1
|
Oliva G, Buonerba A, Grassi A, Hasan SW, Korshin GV, Zorpas AA, Belgiorno V, Naddeo V, Zarra T. Microalgae to biodiesel: A novel green conversion method for high-quality lipids recovery and in-situ transesterification to fatty acid methyl esters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120830. [PMID: 38583383 DOI: 10.1016/j.jenvman.2024.120830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Greenhouse gases (GHGs) emissions due to increasing energy demand have raised the need to identify effective solutions to produce clean and renewable energy. Biotechnologies are an effective platform to attain green transition objectives, especially when synergically integrated to promote health and environmental protection. In this context, microalgae-based biotechnologies are considered among the most effective tools for treating gaseous effluents and simultaneously capturing carbon sources for further biomass valorisation. The production of biodiesel is regarded as a promising avenue for harnessing value from residual algal biomass. Nonetheless, the existing techniques for extracting lipids still face certain limitations, primarily centred around the cost-effectiveness of the process.This study is dedicated to developing and optimising an innovative and cost-efficient technique for extracting lipids from algal biomass produced during gaseous emissions treatment based on algal-bacterial biotechnology. This integrated treatment technology combines a bio-scrubber for degrading gaseous contaminants and a photobioreactor for capturing the produced CO2 within valuable algal biomass. The cultivated biomass is then processed with the process newly designed to extract lipids simultaneously transesterificated in fatty acid methyl esters (FAME) via In Situ Transesterification (IST) with a Kumagawa-type extractor. The results of this study demonstrated the potential application of the optimised method to overcome the gap to green transition. Energy production was obtained from residuals produced during the necessary treatment of gaseous emissions. Using hexane-methanol (v/v = 19:1) mixture in the presence KOH in Kumagawa extractor lipids were extracted with extraction yield higher than 12% and converted in fatty acid methyl esters. The process showed the enhanced extraction of lipids converted in bio-sourced fuels with circular economy approach, broadening the applicability of biotechnologies as sustainable tools for energy source diversification.
Collapse
Affiliation(s)
- Giuseppina Oliva
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Italy
| | - Antonio Buonerba
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Italy; Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, 84084, via Giovanni Paolo II, Fisciano, Italy.
| | - Alfonso Grassi
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, 84084, via Giovanni Paolo II, Fisciano, Italy
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT, Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, 17, Seattle, WA 98105-2700, United States
| | - Antonis A Zorpas
- Open University of Cyprus, Faculty of Pure and Applied Sciences, Laboratory of Chemical Engineering and Engineering Sustainability, Giannou Kranidioti 89, Latsia, 2231, Nicosia, Cyprus
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Italy
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Italy.
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Italy
| |
Collapse
|
2
|
Bizualem YD, Nurie AG. A review on recent biodiesel intensification process through cavitation and microwave reactors: Yield, energy, and economic analysis. Heliyon 2024; 10:e24643. [PMID: 38312610 PMCID: PMC10834826 DOI: 10.1016/j.heliyon.2024.e24643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/09/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
The use of biodiesel as a reliable and green energy source has grown over the past few years. Biodiesel is sustainable and biodegradable because it is only made from vegetable contents and waste cooking oil. Although biodiesel has many advantages over conventional fuels, there are still a lot of technological issues that need to be addressed during the production process. The yield of biodiesel produced using conventional methods is poor and the process is time-consuming. Process enhancements like cavitation and microwave have thus been developed to address this problem. Starting with a comparison to the conventional biodiesel process, this paper has reviewed the most recent developments in the increase of mixture and transfer of heat in these two reactors. This paper examined biodiesel improvement using microwave and cavitation reactors, including biodiesel yield, by meticulously reviewing and analyzing previous works. The production of biodiesel from various raw materials using a range of catalysts, energy requirements, as well as operating factors, activation energy, and constraints also have been discussed. Additionally, the economic analysis discusses the feasibility and cost-effectiveness of implementing these technologies on a commercial scale. Overall, this review provides valuable insights into the intensification of biodiesel production using cavitation and microwave reactors while considering both the technical and economic aspects.
Collapse
Affiliation(s)
- Yonas Desta Bizualem
- Department of Chemical Engineering, Kombolcha Institute of Technology, Wollo University, P.O. Box: 208, Kombolcha, Ethiopia
| | - Amare Gashu Nurie
- Department of Chemical Engineering, Kombolcha Institute of Technology, Wollo University, P.O. Box: 208, Kombolcha, Ethiopia
| |
Collapse
|
3
|
Ideris F, Zamri MFMA, Shamsuddin AH, Nomanbhay S, Kusumo F, Fattah IMR, Mahlia TMI. Progress on Conventional and Advanced Techniques of In Situ Transesterification of Microalgae Lipids for Biodiesel Production. ENERGIES 2022; 15:7190. [DOI: 10.3390/en15197190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Global warming and the depletion of fossil fuels have spurred many efforts in the quest for finding renewable, alternative sources of fuels, such as biodiesel. Due to its auxiliary functions in areas such as carbon dioxide sequestration and wastewater treatment, the potential of microalgae as a feedstock for biodiesel production has attracted a lot of attention from researchers all over the world. Major improvements have been made from the upstream to the downstream aspects related to microalgae processing. One of the main concerns is the high cost associated with the production of biodiesel from microalgae, which includes drying of the biomass and the subsequent lipid extraction. These two processes can be circumvented by applying direct or in situ transesterification of the wet microalgae biomass, hence substantially reducing the cost. In situ transesterification is considered as a significant improvement to commercially produce biodiesel from microalgae. This review covers the methods used to extract lipids from microalgae and various in situ transesterification methods, focusing on recent developments related to the process. Nevertheless, more studies need to be conducted to further enhance the discussed in situ transesterification methods before implementing them on a commercial scale.
Collapse
|
4
|
Aparamarta HW, Gunawan S, Ihsanpuro SI, Safawi I, Bhuana DS, Mochtar AF, Yusril Izhar Noer M. Optimization and kinetic study of biodiesel production from nyamplung oil with microwave-assisted extraction (MAE) technique. Heliyon 2022; 8:e10254. [PMID: 36042727 PMCID: PMC9420485 DOI: 10.1016/j.heliyon.2022.e10254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/23/2021] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Nyamplung oil (Calophyllum inophyllum), which has a high oil content and non-edible, has a lot of potential as a raw material in the production of biodiesel. Therefore, it has no impact on food security. In this research, response surface methodology was used to find the optimum conditions of biodiesel production from nyamplung, and the kinetics model of esterification reaction of free fatty acid (FFA) in the MAE method was determined. This study used RSM with central composite design (CCD) to find the optimal operating conditions. The RSM optimization with TG recovery shows 95.49% and FFA recovery 31.42% with operating conditions respectively at 423 W and 427 W and extraction time for 40 and 38 min. According to kinetic experiments conducted at various microwave power levels, the conversion of nyamplung into biodiesel follows the first, second, and third-order reactions. According to the data, the maximum R2 is found in the second and third-order reactions. It was determined the activation energy and kinetic rate constants. The reaction rate constants significantly increased at 150, 300, and 450 W, namely 0.0005 mol-1, 0.0008 mol-1, and 0.0008 mol-1. Nevertheless, it drops at 600 W to 0.0004 mol-1. It was found that the activation energy value using the MAE method was 604.43 J/mol. This value was smaller than the value of the activation energy using the conventional method, 4831.26 J/mol. It was shown that biodiesel production from nyamplung oil with the MAE method could change the conventional method because it needs less energy and less time. So, the production process is more efficient.
