1
|
Kuang Z, Yan X, Yuan Y, Wang R, Zhu H, Wang Y, Li J, Ye J, Yue H, Yang X. Advances in stress-tolerance elements for microbial cell factories. Synth Syst Biotechnol 2024; 9:793-808. [PMID: 39072145 PMCID: PMC11277822 DOI: 10.1016/j.synbio.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Microorganisms, particularly extremophiles, have evolved multiple adaptation mechanisms to address diverse stress conditions during survival in unique environments. Their responses to environmental coercion decide not only survival in severe conditions but are also an essential factor determining bioproduction performance. The design of robust cell factories should take the balance of their growing and bioproduction into account. Thus, mining and redesigning stress-tolerance elements to optimize the performance of cell factories under various extreme conditions is necessary. Here, we reviewed several stress-tolerance elements, including acid-tolerant elements, saline-alkali-resistant elements, thermotolerant elements, antioxidant elements, and so on, providing potential materials for the construction of cell factories and the development of synthetic biology. Strategies for mining and redesigning stress-tolerance elements were also discussed. Moreover, several applications of stress-tolerance elements were provided, and perspectives and discussions for potential strategies for screening stress-tolerance elements were made.
Collapse
Affiliation(s)
- Zheyi Kuang
- School of Intelligence Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Xiaofang Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yanfei Yuan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Ruiqi Wang
- School of Intelligence Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Haifan Zhu
- School of Intelligence Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Youyang Wang
- School of Intelligence Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Jianfeng Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jianwen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Haitao Yue
- School of Intelligence Science and Technology, Xinjiang University, Urumqi, 830017, China
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
2
|
Zhang G, Guo W, Yi X, Zhang Z, Zhang L, Liu X, Wu F, Wu Q, Chen GQ. Engineered Halomonas for production of gamma-aminobutyric acid and 2-pyrrolidone. BIORESOURCE TECHNOLOGY 2024; 413:131448. [PMID: 39244106 DOI: 10.1016/j.biortech.2024.131448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Gamma-Aminobutyric acid (GABA) is a derivative of L-glutamate, also a precursor for the synthesis of 2-pyrrolidone, which is a monomer of nylon-4. This study achieved a one-step biosynthesis of GABA and 2-pyrrolidone by Halomonas bluephagenesis overexpressing key genes involved in GABA and 2-pyrrolidone synthesis and deleting GABA degradation genes combined with reducing the degradation of 2-pyrrolidone precursor. The resulting H. bluephagenesis strain WLp07 was employed in whole-cell catalysis, producing 357 g/L of GABA and 72 wt% of PHA. Furthermore, a self-flocculating H. bluephagenesis allowed rapid, convenient recycling of the cells, achieving 880 g/L of GABA over three cycles. Shake flask studies showed that engineered H. bluephagenesis harboring β-alanine CoA transferase was able to synthesized 2-pyrrolidone from GABA. H. bluephagenesis as a chassis of next generation industrial biotechnology (NGIB), demonstrated its diverse ability to produce GABA and 2-pyrrolidone in addition to intracellular PHA.
Collapse
Affiliation(s)
- Ge Zhang
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weike Guo
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xueqing Yi
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Zhongnan Zhang
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Lizhan Zhang
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Liu
- Beijing PhaBuilder Biotechnology Co., LTD, Shunyi District, Beijing 101399, China
| | - Fuqing Wu
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Beijing PhaBuilder Biotechnology Co., LTD, Shunyi District, Beijing 101399, China
| | - Qiong Wu
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; MOE Key Lab of Industrial Biocatalysts, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; MOE Key Lab of Industrial Biocatalysts, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Zhang Z, Shao M, Zhang G, Sun S, Yi X, Zhang Z, He H, Wang K, Hu Q, Wu Q, Chen GQ. Engineering Halomonas bluephagenesis for Synthesis of Polyhydroxybutyrate (PHB) in the Presence of High Nitrogen Containing Media. Metab Eng 2024; 86:S1096-7176(24)00140-X. [PMID: 39490668 DOI: 10.1016/j.ymben.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
The trade-offs exist between microbial growth and bioproduct synthesis including intracellular polyester polyhydroxybutyrate (PHB). Under nitrogen limitation, more carbon flux is directed to PHB synthesis while growth is inhibited with diminishing overall carbon utilization, similar to the suboptimal carbon utilization during glycolysis-derived pyruvate decarboxylation. This study reconfigured the central carbon network of Halomonas bluphagenesis to improve PHB yield theoretically and practically. It was found that the downregulation of glutamine synthetase (GS) activity led to a synchronous improvement on PHB accumulation and cell growth under nitrogen non-limitation condition, increasing the PHB yield from glucose (g/g) to 85% of theoretical yield, PHB titer from 7.6 g/L to 12.9 g/L, and from 51 g/L to 65 g/L when grown in shake flasks containing a rich N-source, and grown in a fed-batch cultivation conducted in a 7-L bioreactor also containing a rich N-source, respectively. Results offer better metabolic balance between glucose conversion efficiency and microbial growth for economic PHB production.
Collapse
Affiliation(s)
- Zhongnan Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mingwei Shao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ge Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Simian Sun
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xueqing Yi
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zonghao Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongtao He
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kang Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qitiao Hu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Industrial Biocatalysis Key Lab of the Ministry of Education, Dept Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Liu Y, Huo K, Tan B, He X, Wu Q, Li ZJ. Metabolic engineering of Halomonas bluephagenesis for the production of ethylene glycol and glycolate from xylose. J Biotechnol 2024; 396:36-40. [PMID: 39413879 DOI: 10.1016/j.jbiotec.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/09/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Halophilic Halomonas bluephagenesis, a natural producer of poly-3-hydroxybutyrate (PHB), was metabolically engineered to synthesize ethylene glycol and glycolate from xylose. Xylose utilization was achieved by overexpressing either the xylonate pathway or the ribulose-1-phosphate pathway. The key genes encoding for xylonate dehydratase and 2-keto-3-deoxy-xylonate aldolase in the xylonate pathway were screened. With further overexpressing aldehyde reductase gene yjgB, ethylene glycol accumulation was improved to 0.91 g/L, accompanied with 1.48 g/L of PHB accumulation. The disruption of native glycolate oxidase was found to be essential for glycolate production, and the defective recombinant strain produced 0.80 g/L glycolate with 1.14 g/L PHB in shake flask cultures. These results indicated that H. bluephagenesis has the potential to produce diverse metabolic chemicals from xylose.
Collapse
Affiliation(s)
- Yuzhong Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kai Huo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Biwei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xulin He
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiong Wu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zheng-Jun Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
5
|
Zheng Z, Wang Z, Zhang X, Zheng C, Xu B, Zhang J, Zhang C, Bie S, Peng F, Wu Y, Wang H, Zhang S, Lv L. Novel genomic and phenotypic traits of polyhydroxyalkanoate-producing bacterium ZZQ-149, the type strain of Halomonas qinghailakensis. BMC Microbiol 2024; 24:372. [PMID: 39342120 PMCID: PMC11438105 DOI: 10.1186/s12866-024-03532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Polyhydroxyalkanoates (PHAs) are optimal potential materials for industrial and medical uses, characterized by exceptional sustainability, biodegradability, and biocompatibility. These are primarily from various bacteria and archaea. Bacterial strains with effective PHA formation capabilities and minimal production cost form the foundation for PHA production. Detailed genomic analysis of these PHA-generating bacteria is vital to understand their PHA production pathways and enhance their synthesis capability. RESULTS ZZQ-149, a halophilic, PHA-producing bacterium, was isolated from the sediment of China's Qinghai Lake. Here, we decoded the full genome of ZZQ-149 using Single Molecule Real Time (SMRT) technology based on PacBio RS II platform, coupled with Illumina sequencing platforms. Physiological, chemotaxonomic traits, and phylogenetic analysis based on 16 S rRNA gene and single copy core genes of ninety-nine Halomonas type strains identified ZZQ-149 as the type strain of Halomonas qinghailakensis. Furthermore, a low average nucleotide identity (ANI, < 95%) delineated the genetic differences between ZZQ-149 and other Halomonas species. The ZZQ-149 genome, with a DNA G + C content of 52%, comprises a chromosome (3, 798, 069 bps) and a plasmid (6, 107 bps). The latter encodes the toxin-antitoxin system, BrnT/BrnA. Through comprehensive genome sequencing and analysis, we identified multiple PHA-synthesizing enzymes and an unprecedented combination of eight PHA-synthesizing pathways in ZZQ-149. CONCLUSIONS Being a halophilic, PHA-producing bacterium, ZZQ-149 exhibits potential as a high PHA producer for engineered bacteria via genome editing while ensuring low-cost PHA production through continuous, unsterilized fermentation.
Collapse
Affiliation(s)
- Ziqiang Zheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China.
- Wuhan Qianmo Bio-agriculture Technology Co., Ltd., Medicine Garden, Miaoshan Development Zone, Jiangxia District, Wuhan, 430299, China.
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| | - Zuoqian Wang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Xuerui Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Chaofan Zheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Bichao Xu
- Center for Instrumental Analysis and Metrology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jushuang Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Chengjun Zhang
- Division of Animal Infectious Disease, Huazhong Agricultural University, Wuhan, 430070, China
| | - Siwei Bie
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Fang Peng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yuzhen Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hongxun Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shu Zhang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Liang Lv
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| |
Collapse
|
6
|
Xie W, Ma H, Gao M, Du D, Liu L, Sui L. Effect of Amorphous Halomonas-PHB on Growth, Body Composition, Immune-Related Gene Expression and Vibrio anguillarum Resistance of Hybrid Grouper ( Epinephelus fuscoguttatus ♀ × E. lanceolatu ♂) Juveniles. Animals (Basel) 2024; 14:2649. [PMID: 39335239 PMCID: PMC11428417 DOI: 10.3390/ani14182649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Poly-β-hydroxybutyrate (PHB) is a bacterial metabolite produced by bacteria such as Halomonas sp. that serves as a carbon and energy storage compound for bacteria under nutrient-limited conditions. Two experiments were conducted to investigate the effects of dietary supplementation with Halomonas-PHB on hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatu ♂). In experiment I, juvenile groupers were fed basal diets supplemented with 3% Halomonas-PHB (3% HM-PHB) containing 1.4% PHB and 3% Halomonas (3% HM) without PHB, as well as a control diet, for seven weeks. The results showed no significant difference in survival rate, weight gain, and crude fat content between the 3% HM-PHB group and the control group; however, the crude protein of the 3% HM-PHB group was significantly lower than that of the control group. Furthermore, supplementation with 3% HM-PHB increased the fatty acids content in fish muscles, including long-chain unsaturated fatty acids C18:1n9, EPA, and DHA. In experiment II, groupers were fed a basal diet supplemented with 6.5% Halomonas-PHB (6.5% HM-PHB) containing 3% PHB and 6.5% Halomonas (6.5% HM) containing no PHB, as well as a basal diet (Control). After seven weeks of rearing, the fish were challenged with Vibrio anguillarum for 48 h. Although no significant difference in survival rate and growth was observed among different groups, the dietary supplement of 6.5% Halomonas-PHB improved the survival rate of V. anguillarum challenged grouper and significantly increased the gene expressions of catalase (CAT) and superoxide dismutase (SOD) in blood, interleukin 1 (IL1) and interleukin 10 (IL10) in the liver, spleen, head kidney, and blood (p < 0.05). In conclusion, dietary supplementation of Halomonas-PHB had no significantly positive effect on fish growth performance but increased the content of fatty acids, including long-chain unsaturated fatty acids C18:1n9, EPA, and DHA in fish muscle; it also improved the V. anguillarum resistance, possibly through increasing immune-related gene expression in different tissues and organs. Our findings offer compelling evidence that Halomonas-PHB can be utilized as a feed additive in intensive grouper farming to enhance the groupers' resistance to Vibrio.
