1
|
Elhamarnah Y, Qiblawey H, Nasser M. Synergistic effects of deep eutectic solvents on the morphology and performance of polysulfone ultrafiltration membranes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122920. [PMID: 39418711 DOI: 10.1016/j.jenvman.2024.122920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/25/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
This study investigates the synthesis of flat sheet asymmetric Polysulfone (PSF) membranes using the Non-Solvent Induced Phase Separation (NIPS) method, enhanced by incorporating Deep Eutectic Solvents (DES) composed of Choline Chloride (ChCl) and DL-Malic Acid (MA). The research explores the individual and combined effects of ChCl and MA on membrane morphology and performance. Comprehensive characterization techniques, including Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy-Universal Attenuated Total Reflectance (FTIR-UATR), and Atomic Force Microscopy (AFM), were employed to analyze the structural and surface properties of the membranes. Key performance metrics such as Pure Water Permeability (PWP), protein and dye rejection, fouling behavior, porosity, surface hydrophilicity, and mechanical strength were evaluated. Results demonstrated that integrating DES into the PSF matrix significantly improved membrane properties. The 3% DES membrane exhibited the highest Pure Water Permeability (PWP) of 186.82 L/m2h/bar, the lowest water contact angle of 68.8°, and optimal balance in surface roughness parameters, leading to superior antifouling properties with high flux recovery ratio (FRR) and balanced reversible (Rr) and irreversible fouling (Rir) components. The ChCl (HBA) membrane displayed a notable PWP of 121.62 L/m2h/bar, large pore sizes (42.72 nm), and moderate surface roughness (Ra of 3.32 nm). In contrast, the MA (HBD) membrane demonstrated the highest hydrophilicity with the lowest contact angle (70.7°) and a compact, robust structure, despite its smallest pore sizes and lack of permeability. The findings underscore the synergistic effect of DES formation in the membrane, improving overall performance for ultrafiltration applications. This study provides valuable insights into the distinct roles of ChCl as an HBA and MA as an HBD in DES-modified PSF membranes, revealing their individual contributions and the importance of optimizing DES components and concentrations for specific filtration applications.
Collapse
Affiliation(s)
- Yousef Elhamarnah
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha, Qatar.
| | - Hazim Qiblawey
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha, Qatar.
| | - Mustafa Nasser
- Gas Processing Center, College of Engineering, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Modifying last layer in polyelectrolyte multilayer coatings for capillary electrophoresis of proteins. J Chromatogr A 2023; 1692:463837. [PMID: 36804799 DOI: 10.1016/j.chroma.2023.463837] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Protein adsorption on the inner wall of the fused silica capillary wall is an important concern for capillary electrophoresis (CE) analysis since it is mainly responsible for separation efficiency reduction. Successive Multiple Ionic-polymer Layers (SMIL) are used as capillary coatings to limit protein adsorption, but even low residual adsorption strongly impacts the separation efficiency, especially at high separation voltages. In this work, the influence of the chemical nature and the PEGylation of the polyelectrolyte deposited in the last layer of the SMIL coating was investigated on the separation performances of a mixture of four model intact proteins (myoglobin (Myo), trypsin inhibitor (TI), ribonuclease a (RNAse A) and lysozyme (Lyz)). Poly(allylamine hydrochloride) (PAH), polyethyleneimine (PEI), ε-poly(L-lysine) (εPLL) and α-poly(L-lysine) (αPLL) were compared before and after chemical modification with polyethyleneglycol (PEG) of different chain lengths. The experimental results obtained by performing electrophoretic separations at different separation voltages allowed determining the residual retention factor of the proteins onto the capillary wall via the determination of the plate height at different solute velocities and demonstrated a strong impact of the polycationic last layer on the electroosmotic mobility, the separation efficiency and the overall resolution. Properties of SMIL coatings were also characterized by quartz microbalance and atomic force microscopy, demonstrating a glassy structure of the films.