Collapse
Affiliation(s)
- Hakun Wirawasista Aparamarta
- Department of Chemical Engineering, Faculty of Engineering, Sepuluh Nopember Institute of Technology, Surabaya 60111, Indonesia
| | - Setiyo Gunawan
- Department of Chemical Engineering, Faculty of Engineering, Sepuluh Nopember Institute of Technology, Surabaya 60111, Indonesia
| | - Surya Iryana Ihsanpuro
- Department of Chemical Engineering, Faculty of Engineering, Sepuluh Nopember Institute of Technology, Surabaya 60111, Indonesia
| | - Imam Safawi
- Actuarial Department, Faculty of Science and Data Analytics of Sepuluh Nopember Institute of Technology, Surabaya 60111, Indonesia
| | - Donny Satria Bhuana
- Department of Chemical Engineering, Faculty of Engineering, Sepuluh Nopember Institute of Technology, Surabaya 60111, Indonesia
| | - Aang Firmansyah Mochtar
- Department of Chemical Engineering, Faculty of Engineering, Sepuluh Nopember Institute of Technology, Surabaya 60111, Indonesia
| | - M Yusril Izhar Noer
- Department of Chemical Engineering, Faculty of Engineering, Sepuluh Nopember Institute of Technology, Surabaya 60111, Indonesia
| |
Collapse
|
5
|
Optimization and Kinetic Studies on Biodiesel Conversion from Chlorella vulgaris Microalgae Using Pyrrolidinium-Based Ionic Liquids as a Catalyst. Catalysts 2022. [DOI: 10.3390/catal12030277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study describes the potential conversion of dried microalgae. Chlorella vulgaris (C. vulgaris) into fatty acid methyl ester (FAME) using the direct transesterification (DT) method and using ionic liquids (ILs) as a catalyst. In this work, the performance of monocationic IL, namely 1-butyl-1-methylpyrrolidinium bromide (IL 1), and dicationic IL, namely 1,4-bis(1-methylpyrrolidinium-1-yl) butane dibromide (IL 2), as catalysts was compared for DT of C. vulgaris under microwave irradiation. The results revealed that IL 2 showed a better performance in catalyzing the DT reaction by producing 87.9 mg/g% of FAME, while the use of IL 1 led to 74.3 mg/g% of FAME under optimum conditions. The kinetic study for direct transesterification of C. vulgaris showed that the reaction followed a first order kinetic reaction where the activation energies were calculated to be 22.2499 kJ mol−1 and 22.0413 kJ mol−1 for IL 1 and IL 2, respectively.
Collapse
|
6
|
Microwave-Assisted Extraction of Fatty Acids from Cultured and Commercial Phytoplankton Species. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
(1) Background: The extraction of fatty acids from microalgae and cyanobacteria is mostly performed with organic solvents and laborious procedures. Microwave-assisted extraction (MAE) can be a more effective and environmentally friendly process than traditional extraction (TE), which uses a large volume of solvent and conduction heating. Freshwater phytoplankton inhabits diverse aquatic environments and is a promising source of fatty acids and green precursors in the synthesis of biofuel, including cyanobacterial biomass. Therefore, the aim of this study was to investigate the potential of MAE to extract fatty acids from a Chlorella sp. microalga and two cyanobacteria, namely, Arthrospira sp. and Sphaerospermopsis torques-reginae, for biodiesel production. For this purpose, the lipid content and fatty acid profile of these strains were compared after treating biomass with the two extraction methods. (2) Methods: MAE and TE were used as extraction procedures; gas chromatography–mass spectrometry was used to assess the fatty acid profiles, and X-ray spectroscopy was used to analyze biomass. (3) Results: Although the fatty acid profile of the oil obtained by TE showed higher concentrations of fatty acids, the MAE method was able to extract more types of fatty acids. The variety of fatty acids extracted by the MAE, especially those with unsaturated chains, allowed for better quality biodiesel, presenting advantages over previous methods and studies. According to the analyses, essential fatty acids 16:0, 16:1, and 18:2 were found to be abundant in both cyanobacterial strains and in microalga, showing potential for biofuel production. Additionally, metal composition was determined as its content may indicate potential pro-oxidant influence in biofuel production. (4) Conclusions: MAE is a useful and green strategy to extract fatty acids from freshwater phytoplankton. Cyanobacteria can also be a beneficial source of fatty acids for biodiesel synthesis.
Collapse
|
7
|
Singh N, Kumar K, Goyal A, Moholkar VS. Ultrasound-assisted biodiesel synthesis by in–situ transesterification of microalgal biomass: Optimization and kinetic analysis. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Rao GBD, Anjaneyulu B, Kaushik MP, Prasad MR. β‐Ketoesters: An Overview and It's Applications via Transesterification. ChemistrySelect 2021. [DOI: 10.1002/slct.202102949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
| | - Bendi Anjaneyulu
- Department of Chemistry Faculty of Sciences Shree Guru Gobind Singh Tricentenary University Haryana 122505, P.B India
| | - Mahabir. P. Kaushik
- Amity School of Applied Sciences Amity University Gwalior 474005 Madhya Pradesh India
| | - Mailavaram. R. Prasad
- Department of Pharmaceutical Chemistry Shri Vishnu College of Pharmacy Vishnupur, Bhimavaram 534202, A.P. India
| |
Collapse
|
9
|
Dry route process and wet route process for algal biodiesel production: A review of techno-economical aspects. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Yirgu Z, Leta S, Hussen A, Khan MM, Aragaw T. Optimization of microwave-assisted carbohydrate extraction from indigenous Scenedesmus sp. grown in brewery effluent using response surface methodology. Heliyon 2021; 7:e07115. [PMID: 34136690 PMCID: PMC8178074 DOI: 10.1016/j.heliyon.2021.e07115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 11/07/2022] Open
Abstract
The use of wastewater as a nutrient source for microalgae cultivation is considered as a cost-effective approach for algal biomass and biofuel production. The microalgal biomass contains carbohydrates that can be processed into bioethanol through different extraction methods. The objective of this study is to optimize the microwave-assisted extraction (MAE) of carbohydrates from the indigenous Scenedesmus sp. grown on brewery effluent. Optimization of independent variables, such as acid concentration (0.1–5 N), microwave power (800–1200 W), temperature (80–180 °C) and extraction time (5–30 min) performed by response surface methodology. It was found that all independent variables had a significant and positive effect on microwave-assisted carbohydrate extraction. The quadratic model developed on the basis of carbohydrate yield had F value of 112.05 with P < 0.05, indicating that the model was significant to predict the carbohydrate yield. The model had a high value of R2 (0.9899) and adjusted R2 (0.9811), indicating that the fitted model displayed a good agreement between the predicted and actual carbohydrate yield. An optimum carbohydrate yield obtained was 260.54 mg g−1 under the optimum conditions of acid concentration (2.8 N), microwave power (1075 W), temperature (151 °C) and extraction time (22 min). The validation test showed that the model has adequately described the microwave-assisted extraction (MAE) of carbohydrates from microalgal biomass. This study demonstrated that the indigenous Scenedesmus sp. grown on brewery effluent provides a promising result in carbohydrate production for bioethanol feedstock.