Collapse
Affiliation(s)
- Wei Xie
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science & Technology, Tianjin 300457, China
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haoran Ma
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Meirong Gao
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science & Technology, Tianjin 300457, China
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dongdong Du
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liangsen Liu
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science & Technology, Tianjin 300457, China
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liying Sui
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science & Technology, Tianjin 300457, China
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
7
|
Zhang Y, Zheng Y, Hu Q, Hu Z, Sun J, Cheng P, Rao X, Jiang XR. Simultaneous multiplex genome loci editing of Halomonas bluephagenesis using an engineered CRISPR-guided base editor. Synth Syst Biotechnol 2024; 9:586-593. [PMID: 38720820 PMCID: PMC11076302 DOI: 10.1016/j.synbio.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Halomonas bluephagenesis TD serves as an exceptional chassis for next generation industrial biotechnology to produce various products. However, the simultaneous editing of multiple loci in H. bluephagenesis TD remains a significant challenge. Herein, we report the development of a multiple loci genome editing system, named CRISPR-deaminase-assisted base editor (CRISPR-BE) in H. bluephagenesis TD. This system comprises two components: a cytidine (CRISPR-cBE) and an adenosine (CRISPR-aBE) deaminase-based base editor. CRISPR-cBE can introduce a cytidine to thymidine mutation with an efficiency of up to 100 % within a 7-nt editing window in H. bluephagenesis TD. Similarly, CRISPR-aBE demonstrates an efficiency of up to 100 % in converting adenosine to guanosine mutation within a 7-nt editing window. CRISPR-cBE has been further validated and successfully employed for simultaneous multiplexed editing in H. bluephagenesis TD. Our findings reveal that CRISPR-cBE efficiently inactivated all six copies of the IS1086 gene simultaneously by introducing stop codon. This system achieved an editing efficiency of 100 % and 41.67 % in inactivating two genes and three genes, respectively. By substituting the Pcas promoter with the inducible promoter PMmp1, we optimized CRISPR-cBE system and ultimately achieved 100 % editing efficiency in inactivating three genes. In conclusion, our research offers a robust and efficient method for concurrently modifying multiple loci in H. bluephagenesis TD, opening up vast possibilities for industrial applications in the future.
Collapse
Affiliation(s)
- Yulin Zhang
- Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Yang Zheng
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qiwen Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiyuan Sun
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ping Cheng
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiancai Rao
- Medical Research Institute, Southwest University, Chongqing, 400716, China
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiao-Ran Jiang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| |
Collapse
|
8
|
Woo SG, Averesch NJH, Berliner AJ, Deutzmann JS, Pane VE, Chatterjee S, Criddle CS. Isolation and characterization of a Halomonas species for non-axenic growth-associated production of bio-polyesters from sustainable feedstocks. Appl Environ Microbiol 2024; 90:e0060324. [PMID: 39058034 PMCID: PMC11338360 DOI: 10.1128/aem.00603-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Biodegradable plastics are urgently needed to replace petroleum-derived polymeric materials and prevent their accumulation in the environment. To this end, we isolated and characterized a halophilic and alkaliphilic bacterium from the Great Salt Lake in Utah. The isolate was identified as a Halomonas species and designated "CUBES01." Full-genome sequencing and genomic reconstruction revealed the unique genetic traits and metabolic capabilities of the strain, including the common polyhydroxyalkanoate (PHA) biosynthesis pathway. Fluorescence staining identified intracellular polyester granules that accumulated predominantly during the strain's exponential growth, a feature rarely found among natural PHA producers. CUBES01 was found to metabolize a range of renewable carbon feedstocks, including glucosamine and acetyl-glucosamine, as well as sucrose, glucose, fructose, and further glycerol, propionate, and acetate. Depending on the substrate, the strain accumulated up to ~60% of its biomass (dry wt/wt) in poly(3-hydroxybutyrate), while reaching a doubling time of 1.7 h at 30°C and an optimum osmolarity of 1 M sodium chloride and a pH of 8.8. The physiological preferences of the strain may not only enable long-term aseptic cultivation but also facilitate the release of intracellular products through osmolysis. The development of a minimal medium also allowed the estimation of maximum polyhydroxybutyrate production rates, which were projected to exceed 5 g/h. Finally, also, the genetic tractability of the strain was assessed in conjugation experiments: two orthogonal plasmid vectors were stable in the heterologous host, thereby opening the possibility of genetic engineering through the introduction of foreign genes. IMPORTANCE The urgent need for renewable replacements for synthetic materials may be addressed through microbial biotechnology. To simplify the large-scale implementation of such bio-processes, robust cell factories that can utilize sustainable and widely available feedstocks are pivotal. To this end, non-axenic growth-associated production could reduce operational costs and enhance biomass productivity, thereby improving commercial competitiveness. Another major cost factor is downstream processing, especially in the case of intracellular products, such as bio-polyesters. Simplified cell-lysis strategies could also further improve economic viability.
Collapse
Affiliation(s)
- Sung-Geun Woo
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of Civil
and Environmental Engineering, Stanford
University, Stanford,
California, USA
| | - Nils J. H. Averesch
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of Civil
and Environmental Engineering, Stanford
University, Stanford,
California, USA
| | - Aaron J. Berliner
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of
Bioengineering, University of
California, Berkeley,
California, USA
| | - Joerg S. Deutzmann
- Department of Civil
and Environmental Engineering, Stanford
University, Stanford,
California, USA
| | - Vince E. Pane
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of
Chemistry, Stanford University,
Stanford, California,
USA
| | - Sulogna Chatterjee
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of Civil
and Environmental Engineering, Stanford
University, Stanford,
California, USA
| | - Craig S. Criddle
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of Civil
and Environmental Engineering, Stanford
University, Stanford,
California, USA
| |
Collapse
|
9
|
Ravagnan G, Schmid J. Promising non-model microbial cell factories obtained by genome reduction. Front Bioeng Biotechnol 2024; 12:1427248. [PMID: 39161352 PMCID: PMC11330790 DOI: 10.3389/fbioe.2024.1427248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 08/21/2024] Open
Abstract
The development of sustainable processes is the most important basis to realize the shift from the fossil-fuel based industry to bio-based production. Non-model microbes represent a great resource due to their advantageous traits and unique repertoire of bioproducts. However, most of these microbes require modifications to improve their growth and production capacities as well as robustness in terms of genetic stability. For this, genome reduction is a valuable and powerful approach to meet industry requirements and to design highly efficient production strains. Here, we provide an overview of various genome reduction approaches in prokaryotic microorganisms, with a focus on non-model organisms, and highlight the example of a successful genome-reduced model organism chassis. Furthermore, we discuss the advances and challenges of promising non-model microbial chassis.
Collapse
Affiliation(s)
| | - Jochen Schmid
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
10
|
Wang S, Liu Y, Guo H, Meng Y, Xiong W, Liu R, Yang C. Establishment of low-cost production platforms of polyhydroxyalkanoate bioplastics from Halomonas cupida J9. Biotechnol Bioeng 2024; 121:2106-2120. [PMID: 38587130 DOI: 10.1002/bit.28694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024]
Abstract
Microbial production of polyhydroxyalkanoate (PHA) is greatly restricted by high production cost arising from high-temperature sterilization and expensive carbon sources. In this study, a low-cost PHA production platform was established from Halomonas cupida J9. First, a marker-less genome-editing system was developed in H. cupida J9. Subsequently, H. cupida J9 was engineered to efficiently utilize xylose for PHA biosynthesis by introducing a new xylose metabolism module and blocking xylonate production. The engineered strain J9UΔxylD-P8xylA has the highest PHA yield (2.81 g/L) obtained by Halomonas with xylose as the sole carbon source so far. This is the first report on the production of short- and medium-chain-length (SCL-co-MCL) PHA from xylose by Halomonas. Interestingly, J9UΔxylD-P8xylA was capable of efficiently utilizing glucose and xylose as co-carbon sources for PHA production. Furthermore, fed-batch fermentation of J9UΔxylD-P8xylA coupled to a glucose/xylose co-feeding strategy reached up to 12.57 g/L PHA in a 5-L bioreactor under open and unsterile condition. Utilization of corn straw hydrolysate as the carbon source by J9UΔxylD-P8xylA reached 7.0 g/L cell dry weight (CDW) and 2.45 g/L PHA in an open fermentation. In summary, unsterile production in combination with inexpensive feedstock highlights the potential of the engineered strain for the low-cost production of PHA from lignocellulose-rich agriculture waste.
Collapse
Affiliation(s)
- Siqi Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yujie Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongfu Guo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yan Meng
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Weini Xiong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ruihua Liu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
11
|
Hari A, Doddapaneni TRKC, Kikas T. Common operational issues and possible solutions for sustainable biosurfactant production from lignocellulosic feedstock. ENVIRONMENTAL RESEARCH 2024; 251:118665. [PMID: 38493851 DOI: 10.1016/j.envres.2024.118665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/06/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Surfactants are compounds with high surface activity and emulsifying property. These compounds find application in food, medical, pharmaceutical, and petroleum industries, as well as in agriculture, bioremediation, cleaning, cosmetics, and personal care product formulations. Due to their widespread use and environmental persistence, ensuring biodegradability and sustainability is necessary so as not to harm the environment. Biosurfactants, i.e., surfactants of plant or microbial origin produced from lignocellulosic feedstock, perform better than their petrochemically derived counterparts on the scale of net-carbon-negativity. Although many biosurfactants are commercially available, their high cost of production justifies their application only in expensive pharmaceuticals and cosmetics. Besides, the annual number of new biosurfactant compounds reported is less, compared to that of chemical surfactants. Multiple operational issues persist in the biosurfactant value chain. In this review, we have categorized some of these issues based on their relative position in the value chain - hurdles occurring during planning, upstream processes, production stage, and downstream processes - alongside plausible solutions. Moreover, we have presented the available paths forward for this industry in terms of process development and integrated pretreatment, combining conventional tried-and-tested strategies, such as reactor designing and statistical optimization with cutting-edge technologies including metabolic modeling and artificial intelligence. The development of techno-economically feasible biosurfactant production processes would be instrumental in the complete substitution of petrochemical surfactants, rather than mere supplementation.
Collapse
Affiliation(s)
- Anjana Hari
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, Tartu, 51014, Estonia.
| | - Tharaka Rama Krishna C Doddapaneni
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, Tartu, 51014, Estonia
| | - Timo Kikas
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, Tartu, 51014, Estonia
| |
Collapse
|
12
|
Caro-Astorga J, Meyerowitz JT, Stork DA, Nattermann U, Piszkiewicz S, Vimercati L, Schwendner P, Hocher A, Cockell C, DeBenedictis E. Polyextremophile engineering: a review of organisms that push the limits of life. Front Microbiol 2024; 15:1341701. [PMID: 38903795 PMCID: PMC11188471 DOI: 10.3389/fmicb.2024.1341701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Nature exhibits an enormous diversity of organisms that thrive in extreme environments. From snow algae that reproduce at sub-zero temperatures to radiotrophic fungi that thrive in nuclear radiation at Chernobyl, extreme organisms raise many questions about the limits of life. Is there any environment where life could not "find a way"? Although many individual extremophilic organisms have been identified and studied, there remain outstanding questions about the limits of life and the extent to which extreme properties can be enhanced, combined or transferred to new organisms. In this review, we compile the current knowledge on the bioengineering of extremophile microbes. We summarize what is known about the basic mechanisms of extreme adaptations, compile synthetic biology's efforts to engineer extremophile organisms beyond what is found in nature, and highlight which adaptations can be combined. The basic science of extremophiles can be applied to engineered organisms tailored to specific biomanufacturing needs, such as growth in high temperatures or in the presence of unusual solvents.
