1
|
Buriti BMADB, Figueiredo PLB, Passos MF, da Silva JKR. Polymer-Based Wound Dressings Loaded with Essential Oil for the Treatment of Wounds: A Review. Pharmaceuticals (Basel) 2024; 17:897. [PMID: 39065747 PMCID: PMC11279661 DOI: 10.3390/ph17070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Wound healing can result in complex problems, and discovering an effective method to improve the healing process is essential. Polymeric biomaterials have structures similar to those identified in the extracellular matrix of the tissue to be regenerated and also avoid chronic inflammation, and immunological reactions. To obtain smart and effective dressings, bioactive agents, such as essential oils, are also used to promote a wide range of biological properties, which can accelerate the healing process. Therefore, we intend to explore advances in the potential for applying hybrid materials in wound healing. For this, fifty scientific articles dated from 2010 to 2023 were investigated using the Web of Science, Scopus, Science Direct, and PubMed databases. The principles of the healing process, use of polymers, type and properties of essential oils and processing techniques, and characteristics of dressings were identified. Thus, the plants Syzygium romanticum or Eugenia caryophyllata, Origanum vulgare, and Cinnamomum zeylanicum present prospects for application in clinical trials due to their proven effects on wound healing and reducing the incidence of inflammatory cells in the site of injury. The antimicrobial effect of essential oils is mainly due to polyphenols and terpenes such as eugenol, cinnamaldehyde, carvacrol, and thymol.
Collapse
Affiliation(s)
- Bruna Michele A. de B. Buriti
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
| | - Marcele Fonseca Passos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Joyce Kelly R. da Silva
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
2
|
Xia Y, Yang C, Liu X, Wang G, Xiong Z, Song X, Yang Y, Zhang H, Ai L. Enhancement of triterpene production via in situ extractive fermentation of Sanghuangporus vaninii YC-1. Biotechnol Appl Biochem 2022; 69:2561-2572. [PMID: 34967056 DOI: 10.1002/bab.2305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022]
Abstract
There have been many studies on the activities and polysaccharide production of Sanghuangporus vaninii. However, few studies have looked at triterpene production from S. vaninii using liquid-state fermentation. A method for enhancing the production of triterpenes by in situ extractive fermentation (ISEF) was studied. Eight solvents were investigated as extractants for triterpene production in the ISEF system. The results showed that using vegetable oil as an extractant significantly increased the yield of total triterpenes and biomass of S. vaninii YC-1, reaching 18.98 ± 0.71 and 44.67 ± 2.21 g/L, respectively. In 5 L fermenter experiments, the added vegetable oil improved the dissolved oxygen condition of the fermentation broth and promoted the growth of S. vaninii YC-1. Furthermore, adding vegetable oil increased the expression of fatty acid synthesis-related genes such as FAD2 and SCD, thereby increasing the synthesis of unsaturated fatty acids in the cell membrane of S. vaninii YC-1. Therefore, the cell membrane permeability of S. vaninii YC-1 increased by 19%. Our results indicated that vegetable oil increased the permeability of S. vaninii YC-1 cell membranes to promote the production of total triterpenes. The use of vegetable oil as an extractant was thus effective in increasing the yield of triterpenes in the ISEF system.
Collapse
Affiliation(s)
- Yongjun Xia
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Caiyun Yang
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaofeng Liu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Yijin Yang
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Zhang
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Santos AG, Buarque FS, Ribeiro BD, Coelho MAZ. Extractive fermentation for the production and partitioning of lipase and citric acid by Yarrowia lipolytica. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Simultaneous production and sustainable eutectic mixture based purification of narringinase with Bacillus amyloliquefaciens by valorization of tofu wastewater. Sci Rep 2022; 12:10509. [PMID: 35732803 PMCID: PMC9217967 DOI: 10.1038/s41598-022-14855-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
The current investigation is being executed for sustainable one-pot production and purification of naringinase using natural deep eutectic solvent-based extractive fermentation. Five natural deep eutectic solvents were prepared and their physicochemical properties were determined as a function of temperature. Tofu wastewater was used as a low-cost substrate for naringinase production and simultaneous in-situ purification of the enzyme was accomplished by employing NADES. Optimal conditions of influential factors like concentrations of NADES (74.5% w/w), Na2SO4 (15% w/v) and tofu wastewater (1.5% w/w) resulted in an effective yield of naringinase (249.6 U/ml). Scale-up of naringinase production with a 3 l custom made desktop bioreactor was accomplished and effective regeneration of NADES was established. NADES exhibits selectivity during extraction even after the fifth cycle proving it to be tailor-made. The resulting active enzyme was quantified by size exclusion chromatography (736.85 U/mg). Ultrapure enzyme fraction was obtained with anion exchange chromatography yielding maximum purity of (63.2 U/ml) and specific naringinase activity of (3516 U/mg). The in-vitro debittering activity of the resulting ultrapure enzyme fraction was determined with grape juice resulting in naringin and limonin removal of [23.4% (w/w)] and [64.3% (w/w)] respectively.