Collapse
Affiliation(s)
- Zenebe Yirgu
- Center for Environmental Science, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Environmental Science, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Seyoum Leta
- Center for Environmental Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ahmed Hussen
- Center for Environmental Science, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Temesgen Aragaw
- Center for Environmental Science, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
11
|
Pyrolysis of Microalgae Chlorella sp. using Activated Carbon as Catalyst for Biofuel Production. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.1.10316.205-213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microalgae, as a potential raw material for biofuel, has several advantages compared to other biomass. One effective way to convert microalgae into biofuel is by thermal cracking or pyrolysis, and using a catalyst or not. So far, studies on the use of microalgae, that are converted into biofuels, is still use highly concentrated catalysts in packed bed reactors, which is not economical. Therefore, the aim of this study is to convert Chlorella sp. into biofuels with conventional pyrolysis without and using an activated carbon catalyst using packed bed reactor with bubble column. The reaction temperature is 400–600 °C, pyrolysis time is 1–4 hours, and the active carbon catalyst concentration is 0–2%. The 200 grams of Chlorella sp. and the catalyst was mixed in a fixed bed reactor under vacuum (−3 mm H20) condition. Next, we set the reaction temperature. When the temperature was reached, the pyrolysis was begun. After certain time was reached, the pyrolysis produced a liquid oil product. Oil products are measured for density and viscosity. The results showed that the conventional pyrolysis succeeded in converting microalgae Chlorella sp. into liquid biofuels. The highest yield of total liquid oil is obtained 50.2 % (heavy fraction yield, 43.75% and light fraction yield, 6.44%) at the highest conditions which was obtained with 1% activated carbon at a temperature and pyrolysis time of 3 hours. Physical properties of liquid biofuel are density of 0.88 kg/m3 and viscosity of 5.79 cSt. This physical properties are within the range of the national biodiesel standard SNI 7182-2012. The packed bed reactor completed with bubble column is the best choice for converting biofuel from microalgae, because it gives different fractions, so that it is easier to process further to the commercial biofuel stage. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
12
|
Tahir N, Tahir MN, Alam M, Yi W, Zhang Q. Exploring the prospective of weeds ( Cannabis sativa L. , Parthenium hysterophorus L.) for biofuel production through nanocatalytic (Co, Ni) gasification. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:148. [PMID: 32843897 PMCID: PMC7441714 DOI: 10.1186/s13068-020-01785-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/08/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND While keeping in view various aspects of energy demand, quest for the renewable energy sources is utmost. Biomass has shown great potential as green energy source with supply of approximately 14% of world total energy demand, and great source of carbon capture. It is abundant in various forms including agricultural, forestry residues, and unwanted plants (weeds). The rapid growth of weeds not only affects the yield of the crop, but also has strong consequences on the environment. These weeds can grow with minimum nutrient input requirements, have strong ability to grow at various soil and climate environments with high value of cellulose, thus can be valuable source of energy production. RESULTS Parthenium hysterophorus L. and Cannabis sativa L. have been employed for the production of biofuels (biogas, biodiesel and biochar) through nano-catalytic gasification by employing Co and Ni as nanocatalysts. Nanocatalysts were synthesized through well-established sol-gel method. SEM study confirms the spherical morphology of the nanocatalysts with size distribution of 20-50 nm. XRD measurements reveal that fabricated nanocatalysts have pure standard crystal structure without impurity. During gasification of Cannabis sativa L., we have extracted the 53.33% of oil, 34.66% of biochar and 12% gas whereas in the case of Parthenium hysterophorus L. 44% oil, 38.36% biochar and 17.66% of gas was measured. Electrical conductivity in biochar of Cannabis sativa L. and Parthenium hysterophorus L. was observed 0.4 dSm-1 and 0.39 dSm-1, respectively. CONCLUSION Present study presents the conversion of unwanted plants Parthenium hysterophorus L. and Cannabis sativa L. weeds to biofuels. Nanocatalysts help to enhance the conversion of biomass to biofuel due to large surface reactivity. Our findings suggest potential utilization of unwanted plants for biofuel production, which can help to share the burden of energy demand. Biochar produced during gasification can replace chemical fertilizers for soil remediation and to enhance the crop productivity.
Collapse
Affiliation(s)
- Nadeem Tahir
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou, 450002 China
| | - Muhammad Naveed Tahir
- Department of Agronomy, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300 Pakistan
| | - Mujeeb Alam
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou, 450002 China
- Department of Agronomy, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300 Pakistan
| | - Wang Yi
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou, 450002 China
| | - Quangou Zhang
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou, 450002 China
| |
Collapse
|
13
|
Chen SJ, Kuan IC, Tu YF, Lee SL, Yu CY. Surfactant-assisted in situ transesterification of wet Rhodotorula glutinis biomass. J Biosci Bioeng 2020; 130:397-401. [PMID: 32586661 DOI: 10.1016/j.jbiosc.2020.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/12/2020] [Accepted: 05/24/2020] [Indexed: 10/24/2022]
Abstract
In situ transesterification of oleaginous microbes with short chain alcohol has been developed as a renewable process for the production of biodiesel. Dry biomass is often a requisite for the process to avoid the adverse effect of water on the productivity. As a consequence, large amount of energy consumption is required for prior biomass drying. In this study, the wet biomass of Rhodotorula glutinis, an oleaginous yeast, was used directly in in situ transesterification without biomass drying. The reaction conditions were optimized for the production of fatty acid methyl esters (FAME) and the effects of adding different surfactants were also studied. The highest FAME yield of 110% was achieved with a methanol loading of 1:100 at 90°C for 8 h as catalyzed by 0.36 M H2SO4, and the FAME content was 97%, which meets the 96.5% specified in both European biodiesel standards and Taiwanese biodiesel standards. The addition of 50 mM 3-(N,N-dimethylmyristylammonio)propanesulfonate (3-DMAPS, a zwitterionic surfactant) improved the FAME yield from 69% to 83%, which was obtained with a low methanol loading of 1:10 at 90°C for 10 h. Hence, the production of FAME with wet biomass under optimized reaction conditions was as effective as that with the dry form. This clearly indicates that using wet R. glutinis as the feedstock is feasible for the production of biodiesel by in situ transesterification.
