical and Natural Resource Engineering
- University Malaysia Pahang
- , Malaysia
| | | | - Gek Kee Chua
- Faculty of Chemical and Natural Resource Engineering
- University Malaysia Pahang
- , Malaysia
| | - Mohd Asim
- Department of Biocomposite Technology
- INTROP
- Universiti Putra Malaysia
- , Malaysia
| |
Collapse
|
18
|
Recent developments and applications of immobilized laccase. Biotechnol Adv 2013; 31:1808-25. [DOI: 10.1016/j.biotechadv.2012.02.013] [Citation(s) in RCA: 443] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 02/10/2012] [Accepted: 02/20/2012] [Indexed: 11/21/2022]
|
19
|
Daâssi D, Zouari-Mechichi H, Prieto A, Martínez MJ, Nasri M, Mechichi T. Purification and biochemical characterization of a new alkali-stable laccase from Trametes sp. isolated in Tunisia: role of the enzyme in olive mill waste water treatment. World J Microbiol Biotechnol 2013; 29:2145-55. [PMID: 23712478 DOI: 10.1007/s11274-013-1380-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
Abstract
A white-rot basidiomycete, isolated from decayed acacia wood (from Northwest of Tunisia) and identified as Trametes sp, was selected in a broad plate screening because of its ability to decolorize and dephenolize olive oil mill wastewater (OMW) efficiently. The major laccase was purified and characterized as a monomeric protein with apparent molecular mass of 61 kDa (SDS-PAGE). It exhibits high enzyme activity over broad pH and temperature ranges with optimum activity at pH 4.0 and a temperature of 60 °C. The purified laccase is stable at alkaline pH values. The enzyme retained 50 % of its activity after 90 min of incubation at 55 °C. Using ABTS, this laccase presented K m and V max values of 0.05 mM and 212.73 μmoL min(-1) mg(-1), respectively. It has shown a degrading activity towards a variety of phenolic compounds. The purified laccase was partially inhibited by Fe(2+), Zn(2+), Cd(2+) and Mn(2+), while Cu(2+) acted as inducer. EDTA (10 mM) and NaN3 (10 mM) were found to completely inhibit its activity. 73 % OMW was dephenolized after 315 min incubation at 30 °C with 2 U mL(-1) of laccase and 2 mM HBT.
Collapse
Affiliation(s)
- Dalel Daâssi
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Route de Soukra Km 4,5, BP 1173, 3038, Sfax, Tunisia
| | | | | | | | | | | |
Collapse
|
20
|
Gouveia S, Fernández-Costas C, Sanromán MA, Moldes D. Polymerisation of Kraft lignin from black liquors by laccase from Myceliophthora thermophila: effect of operational conditions and black liquor origin. BIORESOURCE TECHNOLOGY 2013; 131:288-294. [PMID: 23360704 DOI: 10.1016/j.biortech.2012.12.155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/21/2012] [Accepted: 12/25/2012] [Indexed: 06/01/2023]
Abstract
The capacity of laccase from Myceliophthora thermophila to promote the oxidative polymerisation of Kraft lignin (KL) was evaluated in several conditions of pH, temperature, enzyme dosage and treatment time. Moreover, different black liquors from the Kraft cooking of Eucalyptus globulus and mixture of Pinus pinaster/E. globulus were evaluated in order to determine the effect of the KL source on the polymerisation reaction. Furthermore, one of these black liquors was fractionated by sequential organic solvent fractionation and the polymerisation of the corresponding fractions was tested. Polymerisation products were analysed by size exclusion chromatography and Fourier transform infrared spectroscopy. The results provide evidence of notable lignin modifications after incubation with laccase. Structural oxidation and a notably molecular weight increase were attained, reaching a polymer of 69-fold its initial molecular weight depending on the raw lignin. Moreover, optimum values of reaction conditions were obtained: pH 7.3, 70°C, 2UmL(-1) and 2h.