Collapse
|
3
|
Ye Y, Han Q, Zhao C, Ke W, Qiu M, Chen X, Fan Y. Improved negative charge of tight ceramic ultrafiltration membranes for protein-resistant and easy-cleaning performance. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Wang K, Wang S, Gu K, Yan W, Zhou Y, Gao C. Ultra-low pressure PES ultrafiltration membrane with high-flux and enhanced anti-oil-fouling properties prepared via in-situ polycondensation of polyamic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156661. [PMID: 35700784 DOI: 10.1016/j.scitotenv.2022.156661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Polyamic acid (PAA) is a flexible polymer and has abundant valuable hydrophilic groups. Herein, we developed an ultra-low pressure ultrafiltration (UF) membrane by integrating PAA into the polyethersulfone (PES) matrix via the "in-situ polycondensation" method. PAA was well compatible with PES and distributed uniformly in the membrane. The introduction of PAA improved membrane hydrophilicity. Meanwhile, the membrane pore structures were also refined. The membrane exhibited an excellent permeability under ultra-low pressure due to its improvement of hydrophilicity and pore structures. Under 0.3 bar, compare with the water flux of PES membrane, PES/PAA membrane improved nearly 2 times (571.05 L/(m2·h)), with a high BSA rejection (≥90%). Even under a lower pressure, 0.1 bar, >300 L/(m2·h) still can be achieved. Interestingly, the membrane we developed could maintain a high performance after drying, and then is very suitable for dry preservation. PES/PAA membrane showed a high oil removal (≥92%) and could remove oil from water effectively. Besides, the membrane exhibited excellent anti-oil-fouling properties. The flux recovery rate of PES/PAA (70.0%) far exceeds that of PES (37.9%) after three filtration and cleaning cycles. The membrane we developed is very valuable in oily wastewater treatment.
Collapse
Affiliation(s)
- Kaizhen Wang
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuhao Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kaifeng Gu
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wentao Yan
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yong Zhou
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Congjie Gao
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
5
|
Preparation and characterization of biodegradable polybutylene succinate/polyurethane membrane for harvesting of Chlorella sorokiniana microalgae. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
George J, Purushothaman M, Singh I, Singh I, Vaidyanathan VK. Performance study of fouling resistant novel ultrafiltration membranes based on the blends of poly (ether ether sulfone)/poly (vinyl pyrrolidone)/nano-titania for the separation of humic acid, dyes and biological macromolecular proteins from aqueous solutions. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127467. [PMID: 34662766 DOI: 10.1016/j.jhazmat.2021.127467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/11/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
This study explains the use of a ultrafiltration membrane made of polyvinyl pyrrolidone (PVP) and poly(ether ether sulfone) (PEES)/Nano-titania (n-TiO2) for the separation of organic compounds. The results of the tests for porosity, water content, surface chemistry, membrane morphology, and contact angle demonstrated that the developed membranes have more hydrophilicity than PEES membranes due to the redundant hydrophilic nature of PVP and n-TiO2. The membrane pure water flux, which contains 5 wt% PVP and 1.5 wt% n-TiO2, was 312.76 Lm-2h-1, about three-fold higher than that of pristine membrane (95.71 Lm-2h-1). Employing bovine serum albumin as a model foulant, the fouling resistance of the PEES/PVP/n-TiO2 membrane was examined. According to the analysis of flux recovery ratio and irreversible resistance, modified membranes were less likely to foul, and the PEES/n-TiO2 membrane with 5% PVP addition was recommended as optimal. The fabricated membranes effectively removed more than 95% of various organic compounds such as humic acid, safranin O, egg albumin, pepsin, and trypsin from aqueous solution. Permeability of safranin O and humic acid of PEES/PVP/n-TiO2 membranes was about 118 Lm-2h-1 and 138 Lm-2h-1, respectively.
Collapse
Affiliation(s)
- Jenet George
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai 603203, India
| | | | - Isita Singh
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai 603203, India
| | - Ishani Singh
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai 603203, India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai 603203, India.