Collapse
Affiliation(s)
- Shih-Jie Chen
- Department of Chemical Engineering and Biotechnology, Tatung University, 40 Chungshan N. Rd. Sec. 3, Taipei 10452, Taiwan
| | - I-Ching Kuan
- Department of Chemical Engineering and Biotechnology, Tatung University, 40 Chungshan N. Rd. Sec. 3, Taipei 10452, Taiwan
| | - Yu-Feng Tu
- Department of Chemical Engineering and Biotechnology, Tatung University, 40 Chungshan N. Rd. Sec. 3, Taipei 10452, Taiwan
| | - Shiow-Ling Lee
- Department of Chemical Engineering and Biotechnology, Tatung University, 40 Chungshan N. Rd. Sec. 3, Taipei 10452, Taiwan
| | - Chi-Yang Yu
- Department of Chemical Engineering and Biotechnology, Tatung University, 40 Chungshan N. Rd. Sec. 3, Taipei 10452, Taiwan.
| |
Collapse
|
14
|
Ma W, Zhang J, Shu L, Tan X, An Y, Yang X, Wang D, Gao Q. Optimization of spray drying conditions for the green manufacture of γ-aminobutyric acid-rich powder from Lactobacillus brevis fermentation broth. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Patel A, Karageorgou D, Rova E, Katapodis P, Rova U, Christakopoulos P, Matsakas L. An Overview of Potential Oleaginous Microorganisms and Their Role in Biodiesel and Omega-3 Fatty Acid-Based Industries. Microorganisms 2020; 8:E434. [PMID: 32204542 PMCID: PMC7143722 DOI: 10.3390/microorganisms8030434] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
Microorganisms are known to be natural oil producers in their cellular compartments. Microorganisms that accumulate more than 20% w/w of lipids on a cell dry weight basis are considered as oleaginous microorganisms. These are capable of synthesizing vast majority of fatty acids from short hydrocarbonated chain (C6) to long hydrocarbonated chain (C36), which may be saturated (SFA), monounsaturated (MUFA), or polyunsaturated fatty acids (PUFA), depending on the presence and number of double bonds in hydrocarbonated chains. Depending on the fatty acid profile, the oils obtained from oleaginous microorganisms are utilized as feedstock for either biodiesel production or as nutraceuticals. Mainly microalgae, bacteria, and yeasts are involved in the production of biodiesel, whereas thraustochytrids, fungi, and some of the microalgae are well known to be producers of very long-chain PUFA (omega-3 fatty acids). In this review article, the type of oleaginous microorganisms and their expertise in the field of biodiesel or omega-3 fatty acids, advances in metabolic engineering tools for enhanced lipid accumulation, upstream and downstream processing of lipids, including purification of biodiesel and concentration of omega-3 fatty acids are reviewed.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden; (A.P.); (E.R.); (U.R.); (P.C.)
| | - Dimitra Karageorgou
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece; (D.K.); (P.K.)
| | - Emma Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden; (A.P.); (E.R.); (U.R.); (P.C.)
| | - Petros Katapodis
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece; (D.K.); (P.K.)
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden; (A.P.); (E.R.); (U.R.); (P.C.)
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden; (A.P.); (E.R.); (U.R.); (P.C.)
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden; (A.P.); (E.R.); (U.R.); (P.C.)
| |
Collapse
|
16
|
Fungi (Mold)-Based Lipid Production. Methods Mol Biol 2020. [PMID: 31148121 DOI: 10.1007/978-1-4939-9484-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
There is an increasing need for the development of alternative energy sources with a focus on reducing greenhouse gas emissions and striving toward a sustainable economy. Bioethanol and biodiesel are currently the primary choices of alternative transportation fuels. At present, biodiesel is not competitive with conventional fuel due to its high price, and the only way to compete with conventional fuel is to improve the quality, reduce the costs, and coproduce value-added products. With the high demand for lipids in the energy sector and other industrial applications, microbial lipids accumulated from microorganisms, especially oleaginous fungi and yeasts have been the important topic of many recent research studies. This chapter summarizes the current status of knowledge and technology about lipid production by oleaginous fungi and yeasts for biofuel applications and other value-added products. The chapter focuses on several aspects such as the most promising oleaginous strains, strain development, improvement of lipid production, methods and protocols to cultivate oleaginous fungi, substrate utilization, fermentation process design, and downstream processing. The feasibility and challenges during the large-scale commercial production of microbial lipids as fuel sources are also discussed. It provides an overview of microbial lipid production biorefinery and also future development directions.
Collapse
|
17
|
Effect of Physical Factors on the Growth of Chlorella Vulgaris on Enriched Media Using the Methods of Orthogonal Analysis and Response Surface Methodology. WATER 2019. [DOI: 10.3390/w12010034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In addition to chemical factors, physical conditions also play a key role in the growth of microalgae. In this study, solid sediment in rivers was simulated by pure quartz sand with different particle sizes and the physical effects of disturbance rate, solid–liquid ratio and particle size on the growth of Chlorella vulgaris (C. vulgaris) were investigated through orthogonal analysis and response surface methodology (RSM) during co-cultivation of C. vulgaris and sediment. The result of ANOVA in orthogonal analysis showed that the effect ability of a single factor on biomass can be ranked as disturbance rate > particle size > solid–liquid ratio, 100 r/min disturbance rate and 30–40 M particle size are the most significant at the 0.05 level. Furthermore, the specific growth rate can reach 0.25/d and 0.27/d, respectively. With the growth of C. vulgaris, the pH of the solution reached a maximum of 10.7 in a week. The results from the RSM showed that strong interactions are reflected in the combinations of disturbance rate and solid–liquid ratio, and disturbance rate and particle size. Ramp desirability of the biomass indicates that the optimum levels of the three variables are 105 r/min disturbance rate, 0.117 g/mL solid–liquid ratio and 30–40 M particle size. In this case, the biomass can grow seven times in a week with 0.27/d specific growth rate and a pH value of 7–10.4. This study shows that the growth of C. vulgaris can be regulated by changing physical conditions simultaneously, and the optimization of physical conditions can be applied to biomass production, algae prediction and acid water treatment in rivers, lakes and reservoirs.
Collapse
|
18
|
Franco-Vega A, Ramírez-Corona N, López-Malo A, Palou E. Studying microwave assisted extraction of Laurus nobilis essential oil: Static and dynamic modeling. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Safafar H, Ljubic A, Møller P, Jacobsen C. Two‐Step Direct Transesterification as a Rapid Method for the Analysis of Fatty Acids in Microalgae Biomass. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201700409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hamed Safafar
- Technical University of DenmarkNational Food, Søltofts PladsBuilding 2212800Kongens LyngbyDenmark
| | - Anita Ljubic
- Technical University of DenmarkNational Food, Søltofts PladsBuilding 2212800Kongens LyngbyDenmark
| | - Per Møller
- Kalundborg MunicipalityDept. DevelopmentTorvet 3A4400KalundborgDenmark
| | - Charlotte Jacobsen
- Technical University of DenmarkNational Food, Søltofts PladsBuilding 2212800Kongens LyngbyDenmark
| |
Collapse
|
20
|
Patel A, Arora N, Pruthi V, Pruthi PA. A novel rapid ultrasonication-microwave treatment for total lipid extraction from wet oleaginous yeast biomass for sustainable biodiesel production. ULTRASONICS SONOCHEMISTRY 2019; 51:504-516. [PMID: 30082251 DOI: 10.1016/j.ultsonch.2018.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Oleaginous yeasts have emerged as a sustainable source of renewable oils for liquid biofuels. However, biodiesel production from them has a few constraints with respect to their cell disruption and lipid extraction techniques. The lipid extraction from oleaginous yeasts commonly includes dewatering and drying of cell biomass, which requires energy and time. The aim of this work was to establish a process for the lipid extraction from wet biomass applying acid catalyzed hot water, as well as microwave, and rapid ultrasonication-microwave treatment together with the conventional Bligh and Dyer method. In the wake of testing all procedures, it was revealed that rapid ultrasonication-microwave treatment has great potential to give high lipid content (70.86% w/w) on the cell dry weight basis. The lipid profile after treatment showed the presence of appropriate quantities of saturated (10.39 ± 0.15%), monounsaturated (76.55 ± 0.19%) and polyunsaturated fatty acids (11.49 ± 0.23%) which further improves biodiesel quality compared to the other methods. To the best of our knowledge, this is the first report of using rapid ultrasonication-microwave treatment for the lipid extraction from wet oleaginous yeast biomass in the literature.