Collapse
Affiliation(s)
| | | | - Devon A. Stork
- Pioneer Research Laboratories, San Francisco, CA, United States
| | - Una Nattermann
- Pioneer Research Laboratories, San Francisco, CA, United States
| | | | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | | | - Antoine Hocher
- London Institute of Medical Sciences, London, United Kingdom
| | - Charles Cockell
- UK Centre for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Erika DeBenedictis
- The Francis Crick Institute, London, United Kingdom
- Pioneer Research Laboratories, San Francisco, CA, United States
| |
Collapse
|
13
|
Deantas-Jahn C, Mendoza SN, Licona-Cassani C, Orellana C, Saa PA. Metabolic modeling of Halomonas campaniensis improves polyhydroxybutyrate production under nitrogen limitation. Appl Microbiol Biotechnol 2024; 108:310. [PMID: 38662130 PMCID: PMC11045607 DOI: 10.1007/s00253-024-13111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/25/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Poly-hydroxybutyrate (PHB) is an environmentally friendly alternative for conventional fossil fuel-based plastics that is produced by various microorganisms. Large-scale PHB production is challenging due to the comparatively higher biomanufacturing costs. A PHB overproducer is the haloalkaliphilic bacterium Halomonas campaniensis, which has low nutritional requirements and can grow in cultures with high salt concentrations, rendering it resistant to contamination. Despite its virtues, the metabolic capabilities of H. campaniensis as well as the limitations hindering higher PHB production remain poorly studied. To address this limitation, we present HaloGEM, the first high-quality genome-scale metabolic network reconstruction, which encompasses 888 genes, 1528 reactions (1257 gene-associated), and 1274 metabolites. HaloGEM not only displays excellent agreement with previous growth data and experiments from this study, but it also revealed nitrogen as a limiting nutrient when growing aerobically under high salt concentrations using glucose as carbon source. Among different nitrogen source mixtures for optimal growth, HaloGEM predicted glutamate and arginine as a promising mixture producing increases of 54.2% and 153.4% in the biomass yield and PHB titer, respectively. Furthermore, the model was used to predict genetic interventions for increasing PHB yield, which were consistent with the rationale of previously reported strategies. Overall, the presented reconstruction advances our understanding of the metabolic capabilities of H. campaniensis for rationally engineering this next-generation industrial biotechnology platform. KEY POINTS: A comprehensive genome-scale metabolic reconstruction of H. campaniensis was developed. Experiments and simulations predict N limitation in minimal media under aerobiosis. In silico media design increased experimental biomass yield and PHB titer.
Collapse
Affiliation(s)
- Carolina Deantas-Jahn
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastián N Mendoza
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
- Systems Biology Lab, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Cuauhtemoc Licona-Cassani
- Núcleo de Innovación de Sistemas Biológicos (NISB), FEMSA Biotechnology Center, Tecnológico de Monterrey, Monterrey, Mexico
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Mexico
| | - Camila Orellana
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro A Saa
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Instituto de Ingeniería Matemática y Computacional, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
14
|
Orsi E, Schada von Borzyskowski L, Noack S, Nikel PI, Lindner SN. Automated in vivo enzyme engineering accelerates biocatalyst optimization. Nat Commun 2024; 15:3447. [PMID: 38658554 PMCID: PMC11043082 DOI: 10.1038/s41467-024-46574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Achieving cost-competitive bio-based processes requires development of stable and selective biocatalysts. Their realization through in vitro enzyme characterization and engineering is mostly low throughput and labor-intensive. Therefore, strategies for increasing throughput while diminishing manual labor are gaining momentum, such as in vivo screening and evolution campaigns. Computational tools like machine learning further support enzyme engineering efforts by widening the explorable design space. Here, we propose an integrated solution to enzyme engineering challenges whereby ML-guided, automated workflows (including library generation, implementation of hypermutation systems, adapted laboratory evolution, and in vivo growth-coupled selection) could be realized to accelerate pipelines towards superior biocatalysts.
Collapse
Affiliation(s)
- Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | | | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany.
- Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, 10117, Berlin, Germany.
| |
Collapse
|
15
|
Wang Y, Qian J, Shi T, Wang Y, Ding Q, Ye C. Application of extremophile cell factories in industrial biotechnology. Enzyme Microb Technol 2024; 175:110407. [PMID: 38341913 DOI: 10.1016/j.enzmictec.2024.110407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/13/2024]
Abstract
Due to the extreme living conditions, extremophiles have unique characteristics in morphology, structure, physiology, biochemistry, molecular evolution mechanism and so on. Extremophiles have superior growth and synthesis capabilities under harsh conditions compared to conventional microorganisms, allowing for unsterilized fermentation processes and thus better performance in low-cost production. In recent years, due to the development and optimization of molecular biology, synthetic biology and fermentation technology, the identification and screening technology of extremophiles has been greatly improved. In this review, we summarize techniques for the identification and screening of extremophiles and review their applications in industrial biotechnology in recent years. In addition, the facts and perspectives gathered in this review suggest that next-generation industrial biotechnology (NGIBs) based on engineered extremophiles holds the promise of simplifying biofuturing processes, establishing open, non-sterilized continuous fermentation production systems, and utilizing low-cost substrates to make NGIBs attractive and cost-effective bioprocessing technologies for sustainable manufacturing.
Collapse
Affiliation(s)
- Yuzhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Jinyi Qian
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Tianqiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yuetong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Qiang Ding
- School of Life Sciences, Anhui University, Hefei 230601, PR China.
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China; Ministry of Education Key Laboratory of NSLSCS.
| |
Collapse
|
16
|
Hu Q, Sun S, Zhang Z, Liu W, Yi X, He H, Scrutton NS, Chen GQ. Ectoine hyperproduction by engineered Halomonas bluephagenesis. Metab Eng 2024; 82:238-249. [PMID: 38401747 DOI: 10.1016/j.ymben.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Ectoine, a crucial osmoprotectant for salt adaptation in halophiles, has gained growing interest in cosmetics and medical industries. However, its production remains challenged by stringent fermentation process in model microorganisms and low production level in its native producers. Here, we systematically engineered the native ectoine producer Halomonas bluephagenesis for ectoine production by overexpressing ectABC operon, increasing precursors availability, enhancing product transport system and optimizing its growth medium. The final engineered H. bluephagenesis produced 85 g/L ectoine in 52 h under open unsterile incubation in a 7 L bioreactor in the absence of plasmid, antibiotic or inducer. Furthermore, it was successfully demonstrated the feasibility of decoupling salt concentration with ectoine synthesis and co-production with bioplastic P(3HB-co-4HB) by the engineered H. bluephagenesis. The unsterile fermentation process and significantly increased ectoine titer indicate that H. bluephagenesis as the chassis of Next-Generation Industrial Biotechnology (NGIB), is promising for the biomanufacturing of not only intracellular bioplastic PHA but also small molecular compound such as ectoine.
Collapse
Affiliation(s)
- Qitiao Hu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Simian Sun
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhongnan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Liu
- PhaBuilder Biotechnology Co. Ltd., Shunyi District, Beijing 101309, China
| | - Xueqing Yi
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hongtao He
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
17
|
Liu Y, Song X, Yang W, Wang M, Lian G, Li ZJ. Production of polyhydroxyalkanoates by engineered Halomonas bluephagenesis using starch as a carbon source. Int J Biol Macromol 2024; 261:129838. [PMID: 38307428 DOI: 10.1016/j.ijbiomac.2024.129838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
A novel α-amylase Amy03713 was screened and cloned from the starch utilization strain Vibrio alginolyticus LHF01. When heterologously expressed in Escherichia coli, Amy03713 exhibited the highest enzyme activity at 45 °C and pH 7, maintained >50 % of the enzyme activity in the range of 25-75 °C and pH 5-9, and sustained >80 % of the enzyme activity in 25 % (w/v) of NaCl solution, thus showing a wide range of adapted temperatures, pH, and salt concentrations. Halomonas bluephagenesis harboring amy03713 gene was able to directly utilize starch. With optimized amylase expression, H. bluephagenesis could produce poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB). When cultured for PHB production, recombinant H. bluephagenesis was able to grow up to a cell dry weight of 11.26 g/L, achieving a PHB titer of 6.32 g/L, which is the highest titer that has been reported for PHB production from starch in shake flasks. This study suggests that Amy03713 is an ideal amylase for PHA production using starch as the carbon source in H. bluephagenesis.
Collapse
Affiliation(s)
- Yuzhong Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xueqi Song
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Weinan Yang
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mengru Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Guoli Lian
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zheng-Jun Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
18
|
Zhang J, Yan X, Park H, Scrutton NS, Chen T, Chen GQ. Nonsterile microbial production of chemicals based on Halomonas spp. Curr Opin Biotechnol 2024; 85:103064. [PMID: 38262074 DOI: 10.1016/j.copbio.2023.103064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/09/2023] [Accepted: 12/30/2023] [Indexed: 01/25/2024]
Abstract
The use of extremophile organisms such as Halomomas spp. can eliminate the need for fermentation sterilization, significantly reducing process costs. Microbial fermentation is considered a pivotal strategy to reduce reliance on fossil fuel resources; however, sustainable processes continue to incur higher costs than their chemical industry counterparts. Most organisms require equipment sterilization to prevent contamination, a practice that introduces complexity and financial strain. Fermentations involving extremophile organisms can eliminate the sterilization process, relying instead on conditions that are conductive solely to the growth of the desired organism. This review discusses current challenges in pilot- and industrial-scale bioproduction when using the extremophile bacteria Halomomas spp. under nonsterile conditions.
Collapse
Affiliation(s)
- Jing Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China
| | - Xu Yan
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Helen Park
- School of Life Sciences, Tsinghua University, Beijing 100084, China; EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Tao Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China.
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; MOE Key Lab for Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Ben Abdallah M, Chamkha M, Karray F, Sayadi S. Microbial diversity in polyextreme salt flats and their potential applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11371-11405. [PMID: 38180652 DOI: 10.1007/s11356-023-31644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
Recent geological, hydrochemical, and mineralogical studies performed on hypersaline salt flats have given insights into similar geo-morphologic features on Mars. These salt-encrusted depressions are widely spread across the Earth, where they are characterized by high salt concentrations, intense UV radiation, high evaporation, and low precipitation. Their surfaces are completely dry in summer; intermittent flooding occurs in winter turning them into transitory hypersaline lakes. Thanks to new approaches such as culture-dependent, culture-independent, and metagenomic-based methods, it is important to study microbial life under polyextreme conditions and understand what lives in these dynamic ecosystems and how they function. Regarding these particular features, new halophilic microorganisms have been isolated from some salt flats and identified as excellent producers of primary and secondary metabolites and granules such as halocins, enzymes, carotenoids, polyhydroxyalkanoates, and exopolysaccharides. Additionally, halophilic microorganisms are implemented in heavy metal bioremediation and hypersaline wastewater treatment. As a result, there is a growing interest in the distribution of halophilic microorganisms around the world that can be looked upon as good models to develop sustainable biotechnological processes for all fields. This review provides insights into diversity, ecology, metabolism, and genomics of halophiles in hypersaline salt flats worldwide as well as their potential uses in biotechnology.