| |
Collapse
|
7
|
Bai Z, Wang L, Liu C, Yang C, Lin G, Liu S, Jia K, Liu X. Interfacial coordination mediated surface segregation of halloysite nanotubes to construct a high-flux antifouling membrane for oil-water emulsion separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118828] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Izadmehr N, Mansourpanah Y, Ulbricht M, Rahimpour A, Omidkhah MR. TETA-anchored graphene oxide enhanced polyamide thin film nanofiltration membrane for water purification; performance and antifouling properties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 276:111299. [PMID: 32882520 DOI: 10.1016/j.jenvman.2020.111299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
This work investigates the performance and structure of polyamide thin film nanocomposite (PA-TFN) membrane incorporated with triethylenetetramine-modified graphene oxide (GO-TETA). The embedment of GO-TETA nanosheets within the structure of PA-TFN membrane was evaluated at different concentrations (0.005, 0.01, 0.03 wt%; in aqueous piperazine (PIP)) through interfacial polymerization (IP). The physicochemical properties of the prepared membrane were investigated by SEM, AFM, water contact angle, and zeta potential as well as ATR-IR spectroscopy. The presence of longer chains of amino groups (in comparison with the directly linked amino ones) among the stacked GO nanosheets was assumed to increase interlayer spacing, resulting in remarkable changes in water permeance and separation behavior of modified polyamide (PA) membrane. It is seen that GO-TETA nanosheets were uniformly distributed in the matrix of PA layer. With increasing the concentration of GO-TETA, the flux of TFN membranes under 6 bar was increased from 49.8 l/m2 h (no additive) to 73.2 l/m2 h (TFN comprising 0.03 wt% GO-TETA. In addition, more loading GO-TETA resulted in a significant decrease in the average thickness of the polyamide layer from ~380 to ~150 nm. Furthermore, addition of GO-TETA improved the hydrophilicity of nanocomposite membranes, resulting in superb water flux recovery (antifouling indicator) as high as 95% after filtration of bovine serum albumin solution. Also, the retention capability of the TFN membranes towards some textile dyes increased as high as 99.6%.
Collapse
Affiliation(s)
- Neda Izadmehr
- Membrane Research Laboratory, Lorestan University, 68137-17133, Khorramabad, Iran
| | - Yaghoub Mansourpanah
- Membrane Research Laboratory, Lorestan University, 68137-17133, Khorramabad, Iran.
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, 45117, Essen, Germany.
| | - Ahmad Rahimpour
- Membrane Research Laboratory, School of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Mohammad Reza Omidkhah
- Department of Chemical Engineering, Tarbiat Modares University, 14155-4838, Tehran, Iran
| |
Collapse
|
9
|
Sadeghi A, Mousavi SM, Saljoughi E, Kiani S. Biodegradable membrane based on polycaprolactone/polybutylene succinate: Characterization and performance evaluation in wastewater treatment. J Appl Polym Sci 2020. [DOI: 10.1002/app.50332] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Azadeh Sadeghi
- Chemical Engineering Department, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran
| | - Seyed Mahmoud Mousavi
- Chemical Engineering Department, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran
| | - Ehsan Saljoughi
- Chemical Engineering Department, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran
| | - Shirin Kiani
- Chemical Engineering Department, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
10
|
Yuan XS, Liu W, Zhu WY, Zhu XX. Enhancement in Flux and Antifouling Properties of Polyvinylidene Fluoride/Polycarbonate Blend Membranes for Water Environmental Improvement. ACS OMEGA 2020; 5:30201-30209. [PMID: 33251454 PMCID: PMC7689897 DOI: 10.1021/acsomega.0c04656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
In this work, to overcome the fouling phenomenon of hydrophobic polymer membranes, polyvinylidene fluoride (PVDF) was blended with hydrophilic polycarbonate (PC) to prepare ultrafiltration membranes via the nonsolvent-induced phase separation method. The effects of PC content on membrane morphology, pore size distribution, and surface porosity were characterized and investigated by FE-SEM and image analyzer software. Solubility parameters calculated by molecular dynamics (MD) simulation showed that PVDF and PC are compatible and the results were confirmed by differential scanning calorimetry and wide angle X-ray diffractometry. The long-term chemical stability against NaOH and mechanical property before and after the abrasion test of the prepared membranes were also characterized by dynamic thermomechanical analysis. It was found that the hydrophilicity, water flux, abrasion resistance, and antifouling properties as the performance criteria of polymeric membranes were improved because of the presence of PC, and the separation efficiency of PVDF/PC membranes is much higher than that of the pristine PVDF membrane. The exemplary water filtration performances of these polymer membranes are harnessed here in this work to purify raw water polluted by natural organic matters, addressing the key environmental issue of water contamination.