Collapse
Affiliation(s)
- Alok Patel
- Molecular Microbiology Laboratory, Biotechnology Department, Indian Institute of Technology Roorkee (IIT-R), Roorkee, Uttarakhand 247667, India; Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Neha Arora
- Molecular Microbiology Laboratory, Biotechnology Department, Indian Institute of Technology Roorkee (IIT-R), Roorkee, Uttarakhand 247667, India
| | - Vikas Pruthi
- Molecular Microbiology Laboratory, Biotechnology Department, Indian Institute of Technology Roorkee (IIT-R), Roorkee, Uttarakhand 247667, India
| | - Parul A Pruthi
- Molecular Microbiology Laboratory, Biotechnology Department, Indian Institute of Technology Roorkee (IIT-R), Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
21
|
Lipase synthesis of isoamyl acetate using different acyl donors: Comparison of novel esterification techniques. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.098] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Behera B, Acharya A, Gargey IA, Aly N, P B. Bioprocess engineering principles of microalgal cultivation for sustainable biofuel production. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2018.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Optimization of Subcritical Water Extraction (SWE) of Lipid and Eicosapentaenoic Acid (EPA) from Nannochloropsis gaditana. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8273581. [PMID: 30775380 PMCID: PMC6354137 DOI: 10.1155/2018/8273581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 11/17/2022]
Abstract
Microalgae are a promising source of omega-3. The purpose of this study was to extract lipid with a relatively high content of eicosapentaenoic acid (EPA) from Nannochloropsis gaditana using subcritical water extraction (SWE). The effects of different temperatures (156.1-273.9°C), extraction times (6.6-23.4 minutes), and biomass loadings (33-117 g algae/L) on the extraction yield were studied. From the optimization study using central composite design (CCD), quadratic models generated for lipid yield and EPA composition were considered to be significant models (p < 0.05). The predictive equations were also formed for lipid yield and EPA composition. The predicted optimum lipid yield and EPA composition at 236.54°C, 13.95 minutes, and 60.50 g algae/L were 18.278 wt% of total biomass and 14.036 wt% of total fatty acid methyl ester (FAME), respectively.
Collapse
|
24
|
Sitepu EK, Corbin K, Luo X, Pye SJ, Tang Y, Leterme SC, Heimann K, Raston CL, Zhang W. Vortex fluidic mediated direct transesterification of wet microalgae biomass to biodiesel. BIORESOURCE TECHNOLOGY 2018; 266:488-497. [PMID: 29990765 DOI: 10.1016/j.biortech.2018.06.103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
A bottleneck in the production of biodiesel from microalgae is the dewatering and lipid extraction process which is the dominant energy penalty and cost. A novel biodiesel production platform based on vortex fluidic device (VFD)-assisted direct transesterification (DT) of wet microalgal biomass of Chloroparva pannonica was developed and evaluated. Fatty acid extraction and fatty acid to FAME conversion efficiencies were used at different parameter settings to evaluate performance of the processing technology in confined and continuous mode. A response surface method based on Box-Behnken experimental design was used to determine the effects of water content, the ratio of biomass to methanol and residence time in the VFD. Average extraction efficiencies were 41% and conversion efficiencies >90% with the processing technology showing a broad tolerance to parameter settings. The findings suggest that VFD-assisted DT is a simple and effective way to produce biodiesel directly from wet microalgae biomass at room temperature.
Collapse
Affiliation(s)
- Eko K Sitepu
- Centre for Marine Bioproducts Development, Flinders University, South Australia 5042, Australia; Medical Biotechnology, College of Medicine and Public Health, Flinders University, South Australia 5042, Australia.
| | - Kendall Corbin
- Centre for Marine Bioproducts Development, Flinders University, South Australia 5042, Australia; Medical Biotechnology, College of Medicine and Public Health, Flinders University, South Australia 5042, Australia; Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Xuan Luo
- Centre for Marine Bioproducts Development, Flinders University, South Australia 5042, Australia; Medical Biotechnology, College of Medicine and Public Health, Flinders University, South Australia 5042, Australia
| | - Scott J Pye
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia; College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Youhong Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia; College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Sophie C Leterme
- College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Kirsten Heimann
- Centre for Marine Bioproducts Development, Flinders University, South Australia 5042, Australia; Medical Biotechnology, College of Medicine and Public Health, Flinders University, South Australia 5042, Australia
| | - Colin L Raston
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia; College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Wei Zhang
- Centre for Marine Bioproducts Development, Flinders University, South Australia 5042, Australia; Medical Biotechnology, College of Medicine and Public Health, Flinders University, South Australia 5042, Australia
| |
Collapse
|
25
|
Priecel P, Perez Mejia JE, Carà PD, Lopez-Sanchez JA. Microwaves in the Catalytic Valorisation of Biomass Derivatives. SUSTAINABLE CATALYSIS FOR BIOREFINERIES 2018. [DOI: 10.1039/9781788013567-00243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The application of microwave irradiation in the transformation of biomass has been receiving particular interest in recent years due to the use of polar media in such processes and it is now well-known that for biomass conversion, and particularly for lignocellulose hydrolysis, microwave irradiation can dramatically increase reaction rates with no negative consequences on product selectivity. However, it is only in the last ten years that the utilisation of microwaves has been coupled with catalysis aiming towards valorising biomass components or their derivatives via a range of reactions where high selectivity is required in addition to enhanced conversions. The reduced reaction times and superior yields are particularly attractive as they might facilitate the transition towards flow reactors and intensified production. As a consequence, several reports now describe the catalytic transformation of biomass derivatives via hydrogenation, oxidation, dehydration, esterification and transesterification using microwaves. Clearly, this technology has a huge potential for biomass conversion towards chemicals and fuels and will be an important tool within the biorefinery toolkit. The aim of this chapter is to give the reader an overview of the exciting scientific work carried out to date where microwave reactors and catalysis are combined in the transformation of biomass and its derivatives to higher value molecules and products.