Collapse
Affiliation(s)
- Manel Ben Abdallah
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia.
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
20
|
Asiri F. Polyhydroxyalkanoates for Sustainable Aquaculture: A Review of Recent Advancements, Challenges, and Future Directions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2034-2058. [PMID: 38227436 DOI: 10.1021/acs.jafc.3c06488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Polyhydroxyalkanoates (PHA) are biodegradable biopolymers produced by prokaryotic microbes, which, at the same time, can be applied as single-cell proteins (SCPs), growing on renewable waste-derived substrates. These PHA polymers have gained increasing attention as a sustainable alternative to conventional plastics. One promising application of PHA and PHA-rich SCPs lies within the aquaculture food industry, where they hold potential as feed additives, biocontrol agents against diseases, and immunostimulants. Nevertheless, the cost of PHA production and application remains high, partly due to expensive substrates for cultivating PHA-accumulating SCPs, costly sterilization, energy-intensive SCPs harvesting techniques, and toxic PHA extraction and purification processes. This review summarizes the current state of PHA production and its application in aquaculture. The structure and classification of PHA, microbial sources, cultivation substrates, biosynthesis pathways, and the production challenges and solutions are discussed. Next, the potential of PHA application in aquaculture is explored, focusing on aquaculture challenges, common and innovative PHA-integrated farming practices, and PHA mechanisms in inhibiting pathogens, enhancing the immune system, and improving growth and gut health of various aquatic species. Finally, challenges and future research needs for PHA production and application in aquaculture are identified. Overall, this review paper provides a comprehensive overview of the potential of PHA in aquaculture and highlights the need for further research in this area.
Collapse
Affiliation(s)
- Fahad Asiri
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| |
Collapse
|
21
|
Ren K, Zhao Y, Chen GQ, Ao X, Wu Q. Construction of a Stable Expression System Based on the Endogenous hbpB/ hbpC Toxin-Antitoxin System of Halomonas bluephagenesis. ACS Synth Biol 2024; 13:61-67. [PMID: 38100561 DOI: 10.1021/acssynbio.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Halomonas bluephagenesis is a halophilic bacterium capable of efficiently producing polyhydroxyalkanoates and other valuable chemicals through high salinity open fermentation, offering an appealing platform for next-generation industrial biotechnology. Various techniques have been developed to engineer Halomonas bluephagenesis, each with its inherent shortcomings. Genome editing methods often entail complex and time-consuming processes, while flexible expression systems relying on plasmids necessitate the use of antibiotics. In this study, we developed a stable recombinant plasmid vector, pHbPBC, based on a novel hbpB/hbpC toxin-antitoxin system found within the endogenous plasmid of Halomonas bluephagenesis. Remarkably, pHbPBC exhibited exceptional stability during 7 days of continuous subculture, eliminating the need for antibiotics or other selection pressures. This stability even rivaled genomic integration, all while achieving higher levels of heterologous expression. Our research introduces a novel approach for genetically modifying and harnessing nonmodel halophilic bacteria, contributing to the advancement of next-generation industrial biotechnology.
Collapse
Affiliation(s)
- Kang Ren
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yiqing Zhao
- Beijing No.12 High School, Beijing 100071, China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiang Ao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiong Wu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Yao F, Yuan K, Zhou W, Tang W, Tang T, Yang X, Liu H, Li F, Xu Q, Peng C. Unlocking growth potential in Halomonas bluephagenesis for enhanced PHA production with sulfate ions. J Ind Microbiol Biotechnol 2024; 51:kuae013. [PMID: 38632039 DOI: 10.1093/jimb/kuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
The mutant strain Halomonas bluephagenesis (TDH4A1B5P) was found to produce PHA under low-salt, non-sterile conditions, but the yield was low. To improve the yield, different nitrogen sources were tested. It was discovered that urea was the most effective nitrogen source for promoting growth during the stable stage, while ammonium sulfate was used during the logarithmic stage. The growth time of H. bluephagenesis (TDH4A1B5P) and its PHA content were significantly prolonged by the presence of sulfate ions. After 64 hr in a 5-L bioreactor supplemented with sulfate ions, the dry cell weight (DCW) of H. bluephagenesis weighed 132 g/L and had a PHA content of 82%. To promote the growth and PHA accumulation of H. bluephagenesis (TDH4A1B5P), a feeding regimen supplemented with nitrogen sources and sulfate ions with ammonium sodium sulfate was established in this study. The DCW was 124 g/L, and the PHA content accounted for 82.3% (w/w) of the DCW, resulting in a PHA yield of 101 g/L in a 30-L bioreactor using the optimized culture strategy. In conclusion, stimulating H. bluephagenesis (TDH4A1B5P) to produce PHA is a feasible and suitable strategy for all H. bluephagenesis.
Collapse
Affiliation(s)
- Fuwei Yao
- School of food science and pharmaceutical engineering, Nanjing Normal University (NNU), Nanjing, 210023, China
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
| | - Kai Yuan
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
- COFCO Bio-Chemical Energy (Yushu) Co., Ltd., COFCO Biotechnology Co., Ltd., Changchun, 130400, China
| | - Weiqiang Zhou
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
- COFCO Bio-Chemical Energy (Yushu) Co., Ltd., COFCO Biotechnology Co., Ltd., Changchun, 130400, China
| | - Weitao Tang
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
- COFCO Bio-Chemical Energy (Yushu) Co., Ltd., COFCO Biotechnology Co., Ltd., Changchun, 130400, China
| | - Tang Tang
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
- COFCO Bio-Chemical Energy (Yushu) Co., Ltd., COFCO Biotechnology Co., Ltd., Changchun, 130400, China
| | - Xiaofan Yang
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
- COFCO Bio-Chemical Energy (Yushu) Co., Ltd., COFCO Biotechnology Co., Ltd., Changchun, 130400, China
| | - Haijun Liu
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
- COFCO Bio-Chemical Energy (Yushu) Co., Ltd., COFCO Biotechnology Co., Ltd., Changchun, 130400, China
| | - Fangliang Li
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
- COFCO Bio-Chemical Energy (Yushu) Co., Ltd., COFCO Biotechnology Co., Ltd., Changchun, 130400, China
| | - Qing Xu
- School of food science and pharmaceutical engineering, Nanjing Normal University (NNU), Nanjing, 210023, China
| | - Chao Peng
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
| |
Collapse
|
23
|
Xu T, Mitra R, Tan D, Li Z, Zhou C, Chen T, Xie Z, Han J. Utilization of gene manipulation system for advancing the biotechnological potential of halophiles: A review. Biotechnol Adv 2024; 70:108302. [PMID: 38101552 DOI: 10.1016/j.biotechadv.2023.108302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/02/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Halophiles are salt-loving microorganisms known to have their natural resistance against media contamination even when cultivated in nonsterile and continuous bioprocess system, thus acting as promising cell factories for Next Generation of Industrial Biotechnology (NGIB). NGIB - a successor to the traditional industrial biotechnology, is a more sustainable and efficient bioprocess technology while saving energy and water in a more convenient way as well as reducing the investment cost and skilled workforce requirement. Numerous studies have achieved intriguing outcomes during synthesis of different metabolite using halophiles such as polyhydroxyalkanoates (PHA), ectoine, biosurfactants, and carotenoids. Present-day development in genetic maneuverings have shown optimistic effects on the industrial applications of halophiles. However, viable and competent genetic manipulation system and gene editing tools are critical to accelerate the process of halophile engineering. With the aid of such powerful gene manipulation systems, exclusive microbial chassis are being crafted with desirable features to breed another innovative area of research such as synthetic biology. This review provides an aerial perspective on how the expansion of adaptable gene manipulation toolkits in halophiles are contributing towards biotechnological advancement, and also focusses on their subsequent application for production improvement. This current methodical and comprehensive review will definitely help the scientific fraternity to bridge the gap between challenges and opportunities in halophile engineering.
Collapse
Affiliation(s)
- Tong Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Ruchira Mitra
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; International College, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Dan Tan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zhengjun Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Biochemical Engineering, Beijing Union University, Beijing 100023, People's Republic of China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, People's Republic of China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
24
|
Mojica-Muñoz DM, Macías-Sánchez KL, Juárez-Hernández EO, Rodríguez-Álvarez A, Grévy JM, Díaz-Valle A, Carrillo-Tripp M, Falcón-González JM. Optimizing biodegradable plastics: Molecular dynamics insights into starch plasticization with glycerol and oleic acid. J Mol Graph Model 2024; 126:108674. [PMID: 37984192 DOI: 10.1016/j.jmgm.2023.108674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Petroleum-based plastics dominate everyday life, necessitating the exploration of natural polymers as alternatives. Starch, abundant and biodegradable, is a promising raw material. However, understanding the molecular mechanisms underlying starch plasticization has proven challenging. To address this, we employ molecular dynamics simulations, focusing on amylose as a model. Our comprehensive evaluation revealed that chain size affects solubility, temperature influenced diffusivity and elastic properties, and oleic acid expressed potential as an alternative plasticizer. Furthermore, blending glycerol or oleic acid with water suggested the enhancement amylose's elasticity. These findings contribute to the design of sustainable and improved biodegradable plastics.
Collapse
Affiliation(s)
- Diana Margarita Mojica-Muñoz
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, Av. Mineral de Valenciana No. 200, Col. Fraccionamiento Industrial Puerto Interior, Silao de la Victoria, 36275, Guanajuato, Mexico
| | - Karla Lizbeth Macías-Sánchez
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, Av. Mineral de Valenciana No. 200, Col. Fraccionamiento Industrial Puerto Interior, Silao de la Victoria, 36275, Guanajuato, Mexico
| | - Estefanía Odemaris Juárez-Hernández
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, Av. Mineral de Valenciana No. 200, Col. Fraccionamiento Industrial Puerto Interior, Silao de la Victoria, 36275, Guanajuato, Mexico
| | - Aurora Rodríguez-Álvarez
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa, Cuernavaca, 22222, Morelos, Mexico
| | - Jean-Michel Grévy
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa, Cuernavaca, 22222, Morelos, Mexico
| | - Armando Díaz-Valle
- Biomolecular Diversity Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Vía del Conocimiento 201, PIIT, Apodaca, 66600, Nuevo León, Mexico
| | - Mauricio Carrillo-Tripp
- Biomolecular Diversity Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Vía del Conocimiento 201, PIIT, Apodaca, 66600, Nuevo León, Mexico
| | - José Marcos Falcón-González
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, Av. Mineral de Valenciana No. 200, Col. Fraccionamiento Industrial Puerto Interior, Silao de la Victoria, 36275, Guanajuato, Mexico.
| |
Collapse
|
25
|
Ma Y, Ye JW, Lin Y, Yi X, Wang X, Wang H, Huang R, Wu F, Wu Q, Liu X, Chen GQ. Flux optimization using multiple promoters in Halomonas bluephagenesis as a model chassis of the next generation industrial biotechnology. Metab Eng 2024; 81:249-261. [PMID: 38159902 DOI: 10.1016/j.ymben.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/16/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Predictability and robustness are challenges for bioproduction because of the unstable intracellular synthetic activities. With the deeper understanding of the gene expression process, fine-tuning has become a meaningful tool for biosynthesis optimization. This study characterized several gene expression elements and constructed a multiple inducible system that responds to ten different small chemical inducers in halophile bacterium Halomonas bluephagenesis. Genome insertion of regulators was conducted for the purpose of gene cluster stabilization and regulatory plasmid simplification. Additionally, dynamic ranges of the multiple inducible systems were tuned by promoter sequence mutations to achieve diverse scopes for high-resolution gene expression control. The multiple inducible system was successfully employed to precisely control chromoprotein expression, lycopene and poly-3-hydroxybutyrate (PHB) biosynthesis, resulting in colorful bacterial pictures, optimized cell growth, lycopene and PHB accumulation. This study demonstrates a desirable approach for fine-tuning of rational and efficient gene expressions, displaying the significance for metabolic pathway optimization.