Collapse
Affiliation(s)
- Xiao Song Yuan
- College
of Forestry, Guizhou University, Guiyang 550025, China
- School
of Science, Guizhou Institute of Technology, Guiyang 550003, China
| | - Wei Liu
- School
of Materials and Energy Engineering, Guizhou
Institute of Technology, Guiyang 550003, China
| | - Wei Ya Zhu
- School
of Materials and Energy Engineering, Guizhou
Institute of Technology, Guiyang 550003, China
| | - Xun Xian Zhu
- School
of Materials and Energy Engineering, Guizhou
Institute of Technology, Guiyang 550003, China
| |
Collapse
|
11
|
Lou D, Hou Z, Yang H, Liu Y, Wang T. Antifouling Membranes Prepared from Polyethersulfone Grafted with Poly(ethylene glycol) Methacrylate by Radiation-Induced Copolymerization in Homogeneous Solution. ACS OMEGA 2020; 5:27094-27102. [PMID: 33134669 PMCID: PMC7594002 DOI: 10.1021/acsomega.0c02439] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
To synthesize evenly grafted copolymers, gamma radiation of homogeneous solutions was employed to graft poly(ethylene glycol) methacrylate (PEGMA) onto polyethersulfone (PES). The grafting was verified by Fourier transform infrared spectroscopy, and the degrees of grafting (DGs) were determined by elementary analysis. The PES-g-polyPEGMA copolymers with different DGs were obtained by changing the monomer concentration. Membranes were cast from pristine PES, PES/PEG blends, and PES-g-polyPEGMA with different DGs, respectively, via nonsolvent-induced phase separation. Results from water contact angle measurements and scanning electron microscopy analysis indicated that increasing DGs led to PES-g-polyPEGMA membranes with increasing hydrophilicity and porousness. Filtration experimental results showed that increasing DGs without adding pore-forming agents caused PES-g-polyPEGMA membranes with higher permeability. Compared with PES/PEG membranes with analogous permeation characteristics, in which PEG is added as a pore-forming agent, PES-g-polyPEGMA membranes exhibited superior antifouling properties.
Collapse
Affiliation(s)
- Dan Lou
- Department
of Polymer Materials, College of Materials Science and Engineering, Shanghai University (SHU), Shanghai 200444, China
- Shanghai
Institute of Applied Physics, Chinese Academy
of Sciences, Shanghai 201800, China
| | - Zhengchi Hou
- Shanghai
Institute of Applied Physics, Chinese Academy
of Sciences, Shanghai 201800, China
- Shanghai
Advanced Research Institute, Chinese Academy
of Sciences, 239 Zhangheng
Road, Pudong New District, Shanghai 201204, China
| | - Haijun Yang
- Shanghai
Institute of Applied Physics, Chinese Academy
of Sciences, Shanghai 201800, China
- Shanghai
Advanced Research Institute, Chinese Academy
of Sciences, 239 Zhangheng
Road, Pudong New District, Shanghai 201204, China
| | - Yinfeng Liu
- Department
of Polymer Materials, College of Materials Science and Engineering, Shanghai University (SHU), Shanghai 200444, China
| | - Ting Wang
- Shanghai
Institute of Applied Physics, Chinese Academy
of Sciences, Shanghai 201800, China
| |
Collapse
|
12
|
Shen C, Bian L, Zhang P, An B, Cui Z, Wang H, Li J. Microstructure evolution of bonded water layer and morphology of grafting membrane with different polyethylene glycol length and their influence on permeability and anti-fouling capacity. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117949] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Wu T, Liu Y, Zhu GD, Li ZN, Yi Z, Liu LF, Gao CJ. Point-by-point comparisons of permselectivity and fouling-resistance of membranes prepared from blending with di-block and tri-block copolymers. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Zhang P, Xiang S, Wang H, Wang Y, Zhang J, Cui Z, Li J, He B. Understanding the multiple functions of styrene-co-maleic anhydride in fabricating polyvinylidene fluoride hollow fiber membrane via coupled phase inversion process and its effect on surface infiltration behavior and membrane permeability. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117269] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Novel mussel-inspired zwitterionic hydrophilic polymer to boost membrane water-treatment performance. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.086] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Yong M, Zhang Y, Sun S, Liu W. Properties of polyvinyl chloride (PVC) ultrafiltration membrane improved by lignin: Hydrophilicity and antifouling. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Abdallah H, Taman R, Elgayar D, Farag H. Antibacterial blend polyvinylidene fluoride/polyethyleneimine membranes for salty oil emulsion separation. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