Collapse
Affiliation(s)
- Peter Priecel
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Javier Eduardo Perez Mejia
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Piera Demma Carà
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
- MicroBioRefinery Facility, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Jose A. Lopez-Sanchez
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
- MicroBioRefinery Facility, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| |
Collapse
|
26
|
Patil PD, Dandamudi KPR, Wang J, Deng Q, Deng S. Extraction of bio-oils from algae with supercritical carbon dioxide and co-solvents. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.12.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Microbial Biodiesel Production by Direct Transesterification of Rhodotorula glutinis Biomass. ENERGIES 2018. [DOI: 10.3390/en11051036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Optimization of Pre-Treatment Process Parameters to Generate Biodiesel from Microalga. ENERGIES 2018. [DOI: 10.3390/en11040806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
|
30
|
Pandit PR, Fulekar MH. Egg shell waste as heterogeneous nanocatalyst for biodiesel production: Optimized by response surface methodology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 198:319-329. [PMID: 28494420 DOI: 10.1016/j.jenvman.2017.04.100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/25/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
Worldwide consumption of hen eggs results in availability of large amount of discarded egg waste particularly egg shells. In the present study, the waste shells were utilized for the synthesis of highly active heterogeneous calcium oxide (CaO) nanocatalyst to transesterify dry biomass into methyl esters (biodiesel). The CaO nanocatalyst was synthesied by calcination-hydration-dehydration technique and fully characterized by infrared spectroscopy, X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), brunauer-emmett-teller (BET) elemental and thermogravimetric analysis. TEM image showed that the nano catalyst had spherical shape with average particle size of 75 nm. BET analysis indicated that the catalyst specific surface area was 16.4 m2 g-1 with average pore diameter of 5.07 nm. The effect of nano CaO catalyst was investigated by direct transesterification of dry biomass into biodiesel along with other reaction parameters such as catalyst ratio, reaction time and stirring rate. The impact of the transesterification reaction parameters and microalgal biodiesel yield were analyzed by response surface methodology based on a full factorial, central composite design. The significance of the predicted mode was verified and 86.41% microalgal biodiesel yield was reported at optimal parameter conditions 1.7% (w/w), catalyst ratio, 3.6 h reaction time and stirring rate of 140.6 rpm. The biodiesel conversion was determined by 1H nuclear magnetic resonance spectroscopy (NMR). The fuel properties of prepared biodiesel were found to be highly comply with the biodiesel standard ASTMD6751 and EN14214.
Collapse
Affiliation(s)
- Priti R Pandit
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, India.
| | - M H Fulekar
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, India.
| |
Collapse
|
31
|
Binnal P, Babu PN. Production of high purity biodiesel through direct saponification of wet biomass of Chlorella protothecoides in a low cost microwave reactor: Kinetic and thermodynamic studies. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0002-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Yellapu SK, Kaur R, Tyagi RD. Detergent assisted ultrasonication aided in situ transesterification for biodiesel production from oleaginous yeast wet biomass. BIORESOURCE TECHNOLOGY 2017; 224:365-372. [PMID: 27866805 DOI: 10.1016/j.biortech.2016.11.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/31/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
In situ transesterification of oleaginous yeast wet biomass for fatty acid methyl esters (FAMEs) production using acid catalyst, methanol with or without N-Lauroyl sarcosine (N-LS) treatment was performed. The maximum FAMEs yield obtained with or without N-LS treatment in 24h reaction time was 96.1±1.9 and 71±1.4% w/w, respectively. The N-LS treatment of biomass followed by with or without ultrasonication revealed maximum FAMEs yield of 94.3±1.9% and 82.9±1.8% w/w using methanol to lipid molar ratio 360:1 and catalyst concentration 360mM (64μL H2SO4/g lipid) within 5 and 25min reaction time, respectively. The FAMEs composition obtained in in situ transesterification was similar to that obtained with conventional two step lipid extraction and transesterification process. Biodiesel fuel properties (density, kinematic viscosity, cetane number and total glycerol) were in accordance with international standard (ASTM D6751), which suggests the suitability of biodiesel as a fuel.
Collapse
Affiliation(s)
- Sravan Kumar Yellapu
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Rajwinder Kaur
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Rajeshwar D Tyagi
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada.
| |
Collapse
|
33
|
Shinde K, Nohair B, Kaliaguine S. A Parametric Study of Biodiesel Production Under Ultrasounds. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2017. [DOI: 10.1515/ijcre-2016-0070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Biodiesel, a vegetable oil-derived fuel, can be used as a partial or complete substitute to diesel oil. The main argument for its usage in internal combustion engines is its net CO2 balance which is considerably reduced compared to diesel fuel of fossil origin. A systematic study of ultrasound continuous biodiesel production using canola oil was conducted in the presence of methanol and sodium methoxide as catalyst. Effects of various reaction parameters such as residence time, catalyst concentration, reaction temperature, ultrasounds amplitude and power, methanol/oil molar ratio were analyzed. Fatty acid methyl esters were produced rapidly by using ultrasound assisted transesterification. In typical conditions (35 °C) conversion to FAME higher than 80 % could be reached at residence time as low as 20 s. The parametric study allowed to establish that the effect of ultrasound wave on transesterification reaction rate is localized in a very small volume surrounding the sonotrode tip. This unprecedented conclusion has significant consequences for the design of the large scale continuous flow biodiesel production reactor.
Collapse
|
34
|
Oil extraction from sheanut (Vitellaria paradoxa Gaertn C.F.) kernels assisted by microwaves. Journal of Food Science and Technology 2016; 53:1424-34. [PMID: 27570267 DOI: 10.1007/s13197-015-2160-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/18/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
Shea butter, is highly solicited in cosmetics, pharmaceuticals, chocolates and biodiesel formulations. Microwave assisted extraction (MAE) of butter from sheanut kernels was carried using the Doehlert's experimental design. Factors studied were microwave heating time, temperature and solvent/solute ratio while the responses were the quantity of oil extracted and the acid number. Second order models were established to describe the influence of experimental parameters on the responses studied. Under optimum MAE conditions of heating time 23 min, temperature 75 °C and solvent/solute ratio 4:1 more than 88 % of the oil with a free fatty acid (FFA) value less than 2, was extracted compared to the 10 h and solvent/solute ratio of 10:1 required for soxhlet extraction. Scanning electron microscopy was used to elucidate the effect of microwave heating on the kernels' microstructure. Substantial reduction in extraction time and volumes of solvent used and oil of suitable quality are the main benefits derived from the MAE process.
Collapse
|
35
|
Sturm GSJ, Stankiewicz AI, Stefanidis GD. Microwave Reactor Concepts: From Resonant Cavities to Traveling Fields. ALTERNATIVE ENERGY SOURCES FOR GREEN CHEMISTRY 2016. [DOI: 10.1039/9781782623632-00093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Microwave chemistry has been investigated for nearly thirty years with many notable results being published on apparent process enhancement due to microwave exposure. Conclusive proof of beneficial microwave-chemical interactions is lacking though, as are design rules for successful implementation of microwave-chemical processing systems. In this chapter, the main cause for this is asserted to be the current absence both of suitable instrumentation for research, and processing equipment that merges chemistry with electromagnetic aspects. Several concepts are presented to show how these challenges may be addressed.
Collapse
Affiliation(s)
- Guido S. J. Sturm
- Process and Energy Department, Delft University of Technology Leeghwaterstraat 39 2628 CB Delft The Netherlands
| | - Andrzej I. Stankiewicz
- Process and Energy Department, Delft University of Technology Leeghwaterstraat 39 2628 CB Delft The Netherlands
| | - Georgios D. Stefanidis
- Chemical Engineering Department, Katholieke Universiteit Leuven Willem de Croylaan 46 3000 Leuven Belgium
| |
Collapse
|
36
|
Gülyurt MÖ, Özçimen D, İnan B. Biodiesel Production from Chlorella protothecoides Oil by Microwave-Assisted Transesterification. Int J Mol Sci 2016; 17:E579. [PMID: 27110772 PMCID: PMC4849035 DOI: 10.3390/ijms17040579] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/01/2016] [Accepted: 04/11/2016] [Indexed: 11/16/2022] Open
Abstract
In this study, biodiesel production from microalgal oil by microwave-assisted transesterification was carried out to investigate its efficiency. Transesterification reactions were performed by using Chlorella protothecoides oil as feedstock, methanol, and potassium hydroxide as the catalyst. Methanol:oil ratio, reaction time and catalyst:oil ratio were investigated as process parameters affected methyl ester yield. 9:1 methanol/oil molar ratio, 1.5% KOH catalyst/oil ratio and 10 min were optimum values for the highest fatty acid methyl ester yield.