Collapse
|
5
|
Bagewadi ZK, Yaraguppi DA, Mulla SI, Deshpande SH. Response Surface Methodology Based Optimization, Partial Purification and Characterization of Alkaline Phosphatase Isolated from Pseudomonas asiatica Strain ZKB1 and its Application in Plant Growth Promotion. Mol Biotechnol 2022; 64:984-1002. [DOI: 10.1007/s12033-022-00477-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/04/2022] [Indexed: 12/20/2022]
|
6
|
Pawar S, Rathod V. Comparative bioreactor studies of different process enhancement methods in B. licheniformis for enzyme co-production. Prep Biochem Biotechnol 2022; 52:1134-1141. [PMID: 35189070 DOI: 10.1080/10826068.2022.2033991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Conventional fermentation processes need to be upgraded to produce a wide array of biomolecules to overcome lower product yield. The cost of production of biomolecules using the fermentation method could be reduced by increasing the product yield by various process enhancement methods. In this study, different innovative process enhancement methods were evaluated to increase the co-production of uricase and alkaline protease at the bioreactor level. Ultrasound-assisted fermentation (UAF), Extractive fermentation (ATPS), and Ultrasound-assisted extractive fermentation (UATPS) are the three innovative methods used for process enhancement. Maximum enzyme production was obtained in a combinatorial approach of ultrasound and extractive fermentation, i.e., ultrasound-assisted extractive fermentation where uricase and protease production enhanced by 2.5 fold and 1.9 fold, respectively, as compared to conventional fermentation.
Collapse
Affiliation(s)
- Shweta Pawar
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Virendra Rathod
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
7
|
Kee PE, Yim HS, Kondo A, Lan JCW, Ng HS. Extractive fermentation of Kytococcus sedentarius TWHKC01 using the aqueous biphasic system for direct recovery of keratinase. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Extractive Fermentation for Recovery of Bacteriocin-Like Inhibitory Substances Derived from Lactococcus lactis Gh1 Using PEG2000/Dextran T500 Aqueous Two-Phase System. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This work aimed to optimize the parameters affecting partitioning of a bacteriocin-like inhibitory substances (BLIS) from Lactococcus lactis Gh1 in extractive fermentation using polyethylene glycol (PEG)/dextran aqueous two-phase system (ATPS). This system was developed for the simultaneous cell cultivation and downstream processing of BLIS. Results showed that the molecular weight of PEG, PEG concentration, and dextran T500 affect the partition coefficient (K), purification factor (PF), and yield of BLIS partitioning. ATPS composed of 10% (w/w) PEG2000 and 8% (w/w) dextran T500, provided the greatest conditions for the extractive BLIS production. The K (1.00 ± 0.16), PF (2.92 ± 0.37) and yield (77.24 ± 2.81%) were increased at selected orbital speed (200 rpm) and pH (pH 7). Sustainable growth of the cells in the bioreactor and repeated fermentation up to the eighth extractive batch were observed during the scale up process, ensuring a continuous production and purification of BLIS. Hence, the simplicity and effectiveness of ATPS in the purification of BLIS were proven in this study.