He M, Su Y, Zhang R, Liu Y, Zhang S, Jiang Z. In-situ construction of antifouling separation layer via a reaction enhanced surface segregation method. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Jiang B, Zhang N, Zhang L, Sun Y, Huang Z, Wang B, Dou H, Guan H. Enhanced separation performance of PES ultrafiltration membranes by imidazole-based deep eutectic solvents as novel functional additives. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Yang X, Sun H, Pal A, Bai Y, Shao L. Biomimetic Silicification on Membrane Surface for Highly Efficient Treatments of Both Oil-in-Water Emulsion and Protein Wastewater. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29982-29991. [PMID: 30091363 DOI: 10.1021/acsami.8b09218] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The worldwide water crisis and water pollution have put forward great challenges to the current membrane technology. Although poly(vinylidene fluoride) (PVDF) porous membranes can find diverse applications for water treatments, the inherent hydrophilicity must be tuned for an energy-/time-saving process. Herein, the surface wettability of PVDF membranes transforming from highly hydrophobicity to highly hydrophilicity was realized via one-step reaction of plant-derived phenol gallic acid and γ-aminopropyltriethoxysilane in aqueous solutions. The surface hydrophilicization can be achieved on porous PVDF membranes by virtue of integration of a mussel-inspired coating and in situ silicification via a "pyrogallol-amino covalent bridge" toward excellent antifouling performance and highly efficient infiltration ability for oily emulsion and protein wastewater treatment. The water flux of a surface-manipulated microfiltration membrane can reach ca. 9246 L m-2 h-1 (54-fold increment compared to that of pristine membrane), oil rejection >99.5% in a three-cycle emulsion separation; the modified ultrafiltration membrane demonstrated benign performance in bovine serum albumin protein interception (rejection as high as ca. 96.6% with water flux of ca. 278.2 L m-2 h-1) and antifouling potential (increase of ca. 70.8%). Our in situ biomimetic silicification under "green" conditions exhibits the great potential of the developed strategy in fabrication of similar multifunctional membranes toward environmental remediation.
Collapse
Affiliation(s)
- Xiaobin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Hongguang Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Avishek Pal
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Yongping Bai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| |
Collapse
|
21
|
|
22
|
Microstructures and performances of pegylated polysulfone membranes from an in situ synthesized solution via vapor induced phase separation approach. J Colloid Interface Sci 2018; 515:152-159. [DOI: 10.1016/j.jcis.2018.01.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/06/2018] [Accepted: 01/08/2018] [Indexed: 01/22/2023]
|
23
|
Hong H, Tronstad ZC, Yang Y, Green MD. Characterization of PVC‐soy protein nonwoven mats prepared by electrospinning. AIChE J 2018. [DOI: 10.1002/aic.16109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- HeeRan Hong
- Dept. of Chemical Engineering; School for Engineering of Matter, Transport and EnergyArizona State UniversityTempe AZ85287
| | - Zachary C. Tronstad
- Dept. of Chemical Engineering; School for Engineering of Matter, Transport and EnergyArizona State UniversityTempe AZ85287
| | - Yi Yang
- Dept. of Chemical Engineering; School for Engineering of Matter, Transport and EnergyArizona State UniversityTempe AZ85287
| | - Matthew D. Green
- Dept. of Chemical Engineering; School for Engineering of Matter, Transport and EnergyArizona State UniversityTempe AZ85287
| |
Collapse
|
24
|
Zhang R, Liu Y, He M, Su Y, Zhao X, Elimelech M, Jiang Z. Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem Soc Rev 2018; 45:5888-5924. [PMID: 27494001 DOI: 10.1039/c5cs00579e] [Citation(s) in RCA: 602] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the greatest challenges to the sustainability of modern society is an inadequate supply of clean water. Due to its energy-saving and cost-effective features, membrane technology has become an indispensable platform technology for water purification, including seawater and brackish water desalination as well as municipal or industrial wastewater treatment. However, membrane fouling, which arises from the nonspecific interaction between membrane surface and foulants, significantly impedes the efficient application of membrane technology. Preparing antifouling membranes is a fundamental strategy to deal with pervasive fouling problems from a variety of foulants. In recent years, major advancements have been made in membrane preparation techniques and in elucidating the antifouling mechanisms of membrane processes, including ultrafiltration, nanofiltration, reverse osmosis and forward osmosis. This review will first introduce the major foulants and the principal mechanisms of membrane fouling, and then highlight the development, current status and future prospects of antifouling membranes, including antifouling strategies, preparation techniques and practical applications. In particular, the strategies and mechanisms for antifouling membranes, including passive fouling resistance and fouling release, active off-surface and on-surface strategies, will be proposed and discussed extensively.