Collapse
Affiliation(s)
- Mustafa Ömer Gülyurt
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Davutpasa Campus, 34220 Istanbul, Turkey.
| | - Didem Özçimen
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Davutpasa Campus, 34220 Istanbul, Turkey.
| | - Benan İnan
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Davutpasa Campus, 34220 Istanbul, Turkey.
| |
Collapse
|
37
|
Wahidin S, Idris A, Shaleh SRM. Ionic liquid as a promising biobased green solvent in combination with microwave irradiation for direct biodiesel production. BIORESOURCE TECHNOLOGY 2016; 206:150-154. [PMID: 26851899 DOI: 10.1016/j.biortech.2016.01.084] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
The wet biomass microalgae of Nannochloropsis sp. was converted to biodiesel using direct transesterification (DT) by microwave technique and ionic liquid (IL) as the green solvent. Three different ionic liquids; 1-butyl-3-metyhlimidazolium chloride ([BMIM][Cl], 1-ethyl-3-methylimmidazolium methyl sulphate [EMIM][MeSO4] and 1-butyl-3-methylimidazolium trifluoromethane sulfonate [BMIM][CF3SO3]) and organic solvents (hexane and methanol) were used as co-solvents under microwave irradiation and their performances in terms of percentage disruption, cell walls ruptured and biodiesel yields were compared at different reaction times (5, 10 and 15 min). [EMIM][MeSO4] showed highest percentage cell disruption (99.73%) and biodiesel yield (36.79% per dried biomass) after 15 min of simultaneous reaction. The results demonstrated that simultaneous extraction-transesterification using ILs and microwave irradiation is a potential alternative method for biodiesel production.
Collapse
Affiliation(s)
- Suzana Wahidin
- Universiti Kuala Lumpur, Malaysian Institute of Chemical and Bioengineering Technology, 78000 Alor Gajah, Melaka, Malaysia
| | - Ani Idris
- Institute of Bioproduct Development, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM, 81310 Johor Bahru, Johor, Malaysia.
| | | |
Collapse
|
38
|
Barekati-Goudarzi M, Boldor D, Nde DB. In-situ transesterification of seeds of invasive Chinese tallow trees (Triadica sebifera L.) in a microwave batch system (GREEN(3)) using hexane as co-solvent: Biodiesel production and process optimization. BIORESOURCE TECHNOLOGY 2016; 201:97-104. [PMID: 26638139 DOI: 10.1016/j.biortech.2015.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 06/05/2023]
Abstract
In-situ transesterification (simultaneous extraction and transesterification) of Chinese tallow tree seeds into methyl esters using a batch microwave system was investigated in this study. A high degree of oil extraction and efficient conversion of oil to biodiesel were found in the proposed range. The process was further optimized in terms of product yields and conversion rates using Doehlert optimization methodology. Based on the experimental results and statistical analysis, the optimal production yield conditions for this process were determined as: catalyst concentration of 1.74wt.%, solvent ratio about 3 (v/w), reaction time of 20min and temperature of 58.1°C. H(+)NMR was used to calculate reaction conversion. All methyl esters produced using this method met ASTM biodiesel quality specifications.
Collapse
Affiliation(s)
- Mohamad Barekati-Goudarzi
- Louisiana State University Agricultural Center, BAE Department, Baton Rouge, LA 70803, United States
| | - Dorin Boldor
- Louisiana State University Agricultural Center, BAE Department, Baton Rouge, LA 70803, United States.
| | - Divine B Nde
- Louisiana State University Agricultural Center, BAE Department, Baton Rouge, LA 70803, United States; University of Bamenda, Department of Food Science and Bio-resource Technology, College of Technology, P.O. Box 39, Bamenda, Cameroon
| |
Collapse
|
39
|
Optimization of Experiments for Microwave Drying of Hydrometallurgy Mud Using Response Surface Methodology. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2016. [DOI: 10.1007/s13369-015-1687-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Liu Y, Liu F, Meng M, Liu Z, Ni L, Zhong G. Synthesis of a Ni(ii) ion imprinted polymer based on macroporous–mesoporous silica with enhanced dynamic adsorption capacity: optimization by response surface methodology. NEW J CHEM 2016. [DOI: 10.1039/c5nj03123k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a Ni(ii) ion imprinted polymer (Ni(ii)-IIP) based on macroporous–mesoporous silica (MMS) was optimally synthesized using a response surface methodology (RSM) approach for enhanced dynamic adsorption capacity.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Fangfang Liu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Minjia Meng
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Zhanchao Liu
- School of Materials Science and Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| | - Liang Ni
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Guoxing Zhong
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| |
Collapse
|
41
|
Kim D, Seol SK, Chang WS. Energy efficiency of a scaled-up microwave-assisted transesterification for biodiesel production. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-015-0184-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Kakkad H, Khot M, Zinjarde S, RaviKumar A, Ravi Kumar V, Kulkarni BD. Conversion of dried Aspergillus candidus mycelia grown on waste whey to biodiesel by in situ acid transesterification. BIORESOURCE TECHNOLOGY 2015; 197:502-507. [PMID: 26362462 DOI: 10.1016/j.biortech.2015.07.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 06/05/2023]
Abstract
This study reports optimization of the transesterification reaction step on dried biomass of an oleaginous fungus Aspergillus candidus grown on agro-dairy waste, whey. Acid catalyzed transesterification was performed and variables affecting esterification, viz., catalyst methanol and chloroform concentrations, temperature, time, and biomass were investigated. Statistical optimization of the transesterification reaction using Plackett-Burman Design showed biomass to be the predominant factor with a 12.5-fold increase in total FAME from 25.6 to 320mg. Studies indicate that the transesterification efficiency in terms of conversion is favored by employing lower biomass loadings. A. candidus exhibited FAME profiles containing desirable saturated (30.2%), monounsaturated (31.5%) and polyunsaturated methyl esters (38.3%). The predicted and experimentally determined biodiesel properties (density, kinematic viscosity, iodine value, cetane number, TAN, water content, total and free glycerol) were in accordance with international (ASTM D6751, EN 14214) and national (IS 15607) standards.
Collapse
Affiliation(s)
- Hardik Kakkad
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Mahesh Khot
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Ameeta RaviKumar
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India.
| | - V Ravi Kumar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India
| | - B D Kulkarni
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India
| |
Collapse
|
43
|
Stefan A, Hochkoeppler A, Ugolini L, Lazzeri L, Conte E. The expression of the Cuphea palustris thioesterase CpFatB2 in Yarrowia lipolytica triggers oleic acid accumulation. Biotechnol Prog 2015; 32:26-35. [PMID: 26518537 DOI: 10.1002/btpr.2189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 08/20/2015] [Indexed: 12/16/2022]
Abstract
The conversion of industrial by-products into high-value added compounds is a challenging issue. Crude glycerol, a by-product of the biodiesel production chain, could represent an alternative carbon source for the cultivation of oleaginous yeasts. Here, we developed five minimal synthetic glycerol-based media, with different C/N ratios, and we analyzed the production of biomass and fatty acids by Yarrowia lipolytica Po1g strain. We identified two media at the expense of which Y. lipolytica was able to accumulate ∼5 g L(-1) of biomass and 0.8 g L(-1) of fatty acids (0.16 g of fatty acids per g of dry weight). These optimized media contained 0.5 g L(-1) of urea or ammonium sulfate and 20 g L(-1) of glycerol, and were devoid of yeast extract. Moreover, Y. lipolytica was engineered by inserting the FatB2 gene, coding for the CpFatB2 thioesterase from Cuphea palustris, in order to modify the fatty acid composition towards the accumulation of medium-chain fatty acids. Contrary to the expected, the expression of the heterologous gene increased the production of oleic acid, and concomitantly decreased the level of saturated fatty acids.