Collapse
|
9
|
Medina-de la Rosa G, García-Oliva F, Alpuche-Solís ÁG, Ovando-Vázquez C, López-Lozano NE. The nutrient-improvement bacteria selected by Agave lechuguilla T. and their role in the rhizosphere community. FEMS Microbiol Ecol 2021; 97:6380485. [PMID: 34601598 DOI: 10.1093/femsec/fiab137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/27/2021] [Indexed: 11/14/2022] Open
Abstract
Agave lechuguilla has one of the widest distributions among other agave species in the Chihuahuan Desert. Their capacity to grow in poorly developed soils and harsh conditions has been related to their association with plant growth-promoting rhizobacteria. In this work, we explored how soil properties and plant growth stage influence the composition of the rhizobacterial communities, their interactions, and the enzymatic activity and abundance of nitrogen-fixing bacteria and organic phosphorus-mineralizing bacteria in two subregions of the Chihuahuan Desert. We found that mature plants of lechuguilla stimulated the activity and abundance of nutrient-improvement rhizobacteria, and these soil samples had a higher content of total organic carbon, ammonium (NH4) and nitrite + nitrate (NO2+NO3). Nutrient availability seems to be an essential driver of the bacterial community's structure since the genera with more connections (hubs) were those with known mechanisms related to the availability of nutrients, such as env. OPS17 (Bacteroidetes), Gemmatimonadaceae uncultured, S0134terrestrial group, BD211terrestrial group (Gemmatimonadetes), Chthoniobacteracea and Candidatus Udaeobacter (Verrucomicrobia). This work shows that the late growth stages of lechuguilla recruit beneficial bacteria that favor its establishment and tolerance to harsh conditions of the arid lands.
Collapse
Affiliation(s)
- Guadalupe Medina-de la Rosa
- CONACyT- Division de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, A.C., 78216 San Luis Potosi, S.L.P., Mexico
| | - Felipe García-Oliva
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, 58190 Morelia, Mich., Mexico
| | - Ángel G Alpuche-Solís
- Division de Biologia Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C., 78216 San Luis Potosi, S.L.P., Mexico
| | - Cesaré Ovando-Vázquez
- Division de Biologia Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C., 78216 San Luis Potosi, S.L.P., Mexico.,CONACyT-Centro Nacional de Supercómputo, Instituto Potosino de Investigación Científica y Tecnológica, A.C., 78216 San Luis Potosi, S.L.P., Mexico
| | - Nguyen E López-Lozano
- CONACyT- Division de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, A.C., 78216 San Luis Potosi, S.L.P., Mexico
| |
Collapse
|
10
|
Alves RO, de Oliveira RL, da Silva OS, Porto ALF, Porto CS, Porto TS. Extractive fermentation for process integration of protease production by Aspergillus tamarii Kita UCP1279 and purification by PEG-Citrate Aqueous Two-Phase System. Prep Biochem Biotechnol 2021; 52:30-37. [PMID: 33787455 DOI: 10.1080/10826068.2021.1904257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The present study evaluated the influence of the variables polyethylene glycol (PEG) molar mass, pH, PEG concentration and sodium citrate concentration in the integrated production of the protease from Aspergillus tamarii Kita UCP1279 by extractive fermentation, obtaining as a response the partition coefficient (K), activity yield (Y) and concentration factor (CF). The enzyme preferably partitioned to the top phase and obtained in the system formed by variables MPEG = 400 g mol-1, CPEG = 20% (w w-1), and CCIT = 20% (w w-1) and pH 6, in this condition were obtained CF = 1.90 and Y = 79.90%. The protease showed stability at a temperature of 60 °C for 180 min, with optimum temperature 40 °C and pH 8.0. For the ions and inhibitors effects, the protease activity increased when exposed to Fe2+, Ca2+ and Zn2 + and inhibited by EDTA, being classified as metalloprotease. The kinetic parameters Km (35.63 mg mL-1) and Vmax (1.205 mg mL-1 min-1) were also estimated. Thus, the protease showed desirable characteristics that enable future industrial applications, especially, for beer industry.