Collapse
Affiliation(s)
- Runnan Zhang
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanan Liu
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Mingrui He
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanlei Su
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xueting Zhao
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA
| | - Zhongyi Jiang
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
25
|
He M, Zhang R, Liu Y, Fan L, Zhang Q, Su Y, Jiang Z. Achieving persistent high-flux membranes via kinetic and thermodynamic synergistic manipulation of surface segregation process. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.06.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Abstract
Toward improving implantable medical devices as well as diagnostic performance, the development of polymeric biomaterials having resistance to proteins remains a priority. Herein, we highlight key strategies reported in the recent literature that have relied upon improvement of surface hydrophilicity via direct surface modification methods or with bulk modification using surface modifying additives (SMAs). These approaches have utilized a variety of techniques to incorporate the surface hydrophilization agent, including physisorption, hydrogel network formation, surface grafting, layer-by-layer (LbL) assembly and blending base polymers with SMAs. While poly(ethylene glycol) (PEG) remains the gold standard, new alternatives have emerged such as polyglycidols, poly(2-oxazoline)s (POx), polyzwitterions, and amphiphilic block copolymers. While these new strategies provide encouraging results, the need for improved correlation between in vitro and in vivo protein resistance is critical. This may be achieved by employing complex protein solutions as well as strides to enhance the sensitivity of protein adsorption measurements.
Collapse
Affiliation(s)
- Bryan Khai D. Ngo
- Department of Biomedical Engineering and ‡Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Melissa A. Grunlan
- Department of Biomedical Engineering and ‡Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
27
|
Self-cleaning anti-fouling hybrid ultrafiltration membranes via side chain grafting of poly(aryl ether sulfone) and titanium dioxide. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.01.043] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Tang YP, Cai T, Loh D, O'Brien GS, Chung TS. Construction of antifouling lumen surface on a poly(vinylidene fluoride) hollow fiber membrane via a zwitterionic graft copolymerization strategy. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.12.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Zinadini S, Zinatizadeh A, Rahimi M, Vatanpour V. Magnetic field-augmented coagulation bath during phase inversion for preparation of ZnFe2O4/SiO2/PES nanofiltration membrane: A novel method for flux enhancement and fouling resistance. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.08.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Homogeneous polyethersulfone hybrid membranes prepared with in-suit synthesized magnesium hydroxide nanoparticles by phase inversion method. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.05.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Zhou Z, Rajabzadeh S, Shaikh AR, Kakihana Y, Ma W, Matsuyama H. Effect of surface properties on antifouling performance of poly(vinyl chloride-co-poly(ethylene glycol)methyl ether methacrylate)/PVC blend membrane. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.05.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Carretier S, Chen LA, Venault A, Yang ZR, Aimar P, Chang Y. Design of PVDF/PEGMA-b-PS-b-PEGMA membranes by VIPS for improved biofouling mitigation. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.03.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Rahimi Z, Zinatizadeh A, Zinadini S. Milk processing wastewater treatment in a bioreactor followed by an antifouling O-carboxymethyl chitosan modified Fe 3 O 4 /PVDF ultrafiltration membrane. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Akbari A, Mohtasham Khani S, Mojallali Rostami SM. Second modification of a polyamide membrane surface. J Appl Polym Sci 2016. [DOI: 10.1002/app.43583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ahmad Akbari
- Institute of Nanoscience and Nanotechnology, University of Kashan; Kashan Islamic Republic of Iran
| | - Saeedeh Mohtasham Khani
- Institute of Nanoscience and Nanotechnology, University of Kashan; Kashan Islamic Republic of Iran
| | | |
Collapse
|
35
|