Collapse
Affiliation(s)
- Yueyuan Ma
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian-Wen Ye
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yina Lin
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xueqing Yi
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xuan Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huan Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ruiyan Huang
- Garrison Forest School, Owings Mills, MD, 21117, USA
| | - Fuqing Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Beijing, 101309, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; MOE Key Laboratory for Industrial Biocatalysts, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
26
|
Liu H, Chen Y, Wang S, Liu Y, Zhao W, Huo K, Guo H, Xiong W, Wang S, Yang C, Liu R. Metabolic engineering of genome-streamlined strain Pseudomonas putida KTU-U27 for medium-chain-length polyhydroxyalkanoate production from xylose and cellobiose. Int J Biol Macromol 2023; 253:126732. [PMID: 37678685 DOI: 10.1016/j.ijbiomac.2023.126732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/03/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Bio-based plastics polyhydroxyalkanoates (PHAs) are considered as a good substitutive to traditional fossil-based plastics because PHAs outcompete chemical plastics in several important properties, such as biodegradability, biocompatibility, and renewability. However, the industrial production of PHA (especially medium-chain-length PHA, mcl-PHA) is greatly restricted by the cost of carbon sources. Currently, xylose and cellobiose derived from lignocellulose are potential substrates for mcl-PHA production. In this study, Pseudomonas putida KTU-U27, a genome-streamlined strain derived from a mcl-PHA producer P. putida KT2440, was used as the optimal chassis for the construction of microbial cell factories with the capacity to efficiently produce mcl-PHA from xylose and cellobiose by introducing the xylose and cellobiose metabolism modules and enhancing the transport of xylose and cellobiose. The lag phases of the xylose- and cellobiose-grown engineered strains were almost completely eliminated and the xylose- and cellobiose-utilizing performance was greatly improved via adaptive laboratory evolution. In shake-flask fermentation, the engineered strain 27A-P13-xylABE-Ptac-tt and 27A-P13-bglC-P13-gts had a mcl-PHA content of 41.67 wt% and 45.18 wt%, respectively, and were able to efficiently utilize xylose or cellobiose as the sole carbon source for cell growth. Herein, microbial production of mcl-PHA using xylose as the sole carbon source has been demonstrated for the first time. Meanwhile, the highest yield of mcl-PHA produced from cellobiose has been obtained in this study. Interestingly, the engineered strains derived from genome-reduced P. putida strains showed higher xylose- and cellobiose-utilizing performance and higher PHA yield than those derived from P. putida KT2440. This study highlights enormous potential of the engineered strains as promising platforms for low-cost production of mcl-PHA from xylose- and cellobiose-rich substrates.
Collapse
Affiliation(s)
- Honglu Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yaping Chen
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siqi Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yujie Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wanwan Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kaiyue Huo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hongfu Guo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weini Xiong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Ruihua Liu
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
27
|
Wang Y, Luo CB, Li YQ. Biofuneling lignin-derived compounds into lipids using a newly isolated Citricoccus sp. P2. BIORESOURCE TECHNOLOGY 2023; 387:129669. [PMID: 37573985 DOI: 10.1016/j.biortech.2023.129669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Lignin-derived compounds (LDCs) bioconversion into lipids is a promising yet challenging task. This study focuses on the isolation of the ligninolytic bacterium Citricoccus sp. P2 and investigates its mechanism for producing lipids from LDCs. Although strain P2 exhibits a relatively low lignin degradation rate of 44.63%, it efficiently degrades various concentrations of LDCs. The highest degradation rate is observed when incubated with 0.6 g/L vanillic acid, 0.6 g/L syringic acid, 0.8 g/L p-coumaric acid, and 0.4 g/L phenol, resulting in respective lipid yields of 0.16 g/L, 0.13 g/L, 0.24 g/L, and 0.13 g/L. The genome of strain P2 provides insights into LDCs bioconversion into lipids and stress tolerance. Moreover, Citricoccus sp. P2 has been successfully developed a non-sterilized lipid production using its native alkali-halophilic characteristics, which significantly enhances the lipid yield. This study presents a promising platform for lipids production from LDCs and has potential to promote valorization of lignin.
Collapse
Affiliation(s)
- Yan Wang
- College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Chao-Bing Luo
- College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Yuan-Qiu Li
- College of Life Science, Leshan Normal University, Leshan 614000, China.
| |
Collapse
|
28
|
Liu C, Yue Y, Xue Y, Zhou C, Ma Y. CRISPR-Cas9 assisted non-homologous end joining genome editing system of Halomonas bluephagenesis for large DNA fragment deletion. Microb Cell Fact 2023; 22:211. [PMID: 37838676 PMCID: PMC10576340 DOI: 10.1186/s12934-023-02214-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Halophiles possess several unique properties and have broad biotechnological applications including industrial biotechnology production. Halomonas spp., especially Halomonas bluephagenesis, have been engineered to produce various biopolyesters such as polyhydroxyalkanoates (PHA), some proteins, small molecular compounds, organic acids, and has the potential to become a chassis cell for the next-generation of industrial biotechnology (NGIB) owing to its simple culture, fast growth, contamination-resistant, low production cost, and high production value. An efficient genome editing system is the key for its engineering and application. However, the efficiency of the established CRISPR-Cas-homologous recombination (HR) gene editing tool for large DNA fragments was still relatively low. In this study, we firstly report a CRISPR-Cas9 gene editing system combined with a non-homologous end joining (NHEJ) repair system for efficient large DNA fragment deletion in Halomonas bluephagenesis. RESULTS Three different NHEJ repair systems were selected and functionally identified in Halomonas bluephagenesis TD01. The NHEJ system from M. tuberculosis H37Rv (Mt-NHEJ) can functionally work in H. bluephagenesis TD01, resulting in base deletion of different lengths for different genes and some random base insertions. Factors affecting knockout efficiencies, such as the number and position of sgRNAs on the DNA double-strands, the Cas9 protein promoter, and the interaction between the HR and the NHEJ repair system, were further investigated. Finally, the optimized CRISPR-Cas9-NHEJ editing system was able to delete DNA fragments up to 50 kb rapidly with high efficiency of 31.3%, when three sgRNAs on the Crick/Watson/Watson DNA double-strands and the arabinose-induced promoter Para for Cas9 were used, along with the background expression of the HR repair system. CONCLUSIONS This was the first report of CRISPR-Cas9 gene editing system combined with a non-homologous end joining (NHEJ) repair system for efficient large DNA fragment deletion in Halomonas spp. These results not only suggest that this editing system is a powerful genome engineering tool for constructing chassis cells in Halomonas, but also extend the application of the NHEJ repair system.
Collapse
Affiliation(s)
- Chunyan Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaxin Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China.
- Beijing Key Laboratory for Utilization of Biomass Wastes, Beijing, 100023, China.
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
29
|
Faulkner M, Hoeven R, Kelly PP, Sun Y, Park H, Liu LN, Toogood HS, Scrutton NS. Chemoautotrophic production of gaseous hydrocarbons, bioplastics and osmolytes by a novel Halomonas species. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:152. [PMID: 37821908 PMCID: PMC10568851 DOI: 10.1186/s13068-023-02404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Production of relatively low value, bulk commodity chemicals and fuels by microbial species requires a step-change in approach to decrease the capital and operational costs associated with scaled fermentation. The utilisation of the robust and halophilic industrial host organisms of the genus Halomonas could dramatically decrease biomanufacturing costs owing to their ability to grow in seawater, using waste biogenic feedstocks, under non-sterile conditions. RESULTS We describe the isolation of Halomonas rowanensis, a novel facultative chemoautotrophic species of Halomonas from a natural brine spring. We investigated the ability of this species to produce ectoine, a compound of considerable industrial interest, under heterotrophic conditions. Fixation of radiolabelled NaH14CO3 by H. rowanensis was confirmed in mineral medium supplied with thiosulfate as an energy source. Genome sequencing suggested carbon fixation proceeds via a reductive tricarboxylic acid cycle, and not the Calvin-Bensen-Bassham cycle. The mechanism of energy generation to support chemoautotrophy is unknown owing to the absence of an annotated SOX-based thiosulfate-mediated energy conversion system. We investigated further the biotechnological potential of the isolated H. rowanensis by demonstrating production of the gaseous hydrocarbon (bio-propane), bioplastics (poly-3-hydroxybutyrate) and osmolytes (ectoine) under heterotrophic and autotrophic CO2 fixation growth conditions. CONCLUSIONS This proof-of-concept study illustrates the value of recruiting environmental isolates as industrial hosts for chemicals biomanufacturing, where CO2 utilisation could replace, or augment, the use of biogenic feedstocks in non-sterile, industrialised bioreactors.
Collapse
Affiliation(s)
- Matthew Faulkner
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Robin Hoeven
- C3 Biotechnologies Ltd, 20 Mannin Way, Caton Road, Lancaster, LA1 35W, Lancashire, UK
- Engineering Building A, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Paul P Kelly
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Yaqi Sun
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7BE, UK
| | - Helen Park
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7BE, UK
| | - Helen S Toogood
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
- C3 Biotechnologies Ltd, 20 Mannin Way, Caton Road, Lancaster, LA1 35W, Lancashire, UK.
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
- C3 Biotechnologies Ltd, 20 Mannin Way, Caton Road, Lancaster, LA1 35W, Lancashire, UK.
| |
Collapse
|
30
|
Ren ZW, Wang ZY, Ding YW, Dao JW, Li HR, Ma X, Yang XY, Zhou ZQ, Liu JX, Mi CH, Gao ZC, Pei H, Wei DX. Polyhydroxyalkanoates: the natural biopolyester for future medical innovations. Biomater Sci 2023; 11:6013-6034. [PMID: 37522312 DOI: 10.1039/d3bm01043k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are a family of natural microbial biopolyesters with the same basic chemical structure and diverse side chain groups. Based on their excellent biodegradability, biocompatibility, thermoplastic properties and diversity, PHAs are highly promising medical biomaterials and elements of medical devices for applications in tissue engineering and drug delivery. However, due to the high cost of biotechnological production, most PHAs have yet to be applied in the clinic and have only been studied at laboratory scale. This review focuses on the biosynthesis, diversity, physical properties, biodegradability and biosafety of PHAs. We also discuss optimization strategies for improved microbial production of commercial PHAs via novel synthetic biology tools. Moreover, we also systematically summarize various medical devices based on PHAs and related design approaches for medical applications, including tissue repair and drug delivery. The main degradation product of PHAs, 3-hydroxybutyrate (3HB), is recognized as a new functional molecule for cancer therapy and immune regulation. Although PHAs still account for only a small percentage of medical polymers, up-and-coming novel medical PHA devices will enter the clinical translation stage in the next few years.