Collapse
Affiliation(s)
| | | | - Osmar Soares da Silva
- Laboratory of Basic Biology Teaching Azarias Salgado/LABAS, Reference High School Azarias Salgado, Angelim, Brazil
| | - Ana Lúcia Figueiredo Porto
- Laboratory of Bioactives Technology (LABTECBIO), Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Brazil
| | - Camila Souza Porto
- Laboratory of Bioproducts and Bioprocesses Development (LADBIOPROS), Education Unit of Penedo, Federal University of Alagoas, Penedo, Brazil
| | - Tatiana Souza Porto
- Academic Unit of Garanhuns, Federal Rural University of Pernambuco, Garanhuns, Brazil
| |
Collapse
|
11
|
Borges B, Gallo G, Coelho C, Negri N, Maiello F, Hardy L, Würtele M. Dynamic cross correlation analysis of Thermus thermophilus alkaline phosphatase and determinants of thermostability. Biochim Biophys Acta Gen Subj 2021; 1865:129895. [PMID: 33781823 DOI: 10.1016/j.bbagen.2021.129895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/18/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Understanding the determinants of protein thermostability is very important both from the theoretical and applied perspective. One emerging view in thermostable enzymes seems to indicate that a salt bridge/charged residue network plays a fundamental role in their thermostability. METHODS The structure of alkaline phosphatase (AP) from Thermus thermophilus HB8 was solved by X-ray crystallography at 2.1 Å resolution. The obtained structure was further analyzed by molecular dynamics studies at different temperatures (303 K, 333 K and 363 K) and compared to homologous proteins from the cold-adapted organisms Shewanella sp. and Vibrio strain G15-21. To analyze differences in measures of dynamic variation, several data reduction techniques like principal component analysis (PCA), residue interaction network (RIN) analysis and rotamer analysis were used. Using hierarchical clustering, the obtained results were combined to determine residues showing high degree dynamical variations due to temperature jumps. Furthermore, dynamic cross correlation (DCC) analysis was carried out to characterize networks of charged residues. RESULTS Top clustered residues showed a higher propensity for thermostabilizing mutations, indicating evolutionary pressure acting on thermophilic organisms. The description of rotamer distributions by Gini coefficients and Kullback-Leibler (KL) divergence both revealed significant correlations with temperature. DCC analysis revealed a significant trend to de-correlation of the movement of charged residues at higher temperatures. SIGNIFICANCE The de-correlation of charged residues detected in Thermus thermophilus AP, highlights the importance of dynamic electrostatic network interactions for the thermostability of this enzyme.
Collapse
Affiliation(s)
- Bruno Borges
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Gloria Gallo
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Camila Coelho
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Naiane Negri
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil; Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Maiello
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Leon Hardy
- Department of Physics, University of South Florida, Tampa, United States
| | - Martin Würtele
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil.
| |
Collapse
|
12
|
Santos AG, de Albuquerque TL, Ribeiro BD, Coelho MAZ. In situ product recovery techniques aiming to obtain biotechnological products: A glance to current knowledge. Biotechnol Appl Biochem 2020; 68:1044-1057. [PMID: 32931049 DOI: 10.1002/bab.2024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/07/2020] [Indexed: 11/07/2022]
Abstract
Biotechnology and bioengineering techniques have been widely used in the production of biofuels, chemicals, pharmaceuticals, and food additives, being considered a "green" form of production because they use renewable and nonpolluting energy sources. On the other hand, in the traditional processes of production, the target product obtained by biotechnological routes must undergo several stages of purification, which makes these processes more expensive. In the past few years, some works have focused on processes that integrate fermentation to the recovery and purification steps necessary to obtain the final product required. This type of process is called in situ product recovery or extractive fermentation. However, there are some differences in the concepts of the techniques used in these bioprocesses. In this way, this review sought to compile relevant content on considerations and procedures that are being used in this field, such as evaporation, liquid-liquid extraction, permeation, and adsorption techniques. Also, the objective of this review was to approach the different configurations in the recent literature of the processes employed and the main bioproducts obtained, which can be used in the food, pharmaceutical, chemical, and/or fuel additives industry. We intended to elucidate concepts of these techniques, considered very recent, but which emerge as a promising alternative for the integration of bioprocesses.
Collapse
Affiliation(s)
- Ariane G Santos
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tiago L de Albuquerque
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bernardo D Ribeiro
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Alice Z Coelho
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Rathnasamy SK, Durai A, Vigneshkumar AA, Purushothaman C, Rajendran DS, Chandramouliswaran K. One-pot simultaneous production and sustainable purification of fibrinolytic protease from Bacillus cereus using natural deep eutectic solvents. Sci Rep 2020; 10:13356. [PMID: 32770127 PMCID: PMC7414877 DOI: 10.1038/s41598-020-70414-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/29/2020] [Indexed: 01/10/2023] Open
Abstract
The present study report for the first time on the one-pot production and purification of fibrinolytic protease from Bacillus cereus by extractive fermentation using natural deep eutectic solvents (NADES). Cheese whey was chosen as a sustainable low-cost production alternative yielding a significantly high amount of protease (185.7 U/mg). Five natural deep eutectic solvents with menthol as hydrogen bond donor and sugar molecules as corresponding hydrogen bond acceptors were synthesized and their association was confirmed with H1 NMR. Thermophysical investigation of the synthetic NADES was accomplished as a function of temperature to define their extraction ability. Response surface methodology based optimization of concentration of NADES (77.5% w/w), Na2SO4 (14% w/v) and cheese whey (1% w/w) were accomplished for extractive fermentation. Further, preparative purification using size exclusion chromatography was used to quantify the amount of enzyme obtained in the extraction phase (190 U/ml). On subsequent purification with an anion exchange column, the maximum purity fold (21.2) with enzyme activity (2,607.8 U/ml) was attained. The optimal pH (8.0), temperature (50 °C) were determined and the in-vitro fibrinolytic activity has been confirmed using a fibrin plate assay.