Sianipar M, Kim SH, Min C, Tijing LD, Shon HK. Potential and performance of a polydopamine-coated multiwalled carbon nanotube/polysulfone nanocomposite membrane for ultrafiltration application. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2015.11.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Manipulating the segregation behavior of polyethylene glycol by hydrogen bonding interaction to endow ultrafiltration membranes with enhanced antifouling performance. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.10.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Mondal S. Polymeric membranes for produced water treatment: an overview of fouling behavior and its control. REV CHEM ENG 2016. [DOI: 10.1515/revce-2015-0027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AbstractProduced water (PW) from the oil/gas field is an important waste stream. Due to its highly pollutant nature and large volume of generation, the management of PW is a significant challenge for the petrochemical industry. The treatment of PW can improve the economic viability of oil and gas exploration, and the treated water can provide a new source of water in the water-scarce region for some beneficial uses. The reverse osmosis (RO) and selective nanofiltration (NF) membrane treatment of PW can reduce the salt and organic contents to acceptable levels for some beneficial uses, such as irrigation, and different industrial reuses. However, membrane fouling is a major obstacle for the membrane-based treatment of PW. In this review, the author discusses the polymeric membrane (mainly RO/NF) fouling during PW treatment. Membrane fouling mechanisms by various types of foulants, such as organic, inorganic, colloidal, and biological matters, are discussed. The review concludes with some of the measures to control fouling by membrane surface modification approaches.
Collapse
|
38
|
Zhou Z, Rajabzadeh S, Rajjak Shaikh A, Kakihana Y, Ishigami T, Sano R, Matsuyama H. Preparation and characterization of antifouling poly(vinyl chloride- co -poly(ethylene glycol)methyl ether methacrylate) membranes. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.05.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
PEG-modified GO nanosheets, a desired additive to increase the rejection and antifouling characteristics of polyamide thin layer membranes. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2015.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Zhao G, Chen WN. Enhanced PVDF membrane performance via surface modification by functional polymer poly(N-isopropylacrylamide) to control protein adsorption and bacterial adhesion. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Influence of chitosan coating on the separation performance, morphology and anti-fouling properties of the polyamide nanofiltration membranes. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2015.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Efficacy of different generations and concentrations of PAMAM–NH2 on the performance and structure of TFC membranes. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.04.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Liu Y, Su Y, Zhao X, Li Y, Zhang R, Jiang Z. Improved antifouling properties of polyethersulfone membrane by blending the amphiphilic surface modifier with crosslinked hydrophobic segments. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.03.045] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Qin A, Li X, Zhao X, Liu D, He C. Engineering a Highly Hydrophilic PVDF Membrane via Binding TiO₂Nanoparticles and a PVA Layer onto a Membrane Surface. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8427-8436. [PMID: 25806418 DOI: 10.1021/acsami.5b00978] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A highly hydrophilic PVDF membrane was fabricated through chemically binding TiO2 nanoparticles and a poly(vinyl alcohol) (PVA) layer onto a membrane surface simultaneously. The chemical composition of the modified membrane surface was determined by X-ray photoelectron spectroscopy, and the binding performance of TiO2 nanoparticles and the PVA layer was investigated by a rinsing test. The results indicated that the TiO2 nanoparticles were uniformly and strongly tailored onto the membrane surface, while the PVA layer was firmly attached onto the surface of TiO2 nanoparticles and the membrane by adsorption-cross-linking. The possible mechanisms during the modification process and filtration performance, i.e., water permeability and bovine serum albumin (BSA) rejection, were investigated as well. Furthermore, antifouling property was discussed through multicycles of BSA solution filtration tests, where the flux recovery ratio was significantly increased from 20.0% for pristine PVDF membrane to 80.5% for PVDF/TiO2/PVA-modified membrane. This remarkable promotion is mainly ascribed to the improvement of surface hydrophilicity, where the water contact angle of the membrane surface was decreased from 84° for pristine membrane to 24° for PVDF/TiO2/PVA membrane. This study presents a novel and varied strategy for immobilization of nanoparticles and PVA layer on substrate surface, which could be easily adapted for a variety of materials for surface modification.