Collapse
Affiliation(s)
- Alessandra Stefan
- Dept. of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,CSGI, Dept. of Chemistry, University of Florence, Sesto Fiorentino (FI), Italy
| | - Alejandro Hochkoeppler
- Dept. of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,CSGI, Dept. of Chemistry, University of Florence, Sesto Fiorentino (FI), Italy
| | - Luisa Ugolini
- Consiglio per La Ricerca in Agricoltura E L'analisi Dell'economia Agraria, Centro Di Ricerca per Le Colture Industriali (CRA-CIN), Bologna, Italy
| | - Luca Lazzeri
- Consiglio per La Ricerca in Agricoltura E L'analisi Dell'economia Agraria, Centro Di Ricerca per Le Colture Industriali (CRA-CIN), Bologna, Italy
| | - Emanuele Conte
- Dept. of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
44
|
Brunton NP, Mason C, Collins MJ. Rapid microwave assisted preparation of fatty acid methyl esters for the analysis of fatty acid profiles in foods. JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1134/s1061934815100044] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Prommuak C, Sereewatthanawut I, Pavasant P, Quitain AT, Goto M, Shotipruk A. The Effect of Pulsed Microwave Power on Transesterification ofChlorellasp. for Biodiesel Production. CHEM ENG COMMUN 2015. [DOI: 10.1080/00986445.2015.1088437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Park JY, Park MS, Lee YC, Yang JW. Advances in direct transesterification of algal oils from wet biomass. BIORESOURCE TECHNOLOGY 2015; 184:267-275. [PMID: 25466997 DOI: 10.1016/j.biortech.2014.10.089] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/17/2014] [Accepted: 10/18/2014] [Indexed: 06/04/2023]
Abstract
An interest in biodiesel as an alternative fuel for diesel engines has been increasing because of the issue of petroleum depletion and environmental concerns related to massive carbon dioxide emissions. Researchers are strongly driven to pursue the next generation of vegetable oil-based biodiesel. Oleaginous microalgae are considered to be a promising alternative oil source. To commercialize microalgal biodiesel, cost reductions in oil extraction and downstream biodiesel conversion are stressed. Herein, starting from an investigation of oil extraction from wet microalgae, a review is conducted of transesterification using enzymes, homogeneous and heterogeneous catalysts, and yield enhancement by ultrasound, microwave, and supercritical process. In particular, there is a focus on direct transesterification as a simple and energy efficient process that omits a separate oil extraction step and utilizes wet microalgal biomass; however, it is still necessary to consider issues such as the purification of microalgal oils and upgrading of biodiesel properties.
Collapse
Affiliation(s)
- Ji-Yeon Park
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea.
| | - Min S Park
- Advanced Biomass R&D Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-701, Republic of Korea
| | - Ji-Won Yang
- Advanced Biomass R&D Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| |
Collapse
|
47
|
Ma G, Hu W, Pei H, Jiang L, Ji Y, Mu R. Study of KOH/Al2O3 as heterogeneous catalyst for biodiesel production via in situ transesterification from microalgae. ENVIRONMENTAL TECHNOLOGY 2015; 36:622-627. [PMID: 25220169 DOI: 10.1080/09593330.2014.954629] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Heterogeneous KOH/Al2O3 catalysts, synthesized by the wet impregnation method with different KOH loadings (20-40 wt%) and calcination temperatures from 400°C to 800°C, were used to produce biodiesel from Chlorella vulgaris biomass by in situ transesterification. The highest yield of biodiesel of 89.53±1.58% was achieved at calcination temperature of 700°C for 2 h and 35 wt% loading of KOH, and at the optimal reaction condition of 10 wt% of catalyst content, 8 mL/g of methanol to biomass ratio and at 60°C for 5 h. The characteristics of the catalysts were analysed by X-ray diffraction, scanning electron microscopy and Brunauer-Emmett-Teller.
Collapse
Affiliation(s)
- Guixia Ma
- a School of Environmental Science and Engineering , Shandong University , Jinan 250100 , People's Republic of China
| | | | | | | | | | | |
Collapse
|
48
|
Ali MAM, Yunus RM, Cheng CK, Gimbun J. Successive optimisation of waste cooking oil transesterification in a continuous microwave assisted reactor. RSC Adv 2015. [DOI: 10.1039/c5ra15834f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The successive optimisation techniques successfully reduce the reaction time by 25.5% and catalyst loading by 32% without significantly affecting the biodiesel conversion.
Collapse
Affiliation(s)
- M. A. Mohd. Ali
- Faculty of Chemical & Natural Resources Engineering
- Universiti Malaysia Pahang
- 26300 Gambang
- Malaysia
| | - R. M. Yunus
- Faculty of Chemical & Natural Resources Engineering
- Universiti Malaysia Pahang
- 26300 Gambang
- Malaysia
| | - C. K. Cheng
- Centre of Excellence for Advanced Research in Fluid Flow (CARIFF)
- Universiti Malaysia Pahang
- 26300 Gambang
- Malaysia
| | - J. Gimbun
- Centre of Excellence for Advanced Research in Fluid Flow (CARIFF)
- Universiti Malaysia Pahang
- 26300 Gambang
- Malaysia
| |
Collapse
|
49
|
Cui Y, Liang Y. Sweet sorghum syrup as a renewable material for microbial lipid production. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Teo CL, Idris A. Evaluation of direct transesterification of microalgae using microwave irradiation. BIORESOURCE TECHNOLOGY 2014; 174:281-286. [PMID: 25463809 DOI: 10.1016/j.biortech.2014.10.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 06/04/2023]
Abstract
Nannochloropsis sp. wet biomass was directly transesterified under microwave (MW) irradiation in the presence of methanol and various alkali and acid catalyst. Two different types of direct transesterification (DT) were used; one step and two step transesterification. The biodiesel yield obtained from the MWDT was compared with that obtained using conventional method (lipid extraction followed by transesterification) and water bath heating DT method. Findings revealed that MWDT efficiencies were higher compared to water bath heating DT by at least 14.34% and can achieve a maximum of 43.37% with proper selection of catalysts. The use of combined catalyst (NaOH and H2SO4) increased the yield obtained by 2.3-folds (water bath heating DT) and 2.87-folds (MWDT) compared with the one step single alkaline catalyst respectively. The property of biodiesel produced by MWDT has high lubricating property, good cetane number and short carbon chain FAME's compared with water bath heating DT.
Collapse
Affiliation(s)
- Chee Loong Teo
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, c/o Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Ani Idris
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, c/o Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
| |
Collapse
|