Collapse
Affiliation(s)
- Senthil Kumar Rathnasamy
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India.
| | - Aadhavan Durai
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - A A Vigneshkumar
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - C Purushothaman
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Devi Sri Rajendran
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - K Chandramouliswaran
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| |
Collapse
|
14
|
Kee PE, Ng TC, Lan JCW, Ng HS. Recent development of unconventional aqueous biphasic system: characteristics, mechanisms and applications. Crit Rev Biotechnol 2020; 40:555-569. [DOI: 10.1080/07388551.2020.1747388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Phei Er Kee
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Kuala Lumpur, Cheras, Malaysia
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan, Taiwan
| | - Tze-Cheng Ng
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Kuala Lumpur, Cheras, Malaysia
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan, Taiwan
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan, Taiwan
| | - Hui-Suan Ng
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Kuala Lumpur, Cheras, Malaysia
| |
Collapse
|
15
|
Chia SR, Chew KW, Show PL, Xia A, Ho SH, Lim JW. Spirulina platensis based biorefinery for the production of value-added products for food and pharmaceutical applications. BIORESOURCE TECHNOLOGY 2019; 289:121727. [PMID: 31279318 DOI: 10.1016/j.biortech.2019.121727] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
In this present study, microalgal phycobiliproteins were isolated and purified via potential biphasic processing technique for pharmaceutical as well as food applications. The algal pre-treatment techniques were studied to enhance the yield of microalgal phycobiliproteins from the biomass. The proposed methods were optimised to obtain the best recovery yield of phycobiliproteins that can be isolated from the biomass. The phycobiliproteins were further purified using liquid biphasic system. The results showed that microalgal phycobiliproteins of high purity and yield was achieved using sonication treatment (20% power, 50% duty cycle and 7 min of irradiation time) with the biphasic system, where the purification fold of 6.17 and recovery yield of 94.89% was achieved. This work will provide insights towards the effective downstream processing of biomolecules from microalgae.
Collapse
Affiliation(s)
- Shir Reen Chia
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia
| | - Kit Wayne Chew
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia.
| | - Ao Xia
- Institute of Engineering Thermophysics, Chongqing University, No. 174, Shazheng Str, Shapingba District, Chongqing 400032, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, Persiaran UTP, Seri Iskandar, 32610 Perak, Malaysia
| |
Collapse
|
16
|
Leong YK, Show PL, Lan JCW, Krishnamoorthy R, Chu DT, Nagarajan D, Yen HW, Chang JS. Application of thermo-separating aqueous two-phase system in extractive bioconversion of polyhydroxyalkanoates by Cupriavidus necator H16. BIORESOURCE TECHNOLOGY 2019; 287:121474. [PMID: 31122870 DOI: 10.1016/j.biortech.2019.121474] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Polyhydroxyalkanoates (PHAs), a family of biodegradable and renewable biopolymers show a huge potential as an alternative to conventional plastics. Extractive bioconversion (in situ product recovery) is a technique that integrates upstream fermentation and downstream purification. In this study, extractive bioconversion of PHAs from Cupriavidus necator H16 was performed via a thermo-separating aqueous two-phase system to reduce the cost and environmental impacts of PHAs production. Key operating parameters, such as polymer concentration, temperature, and pH, were optimized. The strategy achieved a yield and PF of 97.6% and 1.36-fold, respectively at 5% EOPO 3900 concentration, 30 °C fermentation temperature and pH 6. The PHAs production process was also successfully scaled up in a 2 L bioreactor. To the best of our knowledge, this is the first report on extractive fermentation of PHAs from Cupriavidus necator utilizing a thermo-separation system to achieve a better productivity and purity of the target product.