Collapse
Affiliation(s)
- S Gouveia
- Department of Chemical Engineering, University of Vigo, Lagoas Marcosende s/n, E-36310 Vigo, Spain
| | | | | | | |
Collapse
|
21
|
Andreu G, Barneto AG, Vidal T. A new biobleaching sequence for kenaf pulp: influence of the chemical nature of the mediator and thermogravimetric analysis of the pulp. BIORESOURCE TECHNOLOGY 2013; 130:431-438. [PMID: 23313690 DOI: 10.1016/j.biortech.2012.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 11/14/2012] [Accepted: 12/05/2012] [Indexed: 06/01/2023]
Abstract
This paper evaluates five phenolic compounds as mediators for kenaf pulp biobleaching by laccase. The results have been compared with the treatment using a non-phenolic mediator, 1-hydroxybenzotriole and laccase alone. The influence of the nature of the chemical mediators used on various pulp properties is discussed. In addition to oxidizing lignin, the phenolic radicals formed in the process take part in condensation and grafting reactions in enzymatic stage. After biobleaching sequence (LP), syringaldehyde was shown to be the best phenolic mediator, allowing a delignification of 43% and 72% ISO brightness. These results were similar to the use of laccase alone due to the role as mediators of syringyl units resulting from oxidative lignin degradation. As a novelty, the study was supplemented with thermogravimetric analysis, with emphasis on the crystallinity degree of the cellulose surface and the aim of elucidating the action mechanisms of laccase-mediator systems on fiber.
Collapse
Affiliation(s)
- Glòria Andreu
- Chemical Engineering Department, ETSEIAT, Universitat Politècnica de Catalunya, Colom 11, E-08222 Terrassa, Spain
| | | | | |
Collapse
|
22
|
Valls C, Cadena EM, Blanca Roncero M. Obtaining biobleached eucalyptus cellulose fibres by using various enzyme combinations. Carbohydr Polym 2013; 92:276-82. [DOI: 10.1016/j.carbpol.2012.08.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/25/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
|
23
|
Virk AP, Capalash N, Sharma P. An alkalophilic laccase from Rheinheimera species isolate: production and biobleaching of kraft pulp. Biotechnol Prog 2012; 28:1426-31. [PMID: 22927347 DOI: 10.1002/btpr.1619] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/01/2012] [Indexed: 02/02/2023]
Abstract
Medium optimization was carried out to enhance laccase production from a novel Rheinheimera species, isolated from industrial effluent. Out of the 15 variables tested by Placket-Burman design (PBD)-yeast extract, soyabean meal, and peptone were the positively significant ones, enhancing laccase production. Both simple and complex sugars showed a negative effect on laccase production. Central composite design (CCD) of experiments, using the three positively significant variables in combinations, showed that laccase production was not affected by molar carbon, molar nitrogen levels or molar C/N ratio. Maximum laccase yield of 2.5 × 10(5) nkat L(-1) , 31 fold enhancement over the unoptimized medium, was achieved when soyabean meal (0.6%) was used alone as medium showing that laccase production was substrate dependent. Laccase was used, in the presence of 2 mM ABTS, for the biobleaching of eucalyptus kraft pulp resulting in kappa number reduction by 20% and brightness increase by 2.9%. Biobleaching improved further by sequential application of an alkalophilic xylanase (X) and laccase-ABTS system (LAS) that decreased kappa number by 10, 15, and 35%, increased brightness by 2.7, 3.2, and 5.9% as compared to X treated, LAS treated and untreated control, respectively. XLAS treatment resulted in 15, 13, 10.9% increase in burst factor, tear factor, and viscosity with a 20% reduced consumption of elemental chlorine and hypochlorite.
Collapse
|
24
|
Ravalason H, Bertaud F, Herpoël-Gimbert I, Meyer V, Ruel K, Joseleau JP, Grisel S, Olivé C, Sigoillot JC, Petit-Conil M. Laccase/HBT and laccase-CBM/HBT treatment of softwood kraft pulp: impact on pulp bleachability and physical properties. BIORESOURCE TECHNOLOGY 2012; 121:68-75. [PMID: 22854132 DOI: 10.1016/j.biortech.2012.06.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 06/01/2023]
Abstract
Pycnoporus cinnabarinus laccase and a chimeric laccase-CBM were applied in softwood kraft pulp biobleaching in the presence of 1-hydroxybenzotriazole (HBT). The presence of CBM could enhance the laccase biobleaching potential as a decrease in the enzymatic charge and chlorine dioxide consumption, as well as an increase in pulp brightness were observed. Laccase/HBT treatment could be improved by increasing oxygen pressure from 1 to 3bar and pulp consistency from 5% to 10%. Conversely, under the same conditions, no improvement of laccase-CBM/HBT treatment was observed, indicating a different behavior of both systems. However, laccase-CBM/HBT treatment led to a better preservation of pulp properties. This effect was probably due to fiber surface modifications involving the action of the CBM. Transmission electron microscopy examination of pulp fibers indicated a retention of laccase-CBM inside the pulp fibers due to CBM binding and an increased external microfibrillation of the fibers due to enzymatic treatments.