Collapse
Affiliation(s)
- Zi-Wei Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Ze-Yu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jin-Wei Dao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, 678400, China
| | - Hao-Ru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xue Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xin-Yu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zi-Qi Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jia-Xuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zhe-Chen Gao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, 710069, China
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, 643002, Sichuan, China
| |
Collapse
|
31
|
Park Y, Jeon JM, Park JK, Yang YH, Choi SS, Yoon JJ. Optimization of polyhydroxyalkanoate production in Halomonas sp. YLGW01 using mixed volatile fatty acids: a study on mixture analysis and fed-batch strategy. Microb Cell Fact 2023; 22:171. [PMID: 37661274 PMCID: PMC10476351 DOI: 10.1186/s12934-023-02188-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Polyhydroxyalkanoate (PHA) is one of the most promising materials for replacing petroleum-based plastics, and it can be produced from various renewable biomass sources. In this study, PHA production was conducted using Halomonas sp. YLGW01 utilizing mixed volatile fatty acids (VFAs) as carbon sources. The ratio and concentration of carbon and nitrogen sources were optimized through mixture analysis and organic nitrogen source screening, respectively. It was found that the highest cell dry weight (CDW) of 3.15 g/L and PHA production of 1.63 g/L were achieved when the ratio of acetate to lactate in the mixed VFAs was 0.45:0.55. Furthermore, supplementation of organic nitrogen sources such as soytone resulted in a ninefold increase in CDW (reaching 2.32 g/L) and a 22-fold increase in PHA production (reaching 1.60 g/L) compared to using inorganic nitrogen sources. Subsequently, DO-stat, VFAs consumption rate stat, and pH-stat fed-batch methods were applied to investigate and evaluate PHA productivity. The results showed that when pH-stat-based VFAs feeding was employed, a CDW of 7 g/L and PHA production of 5.1 g/L were achieved within 68 h, with a PHA content of 73%. Overall, the pH-stat fed-batch strategy proved to be effective in enhancing PHA production by Halomonas sp. YLGW01 utilizing VFAs.
Collapse
Affiliation(s)
- Yerin Park
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si, Chungnam, 31056, Republic of Korea
- Department of Food and Nutrition, Myongji University, Yongin-si, 17058, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si, Chungnam, 31056, Republic of Korea
| | - Jea-Kyung Park
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si, Chungnam, 31056, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Shin Sik Choi
- Department of Food and Nutrition, Myongji University, Yongin-si, 17058, Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si, Chungnam, 31056, Republic of Korea.
| |
Collapse
|
32
|
Zhang J, Yuan Y, Wang Z, Chen T. Metabolic engineering of Halomonas bluephagenesis for high-level mevalonate production from glucose and acetate mixture. Metab Eng 2023; 79:203-213. [PMID: 37657641 DOI: 10.1016/j.ymben.2023.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
Mevalonate (MVA) plays a crucial role as a building block for the biosynthesis of isoprenoids. In this study, we engineered Halomonas bluephagenesis to efficiently produce MVA. Firstly, by screening MVA synthetases from eight different species, the two efficient candidate modules, specifically NADPH-dependent mvaESEfa from Enterococcus faecalis and NADH-dependent mvaESLca from Lactobacillus casei, were integrated into the chromosome, leading to the construction of the H. bluephagenesis MVA11. Through the synergetic utilization of glucose and acetate as mixed carbon sources, MVA11 produced 11.2 g/L MVA with a yield of 0.45 g/g (glucose + acetic acid) in the shake flask. Subsequently, 10 beneficial genes out of 50 targets that could promote MVA production were identified using CRISPR interference. The simultaneous repression of rpoN (encoding RNA polymerase sigma-54 factor) and IldD (encoding L-lactate dehydrogenase) increased MVA titer (13.3 g/L) by 19.23% and yield (0.53 g/g (glucose + acetic acid)) by 17.78%, respectively. Furthermore, introducing the non-oxidative glycolysis (NOG) pathway into MVA11 enhanced MVA yield by 12.20%. Ultimately, by combining these strategies, the resultant H. bluephagenesis MVA13/pli-63 produced 13.9 g/L MVA in the shake flask, and the yield increased to 0.56 g/g (glucose + acetic acid), which was the highest reported so far. Under open fed-batch fermentation conditions, H. bluephagenesis MVA13/pli-63 produced 121 g/L of MVA with a yield of 0.42 g/g (glucose + acetic acid), representing the highest reported titer and yield in the bioreactor to date. This study demonstrates that H. bluephagenesis is one of the most favorable chassis for MVA production.
Collapse
Affiliation(s)
- Jing Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, China
| | - Yue Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, China
| | - Zhiwen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, China
| | - Tao Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, China.
| |
Collapse
|
33
|
Zhang L, Lin Y, Yi X, Huang W, Hu Q, Zhang Z, Wu F, Ye JW, Chen GQ. Engineering low-salt growth Halomonas Bluephagenesis for cost-effective bioproduction combined with adaptive evolution. Metab Eng 2023; 79:146-158. [PMID: 37543135 DOI: 10.1016/j.ymben.2023.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
Halophilic Halomonas bluephagenesis has been engineered to produce various added-value bio-compounds with reduced costs. However, the salt-stress regulatory mechanism remained unclear. H. bluephagenesis was randomly mutated to obtain low-salt growing mutants via atmospheric and room temperature plasma (ARTP). The resulted H. bluephagenesis TDH4A1B5 was constructed with the chromosomal integration of polyhydroxyalkanoates (PHA) synthesis operon phaCAB and deletion of phaP1 gene encoding PHA synthesis associated protein phasin, forming H. bluephagenesis TDH4A1B5P, which led to increased production of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-4-hydrobutyrate) (P34HB) by over 1.4-fold. H. bluephagenesis TDH4A1B5P also enhanced production of ectoine and threonine by 50% and 77%, respectively. A total 101 genes related to salinity tolerance was identified and verified via comparative genomic analysis among four ARTP mutated H. bluephagenesis strains. Recombinant H. bluephagenesis TDH4A1B5P was further engineered for PHA production utilizing sodium acetate or gluconate as sole carbon source. Over 33% cost reduction of PHA production could be achieved using recombinant H. bluephagenesis TDH4A1B5P. This study successfully developed a low-salt tolerant chassis H. bluephagenesis TDH4A1B5P and revealed salt-stress related genes of halophilic host strains.
Collapse
Affiliation(s)
- Lizhan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yina Lin
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xueqing Yi
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wuzhe Huang
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, Beijing, 101309, China
| | - Qitiao Hu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhongnan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fuqing Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian-Wen Ye
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
34
|
Goswami L, Kushwaha A, Napathorn SC, Kim BS. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives. Int J Biol Macromol 2023; 247:125743. [PMID: 37423435 DOI: 10.1016/j.ijbiomac.2023.125743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Microbial polyhydroxyalkanoates (PHA) are encouraging biodegradable polymers, which may ease the environmental problems caused by petroleum-derived plastics. However, there is a growing waste removal problem and the high price of pure feedstocks for PHA biosynthesis. This has directed to the forthcoming requirement to upgrade waste streams from various industries as feedstocks for PHA production. This review covers the state-of-the-art progress in utilizing low-cost carbon substrates, effective upstream and downstream processes, and waste stream recycling to sustain entire process circularity. This review also enlightens the use of various batch, fed-batch, continuous, and semi-continuous bioreactor systems with flexible results to enhance the productivity and simultaneously cost reduction. The life-cycle and techno-economic analyses, advanced tools and strategies for microbial PHA biosynthesis, and numerous factors affecting PHA commercialization were also covered. The review includes the ongoing and upcoming strategies viz. metabolic engineering, synthetic biology, morphology engineering, and automation to expand PHA diversity, diminish production costs, and improve PHA production with an objective of "zero-waste" and "circular bioeconomy" for a sustainable future.
Collapse
Affiliation(s)
- Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
35
|
Mukherjee A, Koller M. Microbial PolyHydroxyAlkanoate (PHA) Biopolymers-Intrinsically Natural. Bioengineering (Basel) 2023; 10:855. [PMID: 37508882 PMCID: PMC10376151 DOI: 10.3390/bioengineering10070855] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Global pollution from fossil plastics is one of the top environmental threats of our time. At their end-of-life phase, fossil plastics, through recycling, incineration, and disposal result in microplastic formation, elevated atmospheric CO2 levels, and the pollution of terrestrial and aquatic environments. Current regional, national, and global regulations are centered around banning plastic production and use and/or increasing recycling while ignoring efforts to rapidly replace fossil plastics through the use of alternatives, including those that occur in nature. In particular, this review demonstrates how microbial polyhydroxyalkanoates (PHAs), a class of intrinsically natural polymers, can successfully remedy the fossil and persistent plastic dilemma. PHAs are bio-based, biosynthesized, biocompatible, and biodegradable, and thus, domestically and industrially compostable. Therefore, they are an ideal replacement for the fossil plastics pollution dilemma, providing us with the benefits of fossil plastics and meeting all the requirements of a truly circular economy. PHA biopolyesters are natural and green materials in all stages of their life cycle. This review elaborates how the production, consumption, and end-of-life profile of PHAs are embedded in the current and topical, 12 Principles of Green Chemistry, which constitute the basis for sustainable product manufacturing. The time is right for a paradigm shift in plastic manufacturing, use, and disposal. Humankind needs alternatives to fossil plastics, which, as recalcitrant xenobiotics, contribute to the increasing deterioration of our planet. Natural PHA biopolyesters represent that paradigm shift.
Collapse
Affiliation(s)
- Anindya Mukherjee
- The Global Organization for PHA (GO!PHA), 12324 Hampton Way, Wake Forest, NC 27587, USA
- PHAXTEC, Inc., 2 Davis Drive, Research Triangle Park, Durham, NC 27709, USA
| | - Martin Koller
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28/IV, 8010 Graz, Austria
| |
Collapse
|
36
|
Diao K, Li G, Sun X, Yi H, Zhang S, Xiao W. Genomic Characterization of a Halovirus Representing a Novel Siphoviral Cluster. Viruses 2023; 15:1392. [PMID: 37376691 DOI: 10.3390/v15061392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Salt mines are a special type of hypersaline environment. Current research mainly focuses on prokaryotes, and the understanding of viruses in salt mines remains limited. Understanding viruses in hypersaline environments is of great significance for revealing the formation and maintenance of microbial communities, energy flow and element cycling, and host ecological functions. A phage infecting Halomonas titanicae was isolated from Yipinglang Salt Mine in China, designated Halomonas titanicae phage vB_HtiS_YPHTV-1 (YPHTV-1). Transmission electron microscopy revealed that YPHTV-1 had an icosahedral head with a diameter of 49.12 ± 0.15 nm (n = 5) and a long noncontractile tail with a length of 141.7 ± 0.58 nm (n = 5), indicating that it was a siphovirus. The one-step growth curve showed that the burst size of YPHTV-1 was 69 plaque forming units (PFUs) cell-1. The genome of YPHTV-1 was 37,980 bp with a GC content of 36.2%. The phylogenetic analysis of the six conserved proteins indicated that YPHTV-1 formed a cluster with Bacillus phages and was separated from phages infecting Halomonas. The average nucleotide identity (ANI), phylogenetic, and network analyses indicated that the phage YPHTV-1 represented a new genus under Caudoviricetes. In total, 57 open reading frames (ORFs) were predicted in the YPHTV-1 genome, 30 of which could be annotated in the database. Notably, several auxiliary metabolic genes were encoded by YPHTV-1, such as ImmA/IrrE family metalloendopeptidase, mannose-binding lectin (MBL) folding metallohydrolase, M15 family of metal peptidases, MazG-like family protein, O antigen ligase, and acyltransferase. These genes potentially enabled the host bacterium to resist ionizing radiation, ultraviolet light (UV), mitomycin C, β-lactam antibiotic, high osmotic pressure, and nutritional deficiencies. These findings highlight the role of haloviruses in the life cycle of halobacteria.