Collapse
Affiliation(s)
- Aiwen Qin
- The State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University, Shanghai, 201620, People's Republic of China
| | - Xiang Li
- The State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University, Shanghai, 201620, People's Republic of China
| | - Xinzhen Zhao
- The State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University, Shanghai, 201620, People's Republic of China
| | - Dapeng Liu
- The State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University, Shanghai, 201620, People's Republic of China
| | - Chunju He
- The State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University, Shanghai, 201620, People's Republic of China
| |
Collapse
|
45
|
Galanakis CM. Separation of functional macromolecules and micromolecules: From ultrafiltration to the border of nanofiltration. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2014.11.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Liu Y, Su Y, Li Y, Zhao X, Jiang Z. Improved antifouling property of PVDF membranes by incorporating an amphiphilic block-like copolymer for oil/water emulsion separation. RSC Adv 2015. [DOI: 10.1039/c4ra16290k] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amphiphilic membrane surfaces were constructed in one step by surface segregation and the membranes exhibited a superior antifouling property.
Collapse
Affiliation(s)
- Yuan Liu
- Key Laboratory for Green Chemical Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yanlei Su
- Key Laboratory for Green Chemical Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yafei Li
- Key Laboratory for Green Chemical Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xueting Zhao
- Key Laboratory for Green Chemical Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
47
|
Jiang S, Wang J, Wu J, Chen Y. Poly(vinyl chloride) and poly(ether sulfone)-g-poly(ether glycol) methyl ether methacrylate blend membranes with improved ultrafiltration performance and fouling resistance. J Appl Polym Sci 2014. [DOI: 10.1002/app.41726] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shuhong Jiang
- College of Environmental Science and Engineering; Donghua University; Shanghai 201620 China
| | - Jun Wang
- College of Environmental Science and Engineering; Donghua University; Shanghai 201620 China
| | - Jun Wu
- College of Environmental Science and Engineering; Donghua University; Shanghai 201620 China
| | - Yinchuan Chen
- College of Environmental Science and Engineering; Donghua University; Shanghai 201620 China
| |
Collapse
|
48
|
Zhao YF, Zhu LP, Jiang JH, Yi Z, Zhu BK, Xu YY. Enhancing the Antifouling and Antimicrobial Properties of Poly(ether sulfone) Membranes by Surface Quaternization from a Reactive Poly(ether sulfone) Based Copolymer Additive. Ind Eng Chem Res 2014. [DOI: 10.1021/ie5019589] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yi-Fan Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR. China
| | - Li-Ping Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR. China
| | - Jin-Hong Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR. China
| | - Zhuan Yi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR. China
| | - Bao-Ku Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR. China
| | - You-Yi Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR. China
| |
Collapse
|
49
|
Zhu J, Su Y, Zhao X, Li Y, Zhao J, Fan X, Jiang Z. Improved Antifouling Properties of Poly(vinyl chloride) Ultrafiltration Membranes via Surface Zwitterionicalization. Ind Eng Chem Res 2014. [DOI: 10.1021/ie5022877] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junao Zhu
- Key Laboratory
for Green Chemical Technology, School of Chemical Engineering and
Technology and Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Yanlei Su
- Key Laboratory
for Green Chemical Technology, School of Chemical Engineering and
Technology and Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Xueting Zhao
- Key Laboratory
for Green Chemical Technology, School of Chemical Engineering and
Technology and Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Yafei Li
- Key Laboratory
for Green Chemical Technology, School of Chemical Engineering and
Technology and Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Jiaojiao Zhao
- Key Laboratory
for Green Chemical Technology, School of Chemical Engineering and
Technology and Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Xiaochen Fan
- Key Laboratory
for Green Chemical Technology, School of Chemical Engineering and
Technology and Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Zhongyi Jiang
- Key Laboratory
for Green Chemical Technology, School of Chemical Engineering and
Technology and Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
50
|
Fan X, Su Y, Zhao X, Li Y, Zhang R, Zhao J, Jiang Z, Zhu J, Ma Y, Liu Y. Fabrication of polyvinyl chloride ultrafiltration membranes with stable antifouling property by exploring the pore formation and surface modification capabilities of polyvinyl formal. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.04.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|