Collapse
|
25
|
Moldes D, Fernández-Fernández M, Sanromán MÁ. Role of laccase and low molecular weight metabolites from Trametes versicolor in dye decolorization. ScientificWorldJournal 2012; 2012:398725. [PMID: 22566767 PMCID: PMC3329927 DOI: 10.1100/2012/398725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/04/2012] [Indexed: 11/24/2022] Open
Abstract
The studies regarding decolorization of dyes by laccase may not only inform about the possible application of this enzyme for environmental purposes, but also may provide important information about its reaction mechanism and the influence of several factors that could be involved. In this paper, decolorization of crystal violet and phenol red was carried out with different fractions of extracellular liquids from Trametes versicolor cultures, in order to describe the role of laccase in this reaction. Moreover, the possible role of the low molecular weight metabolites (LMWMs) also produced by the fungus was evaluated. The results confirm the existence of a nonenzymatic decolorization factor, since the nonprotein fraction of the extracellular liquids from cultures of T. versicolor has shown decolorization capability. Several experiments were performed in order to identify the main compounds related to this ability, which are probably low molecular weight peroxide compounds.
Collapse
Affiliation(s)
- Diego Moldes
- Department of Chemical Engineering, University of Vigo, Isaac Newton Building, Lagoas-Marcosende s/n, 36310 Vigo, Spain.
| | | | | |
Collapse
|
26
|
Valls C, Quintana E, Roncero MB. Assessing the environmental impact of biobleaching: effects of the operational conditions. BIORESOURCE TECHNOLOGY 2012; 104:557-564. [PMID: 22079687 DOI: 10.1016/j.biortech.2011.10.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 10/10/2011] [Accepted: 10/12/2011] [Indexed: 05/31/2023]
Abstract
The environmental impact of enzyme bleaching stages applied to oxygen-delignified eucalypt kraft pulp was assessed via the chemical oxygen demand (COD), color, absorbance spectrum, residual enzyme activity and Microtox toxicity of the effluents from a laccase-HBT (1-hydoxybenzotriazole) treatment. The influence of the laccase and HBT doses, and reaction time, on these effluent properties was also examined. The laccase dose was found to be the individual variable most strongly affecting COD, whereas the oxidized form of HBT was the main source of increased color and toxicity in the effluents. Moreover, it inactivated the enzyme. Oxidation of the mediator was very fast and essentially dependent on the laccase dose. Using the laccase-mediator treatment after a xylanase stage improved pulp properties without affecting effluent properties. This result holds great promise with a view to the industrial implementation of biobleaching sequences involving the two enzymes in the future.
Collapse
Affiliation(s)
- Cristina Valls
- Textile and Paper Engineering Department, ETSEIAT, Universitat Politècnica de Catalunya, Colom 11, E-08222 Terrassa, Spain
| | | | | |
Collapse
|
27
|
Biobleaching of wheat straw pulp with recombinant laccase from the hyperthermophilic Thermus thermophilus. Biotechnol Lett 2011; 34:541-7. [DOI: 10.1007/s10529-011-0796-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/09/2011] [Indexed: 10/15/2022]
|
28
|
Virk AP, Sharma P, Capalash N. Use of laccase in pulp and paper industry. Biotechnol Prog 2011; 28:21-32. [PMID: 22012940 DOI: 10.1002/btpr.727] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/07/2011] [Indexed: 11/10/2022]
Abstract
Laccase, through its versatile mode of action, has the potential to revolutionize the pulping and paper making industry. It not only plays a role in the delignification and brightening of the pulp but has also been described for the removal of the lipophilic extractives responsible for pitch deposition from both wood and nonwood paper pulps. Laccases are capable of improving physical, chemical, as well as mechanical properties of pulp either by forming reactive radicals with lignin or by functionalizing lignocellulosic fibers. Laccases can also target the colored and toxic compounds released as effluents from various industries and render them nontoxic through its polymerization and depolymerization reactions. This article reviews the use of both fungal and bacterial laccases in improving pulp properties and bioremediation of pulp and paper mill effluents.