Collapse
Affiliation(s)
- Kaixin Diao
- Yunnan Institute of Microbiology, Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming 650500, China
| | - Guohui Li
- Yunnan Institute of Microbiology, Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming 650500, China
| | - Xueqin Sun
- Yunnan Institute of Microbiology, Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming 650500, China
| | - Hao Yi
- Yunnan Institute of Microbiology, Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming 650500, China
| | - Shiying Zhang
- Yunnan Soil Fertilization and Pollution Remediation Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China
| | - Wei Xiao
- Yunnan Institute of Microbiology, Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming 650500, China
| |
Collapse
|
37
|
Kant Bhatia S, Hyeon Hwang J, Jin Oh S, Jin Kim H, Shin N, Choi TR, Kim HJ, Jeon JM, Yoon JJ, Yang YH. Macroalgae as a source of sugar and detoxifier biochar for polyhydroxyalkanoates production by Halomonas sp. YLGW01 under the unsterile condition. BIORESOURCE TECHNOLOGY 2023:129290. [PMID: 37290712 DOI: 10.1016/j.biortech.2023.129290] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Macroalgae (seaweed) is considered a favorable feedstock for polyhydroxyalkanoates (PHAs) production owing to its high productivity, low land and freshwater requirement, and renewable nature. Among different microbes Halomonas sp. YLGW01 can utilize algal biomass-derived sugars (galactose and glucose) for growth and PHAs production. Biomass-derived byproducts furfural, hydroxymethylfurfural (HMF), and acetate affects Halomonas sp. YLGW01 growth and poly(3-hydroxybutyrate) (PHB) production i.e., furfural > HMF > acetate. Eucheuma spinosum biomass-derived biochar was able to remove 87.9 % of phenolic compounds from its hydrolysate without affecting sugar concentration. Halomonas sp. YLGW01 grows and accumulates a high amount of PHB at 4 % NaCl. The use of detoxified unsterilized media resulted in high biomass (6.32 ± 0.16 g cdm/L) and PHB production (3.88 ± 0.04 g/L) compared to undetoxified media (3.97 ± 0.24 g cdm/L, 2.58 ± 0.1 g/L). The finding suggests that Halomonas sp. YLGW01 has the potential to valorize macroalgal biomass into PHAs and open a new avenue for renewable bioplastic production.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, South Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Suk Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Hyun-Joong Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si 31056, South Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si 31056, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, South Korea.
| |
Collapse
|
38
|
Leandro T, Oliveira MC, da Fonseca MMR, Cesário MT. Co-Production of Poly(3-hydroxybutyrate) and Gluconic Acid from Glucose by Halomonas elongata. Bioengineering (Basel) 2023; 10:643. [PMID: 37370574 DOI: 10.3390/bioengineering10060643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Polyhydroxyalkanoates (PHA) are biopolyesters regarded as an attractive alternative to petroleum-derived plastics. Nitrogen limitation and phosphate limitation in glucose cultivations were evaluated for poly(3-hydroxybutyrate) (P(3HB)) production by Halomonas elongata 1H9T, a moderate halophilic strain. Co-production of P(3HB) and gluconic acid was observed in fed-batch glucose cultivations under nitrogen limiting conditions. A maximum P(3HB) accumulation of 53.0% (w/w) and a maximum co-production of 133 g/L of gluconic acid were attained. Fed-batch glucose cultivation under phosphate limiting conditions resulted in a P(3HB) accumulation of only 33.3% (w/w) and no gluconic acid production. As gluconic acid is a valuable organic acid with extensive applications in several industries, this work presents an interesting approach for the future development of an industrial process aiming at the co-production of an intracellular biopolymer, P(3HB), and a value-added extracellular product, gluconic acid.
Collapse
Affiliation(s)
- Tânia Leandro
- IBB-Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - M Conceição Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - M Manuela R da Fonseca
- IBB-Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - M Teresa Cesário
- IBB-Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
39
|
Wang Y, Li YQ, Wang MJ, Luo CB. Non-sterilized conversion of whole lignocellulosic components into polyhydroxybutyrate by Halomonas sp. Y3 with a dual anti-microbial contamination system. Int J Biol Macromol 2023; 241:124606. [PMID: 37116849 DOI: 10.1016/j.ijbiomac.2023.124606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Polyhydroxybutyrate (PHB) production from lignocellulosic biomass is challenging due to the need for whole components and energy-effective conversion. Herein, Halomonas sp. Y3, a ligninolytic bacterium with the capacity to produce PHB from lignin and cellulose- and hemicellulose-derived sugars, is employed to explore its feasibility. This strain shows high sugar tolerance up to 200 g/L of glucose and 120 g/L of xylose. A dual anti-microbial contamination system (DACS) containing alkali-halophilic system (AHS) and phosphite-urea system (PUS) is presented, successfully achieving a completely aseptic effect and resulting in a total of 8.2 g of PHB production from 100 g bamboo biomass. We further develop a stage-fed-batch fermentation to promote the complete utilization of xylose. Approximately 69.99 g of dry cell weight (DCW) and 46.45 g of PHB with 66.35 % are obtained from a total of 296.58 g of sugars and 5.70 g of lignin, showing a significant advancement for LCB bioconversion. We then delete the native phosphate transporters, rendering the strain unable to grow on phosphate-loaded media, effectively improving the strain biosafety without compromising its ability to produce PHB. Overall, our findings demonstrate the potential of Y3 as a classic bacterium strain for PHB production with potential uses in industry.
Collapse
Affiliation(s)
- Yan Wang
- College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Yuan-Qiu Li
- College of Life Science, Leshan Normal University, Leshan 614000, China; College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ming-Jun Wang
- College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Chao-Bing Luo
- College of Life Science, Leshan Normal University, Leshan 614000, China.
| |
Collapse
|
40
|
Adams JD, Sander KB, Criddle CS, Arkin AP, Clark DS. Engineering osmolysis susceptibility in Cupriavidus necator and Escherichia coli for recovery of intracellular products. Microb Cell Fact 2023; 22:69. [PMID: 37046248 PMCID: PMC10091555 DOI: 10.1186/s12934-023-02064-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Intracellular biomacromolecules, such as industrial enzymes and biopolymers, represent an important class of bio-derived products obtained from bacterial hosts. A common key step in the downstream separation of these biomolecules is lysis of the bacterial cell wall to effect release of cytoplasmic contents. Cell lysis is typically achieved either through mechanical disruption or reagent-based methods, which introduce issues of energy demand, material needs, high costs, and scaling problems. Osmolysis, a cell lysis method that relies on hypoosmotic downshock upon resuspension of cells in distilled water, has been applied for bioseparation of intracellular products from extreme halophiles and mammalian cells. However, most industrial bacterial strains are non-halotolerant and relatively resistant to hypoosmotic cell lysis. RESULTS To overcome this limitation, we developed two strategies to increase the susceptibility of non-halotolerant hosts to osmolysis using Cupriavidus necator, a strain often used in electromicrobial production, as a prototypical strain. In one strategy, C. necator was evolved to increase its halotolerance from 1.5% to 3.25% (w/v) NaCl through adaptive laboratory evolution, and genes potentially responsible for this phenotypic change were identified by whole genome sequencing. The evolved halotolerant strain experienced an osmolytic efficiency of 47% in distilled water following growth in 3% (w/v) NaCl. In a second strategy, the cells were made susceptible to osmolysis by knocking out the large-conductance mechanosensitive channel (mscL) gene in C. necator. When these strategies were combined by knocking out the mscL gene from the evolved halotolerant strain, greater than 90% osmolytic efficiency was observed upon osmotic downshock. A modified version of this strategy was applied to E. coli BL21 by deleting the mscL and mscS (small-conductance mechanosensitive channel) genes. When grown in medium with 4% NaCl and subsequently resuspended in distilled water, this engineered strain experienced 75% cell lysis, although decreases in cell growth rate due to higher salt concentrations were observed. CONCLUSIONS Our strategy is shown to be a simple and effective way to lyse cells for the purification of intracellular biomacromolecules and may be applicable in many bacteria used for bioproduction.
Collapse
Affiliation(s)
- Jeremy David Adams
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Kyle B Sander
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
| |
Collapse
|
41
|
Liu S, Yu JM, Gan YC, Qiu XZ, Gao ZC, Wang H, Chen SX, Xiong Y, Liu GH, Lin SE, McCarthy A, John JV, Wei DX, Hou HH. Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications. Mil Med Res 2023; 10:16. [PMID: 36978167 PMCID: PMC10047482 DOI: 10.1186/s40779-023-00448-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering (TE) and regenerative medicine. In contrast to conventional biomaterials or synthetic materials, biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix (ECM). Additionally, such materials have mechanical adaptability, microstructure interconnectivity, and inherent bioactivity, making them ideal for the design of living implants for specific applications in TE and regenerative medicine. This paper provides an overview for recent progress of biomimetic natural biomaterials (BNBMs), including advances in their preparation, functionality, potential applications and future challenges. We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM. Moreover, we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications. Finally, we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field.
Collapse
Affiliation(s)
- Shuai Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900, China
| | - Jiang-Ming Yu
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Yan-Chang Gan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900, China
| | - Xiao-Zhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900, China
| | - Zhe-Chen Gao
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Huan Wang
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, Guangdong, China.
| | - Shi-Xuan Chen
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, Zhejiang, China.
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guo-Hui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Si-En Lin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Alec McCarthy
- Department of Functional Materials, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Johnson V John
- Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68130, USA
| | - Dai-Xu Wei
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336, China.
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, 643002, Sichuan, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710127, China.
| | - Hong-Hao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900, China.
| |
Collapse
|
42
|
Kim B, Oh SJ, Hwang JH, Kim HJ, Shin N, Bhatia SK, Jeon JM, Yoon JJ, Yoo J, Ahn J, Park JH, Yang YH. Polyhydroxybutyrate production from crude glycerol using a highly robust bacterial strain Halomonas sp. YLGW01. Int J Biol Macromol 2023; 236:123997. [PMID: 36907298 DOI: 10.1016/j.ijbiomac.2023.123997] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Petrochemical-based plastics are hardly biodegradable and a major cause of environmental pollution, and polyhydroxybutyrate (PHB) is attracting attention as an alternative due to its similar properties. However, the cost of PHB production is high and is considered the greatest challenge for its industrialization. Here, crude glycerol was used as a carbon source for more efficient PHB production. Among the 18 strains investigated, Halomonas taeanenisis YLGW01 was selected for PHB production due to its salt tolerance and high glycerol consumption rate. Furthermore, this strain can produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3 HV)) with 17 % 3 HV mol fraction when a precursor is added. PHB production was maximized through medium optimization and activated carbon treatment of crude glycerol, resulting in 10.5 g/L of PHB with 60 % PHB content in fed-batch fermentation. Physical properties of the produced PHB were analyzed, i.e., weight average molecular weight (6.8 × 105), number average molecular weight (4.4 × 105), and the polydispersity index (1.53). In the universal testing machine analysis, the extracted intracellular PHB showed a decrease in Young's modulus, an increase in Elongation at break, greater flexibility than authentic film, and decreased brittleness. This study confirmed that YLGW01 is a promising strain for industrial PHB production using crude glycerol.