Collapse
Affiliation(s)
- Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Material Science, Yuan Ze University, No. 135 Yuan-Tung Road, Chungli, Taoyuan 320, Taiwan
| | - Rambabu Krishnamoorthy
- Department of Chemical Engineering, School of Civil and Chemical Engineering, VIT University, Vellore 632014, India; Department of Chemical Engineering, Khalifa University of Science and Technology, The Petroleum Institute, Abu Dhabi, United Arab Emirates
| | - Dinh-Toi Chu
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Norway; Faculty of Biology, Hanoi National University of Education, Hanoi, Viet Nam
| | - Dillirani Nagarajan
- Research Center for Circular Economy, National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Wei Yen
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan 701, Taiwan; College of Engineering, Tunghai University, Taichung 407, Taiwan.
| |
Collapse
|
17
|
Liu X, Xia Y, Zhang Y, Yi Z, Meng P, Wang G, Ai L. Enhancement of antroquinonol and antrodin C productions via in situ extractive fermentation of Antrodia camphorata S-29. Appl Microbiol Biotechnol 2019; 103:8351-8361. [DOI: 10.1007/s00253-019-10034-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/26/2019] [Accepted: 07/14/2019] [Indexed: 01/31/2023]
|
18
|
Silva OSD, Alves RO, Porto TS. PEG-sodium citrate aqueous two-phase systems to in situ recovery of protease from Aspergillus tamarii URM4634 by extractive fermentation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
In situ removal of consensus dengue virus envelope protein domain III fused to hydrophobin in Pichia pastoris cultures. Protein Expr Purif 2018; 153:131-137. [PMID: 30240632 DOI: 10.1016/j.pep.2018.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/14/2018] [Accepted: 09/17/2018] [Indexed: 12/24/2022]
Abstract
This work describes a novel strategy for the integrated expression and purification of recombinant proteins in Pichia pastoris cultures. Hydrophobins can be used as fusion tags, proteins fused to them alter their hydrophobicity and can be purified by aqueous two-phase systems (ATPS) based on non-ionic surfactants. Here, the consensus dengue virus envelope protein domain III fused to hydrophobin I of Trichoderma reesei was expressed in Pichia pastoris cultures and an in situ product removal by an ATPS using a non-ionic detergent, (Triton X-114) was performed. The protein was produced and purified directly from the yeast culture supernatant both efficiently and with no loss. The purified protein was properly immobilized by adsorption in solid phase and recognized by anti-dengue antibodies, showing its potential for the development of an indirect immunoassay for dengue virus.
Collapse
|
20
|
Extraction and purification of Polyhydroxyalkanoates (PHAs): application of Thermoseparating aqueous two-phase extraction. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1307-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Nadar SS, Pawar RG, Rathod VK. Recent advances in enzyme extraction strategies: A comprehensive review. Int J Biol Macromol 2017; 101:931-957. [DOI: 10.1016/j.ijbiomac.2017.03.055] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/19/2022]
|
22
|
Iqbal M, Tao Y, Xie S, Zhu Y, Chen D, Wang X, Huang L, Peng D, Sattar A, Shabbir MAB, Hussain HI, Ahmed S, Yuan Z. Aqueous two-phase system (ATPS): an overview and advances in its applications. Biol Proced Online 2016; 18:18. [PMID: 27807400 PMCID: PMC5084470 DOI: 10.1186/s12575-016-0048-8] [Citation(s) in RCA: 366] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023] Open
Abstract
Aqueous two-phase system (ATPS) is a liquid-liquid fractionation technique and has gained an interest because of great potential for the extraction, separation, purification and enrichment of proteins, membranes, viruses, enzymes, nucleic acids and other biomolecules both in industry and academia. Although, the partition behavior involved in the method is complex and difficult to predict. Current research shows that it has also been successfully used in the detection of veterinary drug residues in food, separation of precious metals, sewage treatment and a variety of other purposes. The ATPS is able to give high recovery yield and is easily to scale up. It is also very economic and environment friendly method. The aim of this review is to overview the basics of ATPS, optimization and its applications.