Collapse
Affiliation(s)
- Antar Puneet Virk
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | | | | |
Collapse
|
29
|
Barneto AG, Valls C, Ariza J, Roncero MB. Thermogravimetry study of xylanase- and laccase/mediator-treated eucalyptus pulp fibres. BIORESOURCE TECHNOLOGY 2011; 102:9033-9039. [PMID: 21840212 DOI: 10.1016/j.biortech.2011.07.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/11/2011] [Accepted: 07/18/2011] [Indexed: 05/31/2023]
Abstract
Thermogravimetric analyses (TGA) was applied to study the effects of enzymatic bleaching of eucalyptus pulp with xylanase and a laccase-mediator system. The thermal degradation profile of the pulps was sensitive to the enzymatic treatments. Xylanase treatment produced an ordered and clean microfibril, whereas laccase oxidized surface cellulose chains and increased the amorphous (paracrystalline) cellulose content. In this case, pulp viscosity decreased from 972 to 859 mL/g and apparent pulp crystallinity calculated from TGA data decreased almost 50%. Alkaline extraction was necessary to recover pulp crystallinity and to remove oxidized lignin in the laccase-treated samples. TGA data allowed differentiating and quantifying crystalline and amorphous cellulose. This thermogravimetric approach is a simple method in order to monitor superficial changes in cellulosic microfibrils.
Collapse
Affiliation(s)
- Agustín G Barneto
- Chemical Engineering Department, Campus El Carmen, University of Huelva, 21071 Huelva, Spain.
| | | | | | | |
Collapse
|
30
|
|
31
|
Martín-Sampedro R, Eugenio ME, Villar JC. Biobleaching of Eucalyptus globulus kraft pulps: comparison between pulps obtained from exploded and non-exploded chips. BIORESOURCE TECHNOLOGY 2011; 102:4530-4535. [PMID: 21256741 DOI: 10.1016/j.biortech.2010.12.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 12/22/2010] [Accepted: 12/22/2010] [Indexed: 05/30/2023]
Abstract
The aim of this work was to evaluate the response to biobleaching of steam exploded kraft pulps and to compare the results with the controls. For this end, a laccase-mediator treatment using commercial laccase (Novozyme 51003) and a natural mediator (acetosyringone) were assayed, followed by alkaline extraction and hydrogen peroxide stages. Our approach resulted in exploded biobleached pulps with lower kappa number and improved optical properties compared to controls, even after subjecting pulps to accelerated ageing. Additionally, use of hydrogen peroxide was reduced. The LMS (laccase-mediator system) had a smaller impact on the properties of the bleached pulps and on hydrogen peroxide consumption than the steam explosion process did.
Collapse
Affiliation(s)
- R Martín-Sampedro
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria INIA, Carretera de la Coruña, km 7.5, 28040 Madrid, Spain
| | | | | |
Collapse
|
32
|
Moldes D, Vidal T. Reutilization of effluents from laccase-mediator treatments of kraft pulp for biobleaching. BIORESOURCE TECHNOLOGY 2011; 102:3603-3606. [PMID: 21111614 DOI: 10.1016/j.biortech.2010.10.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 10/21/2010] [Accepted: 10/23/2010] [Indexed: 05/30/2023]
Abstract
Several effluents from laccase-mediator treatments of kraft pulp were recovered and subsequently reused with fresh pulp in order to simulate recirculation of effluents during biobleaching. The effluents were used as a new bleaching stage without any modification except enzyme addition. Pulp treated with effluents were afterwards chemically bleached by using the simple sequence LQPo, where L represents the treatment with effluent and laccase addition, Q is a chelating stage and Po is an alkaline peroxide stage. This system showed a promising potential on delignification, with kappa number ranging from 5.5 to 6.6 after LQPo sequence, depending on the type of effluent employed in L stage. Improvements on pulp brightness were also reported compared with control experiment.
Collapse
Affiliation(s)
- D Moldes
- Department of Textile and Paper Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain
| | | |
Collapse
|
33
|
Díaz-González M, Vidal T, Tzanov T. Phenolic compounds as enhancers in enzymatic and electrochemical oxidation of veratryl alcohol and lignins. Appl Microbiol Biotechnol 2010; 89:1693-700. [DOI: 10.1007/s00253-010-3007-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 11/02/2010] [Accepted: 11/04/2010] [Indexed: 10/18/2022]
|