Collapse
Affiliation(s)
- Byungchan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Suk Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Republic of Korea
| | - Jaehung Yoo
- GRIBIO Co. Ltd, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Jungoh Ahn
- Biotechnology Process Engineering Center, Korea Research Institute Bioscience Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
43
|
PHB production from food waste hydrolysates by Halomonas bluephagenesis Harboring PHB operon linked with an essential gene. Metab Eng 2023; 77:12-20. [PMID: 36889504 DOI: 10.1016/j.ymben.2023.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Food wastes can be hydrolyzed into soluble microbial substrates, contributing to sustainability. Halomonas spp.-based Next Generation Industrial Biotechnology (NGIB) allows open, unsterile fermentation, eliminating the need for sterilization to avoid the Maillard reaction that negatively affects cell growth. This is especially important for food waste hydrolysates, which have a high nutrient content but are unstable due to batch, sources, or storage conditions. These make them unsuitable for polyhydroxyalkanoate (PHA) production, which usually requires limitation on either nitrogen, phosphorous, or sulfur. In this study, H. bluephagenesis was constructed by overexpressing the PHA synthesis operon phaCABCn (cloned from Cupriavidus necator) controlled by the essential gene ompW (encoding outer membrane protein W) promoter and the constitutive porin promoter that are continuously expressed at high levels throughout the cell growth process, allowing poly(3-hydroxybutyrate) (PHB) production to proceed in nutrient-rich (also nitrogen-rich) food waste hydrolysates of various sources. The recombinant H. bluephagenesis termed WZY278 generated 22 g L-1 cell dry weight (CDW) containing 80 wt% PHB when cultured in food waste hydrolysates in shake flasks, and it was grown to 70 g L-1 CDW containing 80 wt% PHB in a 7-L bioreactor via fed-batch cultivation. Thus, unsterilizable food waste hydrolysates can become nutrient-rich substrates for PHB production by H. bluephagenesis able to be grown contamination-free under open conditions.
Collapse
|
44
|
Ye JW, Lin YN, Yi XQ, Yu ZX, Liu X, Chen GQ. Synthetic biology of extremophiles: a new wave of biomanufacturing. Trends Biotechnol 2023; 41:342-357. [PMID: 36535816 DOI: 10.1016/j.tibtech.2022.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/12/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Microbial biomanufacturing, powered by the advances of synthetic biology, has attracted growing interest for the production of diverse products. In contrast to conventional microbes, extremophiles have shown better performance for low-cost production owing to their outstanding growth and synthesis capacity under stress conditions, allowing unsterilized fermentation processes. We review increasing numbers of products already manufactured utilizing extremophiles in recent years. In addition, genetic parts, molecular tools, and manipulation approaches for extremophile engineering are also summarized, and challenges and opportunities are predicted for non-conventional chassis. Next-generation industrial biotechnology (NGIB) based on engineered extremophiles promises to simplify biomanufacturing processes and achieve open and continuous fermentation, without sterilization, and utilizing low-cost substrates, making NGIB an attractive green process for sustainable manufacturing.
Collapse
Affiliation(s)
- Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yi-Na Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xue-Qing Yi
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhuo-Xuan Yu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xu Liu
- PhaBuilder Biotech Company, Shunyi District, Zhaoquan Ying, Beijing 101309, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Ministry of Education (MOE) Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
45
|
Li YQ, Wang MJ, Luo CB. Highly efficient polyhydroxyalkanoate production from lignin using genetically engineered Halomonas sp. Y3. BIORESOURCE TECHNOLOGY 2023; 370:128526. [PMID: 36572161 DOI: 10.1016/j.biortech.2022.128526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Lignin degradation represents a significant challenge in biological valorization, but it is suffering from insufficiency, putting barriers to efficient lignin conversion. Herein, the study first develops a highly efficient laccase secretion apparatus, enabling high enzyme activity of 184 U/mL, complementing the biochemical limits on lignin depolymerization well in Halomonas sp. Y3. Further engineering of PHA biosynthesis produces a significantly high PHA titer of 286, 742, and 868 mg/L from alkaline lignin, catechol, and protocatechuate, respectively. The integration of laccase-secretion and PHA production modules enables a record titer of 693 and 1209 mg/L in converting lignin and lignin-containing stream to PHA, respectively. The titer is improved furtherly to 740 and 1314 mg/L by developing a non-sterilized fermentation. This study advances a cheaper and greener production of valuable chemicals from lignin by constructing a biosynthetic platform for PHA production and provides novel insight into the lignin conversion by extremophilic microbes.
Collapse
Affiliation(s)
- Yuan-Qiu Li
- College of Life Science, Leshan Normal University, Leshan 614000, China; College of Life Sciences, Capital Normal University, Beijing 100064, China
| | - Ming-Jun Wang
- College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Chao-Bing Luo
- College of Life Science, Leshan Normal University, Leshan 614000, China.
| |
Collapse
|
46
|
Ma YC, Gao MR, Yang H, Jiang JY, Xie W, Su WP, Zhang B, Yeong YS, Guo WY, Sui LY. Optimization of C 50 Carotenoids Production by Open Fermentation of Halorubrum sp. HRM-150. Appl Biochem Biotechnol 2023; 195:3628-3640. [PMID: 36648604 DOI: 10.1007/s12010-023-04319-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
C50 carotenoids, as unique bioactive molecules, have many biological properties, including antioxidant, anticancer, and antibacterial activity, and have a wide range of potential uses in the food, cosmetic, and biomedical industries. The majority of C50 carotenoids are produced by the sterile fermentation of halophilic archaea. This study aims to look at more cost-effective and manageable ways of producing C50 carotenoids. The basic medium, carbon source supplementation, and optimal culture conditions for Halorubrum sp. HRM-150 C50 carotenoids production by open fermentation were examined in this work. The results indicated that Halorubrum sp. HRM-150 grown in natural brine medium grew faster than artificial brine medium. The addition of glucose, sucrose, and lactose (10 g/L) enhanced both biomass and carotenoids productivity, with the highest level reaching 4.53 ± 0.32 μg/mL when glucose was added. According to the findings of orthogonal studies based on the OD600 and carotenoids productivity, the best conditions for open fermentation were salinity 20-25%, rotation speed 150-200 rpm, and pH 7.0-8.2. The up-scaled open fermentation was carried out in a 7 L medium under optimum culture conditions. At 96 h, the OD600 and carotenoids productivity were 9.86 ± 0.51 (dry weight 10.40 ± 1.27 g/L) and 7.31 ± 0.65 μg/mL (701.40 ± 21.51 μg/g dry weight, respectively). When amplified with both universal bacterial primer and archaeal primer in the open fermentation, Halorubrum remained the dominating species, indicating that contamination was kept within an acceptable level. To summarize, open fermentation of Halorubrum is a promising method for producing C50 carotenoids.
Collapse
Affiliation(s)
- Ying-Chao Ma
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin, China.,Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Mei-Rong Gao
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin, China.,Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Huan Yang
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jun-Yao Jiang
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wei Xie
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wan-Ping Su
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Bo Zhang
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Yik-Sung Yeong
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Wu-Yan Guo
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Li-Ying Sui
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin, China. .,Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
47
|
Efficient acetoin production from pyruvate by engineered Halomonas bluephagenesis whole-cell biocatalysis. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2229-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
48
|
Alsafadi D, AljaririAlhesan JS, Mansoura A, Oqdeha S. Production of polyhydroxyalkanoate from sesame seed wastewater by sequencing batch reactor cultivation process of Haloferax Mediterranei. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
49
|
Liu Y, Zhao W, Wang S, Huo K, Chen Y, Guo H, Wang S, Liu R, Yang C. Unsterile production of a polyhydroxyalkanoate copolymer by Halomonas cupida J9. Int J Biol Macromol 2022; 223:240-251. [PMID: 36347367 DOI: 10.1016/j.ijbiomac.2022.10.275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022]
Abstract
Microbial production of bioplastics polyhydroxyalkanoates (PHA) has opened new avenues to resolve "white pollution" caused by petroleum-based plastics. PHAs consisting of short- and medium-chain-length monomers, designated as SCL-co-MCL PHAs, exhibit much better thermal and mechanical properties than PHA homopolymers. In this study, a halophilic bacterium Halomonas cupida J9 was isolated from highly saline wastewater and proven to produce SCL-co-MCL PHA consisting of 3-hydroxybutyrate (3HB) and 3-hydroxydodecanoate (3HDD) from glucose and glycerol. Whole-genome sequencing and functional annotation suggest that H. cupida J9 may possess three putative PHA biosynthesis pathways and a class I PHA synthase (PhaCJ9). Interestingly, the purified His6-tagged PhaCJ9 from E. coli BL21 (DE3) showed polymerizing activity towards 3HDD-CoA and a phaCJ9-deficient mutant was unable to produce PHA, which indicated that a low-substrate-specificity PhaCJ9 was exclusively responsible for PHA polymerization in H. cupida J9. Docking simulation demonstrated higher binding affinity between 3HB-CoA and PhaCJ9 and identified the key residues involved in hydrogen bonds formation between 3-hydroxyacyl-CoA and PhaCJ9. Furthermore, His489 was identified by site-specific mutagenesis as the key residue for the interaction of 3HDD-CoA with PhaCJ9. Finally, PHA was produced by H. cupida J9 from glucose and glycerol in shake flasks and a 5-L fermentor under unsterile conditions. The open fermentation mode makes this strain a promising candidate for low-cost production of SCL-co-MCL PHAs. Especially, the low-specificity PhaCJ9 has great potential to be engineered for an enlarged substrate range to synthesize tailor-made novel SCL-co-MCL PHAs.
Collapse
Affiliation(s)
- Yujie Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Wanwan Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Siqi Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Kaiyue Huo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yaping Chen
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongfu Guo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Ruihua Liu
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
50
|
Jung HJ, Kim SH, Cho DH, Kim BC, Bhatia SK, Lee J, Jeon JM, Yoon JJ, Yang YH. Finding of Novel Galactose Utilizing Halomonas sp. YK44 for Polyhydroxybutyrate (PHB) Production. Polymers (Basel) 2022; 14:polym14245407. [PMID: 36559775 PMCID: PMC9782037 DOI: 10.3390/polym14245407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/26/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Polyhydroxybutyrate (PHB) is a biodegradable bioplastic with potential applications as an alternative to petroleum-based plastics. However, efficient PHB production remains difficult. The main cost of PHB production is attributed to carbon sources; hence, finding inexpensive sources is important. Galactose is a possible substrate for polyhydroxyalkanoate production as it is abundant in marine environments. Marine bacteria that produce PHB from galactose could be an effective resource that can be used for efficient PHB production. In this study, to identify a galactose utilizing PHB producer, we examined 16 Halomonas strains. We demonstrated that Halomonas cerina (Halomonas sp. YK44) has the highest growth and PHB production using a culture media containing 2% galactose, final 4% NaCl, and 0.1% yeast extract. These culture conditions yielded 8.98 g/L PHB (78.1% PHB content (w/w)). When galactose-containing red algae (Eucheuma spinosum) hydrolysates were used as a carbon source, 5.2 g/L PHB was produced with 1.425% galactose after treatment with activated carbon. Since high salt conditions can be used to avoid sterilization, we examined whether Halomonas sp. YK44 could produce PHB in non-sterilized conditions. Culture media in these conditions yielded 72.41% PHB content. Thus, Halomonas sp. YK44 is robust against contamination, allowing for long-term culture and economical PHB production.
Collapse
Affiliation(s)
- Hee Ju Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Do Hyun Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Byung Chan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea
| | - Jongbok Lee
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea
- Correspondence: ; Tel.: +82-2-450-2-3936
| |
Collapse
|