Collapse
Affiliation(s)
- Mujahid Iqbal
- National Reference Laboratory of Veterinary Drug Residues (HZAU)/MOA Key Laboratory of Food Safety Evaluation, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU)/MOA Key Laboratory of Food Safety Evaluation, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU)/MOA Key Laboratory of Food Safety Evaluation, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Yufei Zhu
- National Reference Laboratory of Veterinary Drug Residues (HZAU)/MOA Key Laboratory of Food Safety Evaluation, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU)/MOA Key Laboratory of Food Safety Evaluation, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU)/MOA Key Laboratory of Food Safety Evaluation, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU)/MOA Key Laboratory of Food Safety Evaluation, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU)/MOA Key Laboratory of Food Safety Evaluation, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Adeel Sattar
- National Reference Laboratory of Veterinary Drug Residues (HZAU)/MOA Key Laboratory of Food Safety Evaluation, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Muhammad Abu Bakr Shabbir
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Hafiz Iftikhar Hussain
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Saeed Ahmed
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU)/MOA Key Laboratory of Food Safety Evaluation, Huazhong Agricultural University, Wuhan, Hubei 430070 China
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| |
Collapse
|
23
|
Divya A, Santhiagu A, Prakash SJ. Cloning, expression and characterization of a highly active thermostable alkaline phosphatase from Bacillus licheniformis MTCC 1483 in Escherichia coli BL21 (DE3). APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816040037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Leong YK, Lan JCW, Loh HS, Ling TC, Ooi CW, Show PL. Thermoseparating aqueous two-phase systems: Recent trends and mechanisms. J Sep Sci 2015; 39:640-7. [PMID: 26447739 DOI: 10.1002/jssc.201500667] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/09/2015] [Accepted: 08/19/2015] [Indexed: 11/11/2022]
Abstract
Having the benefits of being environmentally friendly, providing a mild environment for bioseparation, and scalability, aqueous two-phase systems (ATPSs) have increasingly caught the attention of industry and researchers for their application in the isolation and recovery of bioproducts. The limitations of conventional ATPSs give rise to the development of temperature-induced ATPSs that have distinctive thermoseparating properties and easy recyclability. This review starts with a brief introduction to thermoseparating ATPSs, including its history, unique characteristics and advantages, and lastly, key factors that influence partitioning. The underlying mechanism of temperature-induced ATPSs is covered together with a summary of recent applications. Thermoseparating ATPSs have been proven as a solution to the demand for economically favorable and environmentally friendly industrial-scale bioextraction and purification techniques.
Collapse
Affiliation(s)
- Yoong Kit Leong
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Selangor Darul Ehsan, Malaysia
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Material Science, Yuan Ze University, Chungli, Taoyuan, Taiwan
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Chien Wei Ooi
- Chemical Engineering, School of Engineering, Monash University, Bandar Sunway, Selangor, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Selangor Darul Ehsan, Malaysia.,Manufacturing and Industrial Processes Division, Faculty of Engineering, Centre for Food and Bioproduct Processing, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
25
|
Nagaraja VH, Iyyaswami R. Aqueous two phase partitioning of fish proteins: partitioning studies and ATPS evaluation. Journal of Food Science and Technology 2015; 52:3539-48. [PMID: 26028736 DOI: 10.1007/s13197-014-1425-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/19/2014] [Accepted: 05/26/2014] [Indexed: 11/30/2022]
Abstract
A suitable Aqueous Two Phase System (ATPS) has been identified for the partitioning of crude fish proteins from fish processing industrial effluent. A detailed study has been performed to analyze the influence of various parameters on protein partitioning such as molecular weight of PEG, effect of different salts (MgSO4, K2HPO4, Na3C6H5O7, Na2SO4, (NH4) 2PO4, K3C6H5O7) and their concentrations, pH, temperature, Tie Line Length (TLL), effluent loading and volume ratio. PEG 2000 - sodium sulphate ATPS was found to be a most favourable system among the selected ATPS for higher partition coefficient of proteins. The binodal curve and equilibrium characteristics of PEG 2000 - sodium sulphate were established and fitted to empirical equations. The equilibrium compositions (tie line) were correlated using Othmer-Tobias and Bancroft equations.
Collapse
Affiliation(s)
- Viswanatha H Nagaraja
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, India
| | - Regupathi Iyyaswami
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, India
| |
Collapse
|
26
|
Simental-Martínez J, Rito-Palomares M, Benavides J. Potential application of aqueous two-phase systems and three-phase partitioning for the recovery of superoxide dismutase from a clarified homogenate of Kluyveromyces marxianus. Biotechnol Prog 2014; 30:1326-34. [PMID: 25138773 DOI: 10.1002/btpr.1979] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/22/2014] [Indexed: 11/11/2022]
Abstract
Superoxide dismutase (SOD; EC 1.15.1.1) is an antioxidant enzyme that represents the primary cellular defense against superoxide radicals and has interesting applications in the medical and cosmetic industries. In the present work, the partition behavior of SOD in aqueous two-phase systems (ATPS) (using a standard solution and a complex extract from Kluyveromyces marxianus as sample) was characterized on different types of ATPS (polymer-polymer, polymer-salt, alcohol-salt, and ionic liquid (IL)-salt). The systems composed of PEG 3350-potassium phosphate, 45% TLL, 0.5 M NaCl (315 U/mg, 87% recovery, and 15.1-fold purification) and t-butanol-20% ammonium sulfate (205.8 U/mg, 80% recovery and 9.8-fold purification), coupled with a subsequent 100 kDa ultrafiltration stage, allowed the design of a prototype process for the recovery and partial purification of the product of interest. The findings reported herein demonstrate the potential of PEG-salt ATPS for the potential recovery of SOD.
Collapse
|
27
|
Extractive Fermentation of Xylanase from Aspergillus tamarii URM 4634 in a Bioreactor. Appl Biochem Biotechnol 2014; 173:1652-66. [DOI: 10.1007/s12010-014-0953-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
|
28
|
Zhang H, Xia YJ, Wang YL, Zhang BB, Xu GR. Coupling use of surfactant and in situ extractant for enhanced production of Antrodin C by submerged fermentation of Antrodia camphorata. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Sales AE, de Souza FASD, Teixeira JA, Porto TS, Porto ALF. Integrated Process Production and Extraction of the Fibrinolytic Protease from Bacillus sp. UFPEDA 485. Appl Biochem Biotechnol 2013; 170:1676-88. [DOI: 10.1007/s12010-013-0306-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/17/2013] [Indexed: 11/30/2022]
|
30
|
Pandey SK, Haldar C, Patel DK, Maiti P. Biodegradable Polymers for Potential Delivery Systems for Therapeutics. MULTIFACETED DEVELOPMENT AND APPLICATION OF BIOPOLYMERS FOR BIOLOGY, BIOMEDICINE AND NANOTECHNOLOGY 2013. [DOI: 10.1007/12_2012_198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
31
|
Show PL, Tan CP, Shamsul Anuar M, Ariff A, Yusof YA, Chen SK, Ling TC. Extractive fermentation for improved production and recovery of lipase derived from Burkholderia cepacia using a thermoseparating polymer in aqueous two-phase systems. BIORESOURCE TECHNOLOGY 2012; 116:226-233. [PMID: 22061444 DOI: 10.1016/j.biortech.2011.09.131] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/29/2011] [Accepted: 09/29/2011] [Indexed: 05/31/2023]
Abstract
An extractive fermentation technique was developed using a thermoseparating reagent to form a two-phase system for simultaneous cell cultivation and downstream processing of extracellular Burkholderia cepacia lipase. A 10% (w/w) solution of ethylene oxide-propylene oxide (EOPO) with a molecular mass of 3900 g/mol and pH 8.5, a 200 rpm speed, and 30 °C were selected as the optimal conditions for lipase production (55 U/ml). Repetitive batch fermentation was performed by continuous replacement of the top phase every 24h, which resulted in an average cell growth mass of 4.7 g/L for 10 extractive batches over 240 h. In scaling-up the process, a bench-scale bioreactor was tested under the conditions that had been optimized in flasks. The production rate and recovery yield were higher in the bioreactor compared to fermentation performed in flasks.
Collapse
Affiliation(s)
- Pau Loke Show
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | | | | | | | | | | | |
Collapse
|
32
|
Singh P, Banik RM. Partitioning studies of L-glutaminase production by Bacillus cereus MTCC 1305 in different PEG-salt/dextran. BIORESOURCE TECHNOLOGY 2012; 114:730-734. [PMID: 22513254 DOI: 10.1016/j.biortech.2012.03.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/14/2012] [Accepted: 03/14/2012] [Indexed: 05/31/2023]
Abstract
Partitioning studies of L-glutaminase production by Bacillus cereus MTCC 1305 was carried out in different PEG-salt/PEG-dextran system. The partitioning value of L-glutaminase increased with increasing molecular weight of PEG from 2000-4000 kDa and decreased with higher molecular weight of 6000 kDa. Phase system of PEG 4000 (8.5%)/dextran T500 (9.5%) was selected for the extractive fermentative production of L-glutaminase on the basis maximum partition coefficient (1.31). The production of L-glutaminase was found higher in top phase of ATPS (2.09 U/ml) than control media (1.42 U/ml). Overall production of L-glutaminase (1.83 U/ml) was found lower than top phase (2.09 U/ml) in ATPS system. The growth profile with short lag phase and higher cell concentration was obtained for ATPS. The partition coefficient of L-glutaminase increased with increase of system pH and temperature and optimum production was obtained at pH 7.5 and temperature 30 °C in top phase of PEG 4000/dextran T500 system.
Collapse
Affiliation(s)
- Priyanka Singh
- School of Biochemical Engineering, Institute of Technology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|