1
|
Tiang MF, Hanipa MAF, Mahmod SS, Zainuddin MT, Lutfi AAI, Jahim JM, Takriff MS, Reungsang A, Wu SY, Abdul PM. Impact of light spectra on photo-fermentative biohydrogen production by Rhodobacter sphaeroides KKU-PS1. BIORESOURCE TECHNOLOGY 2024; 394:130222. [PMID: 38109981 DOI: 10.1016/j.biortech.2023.130222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Purple non-sulphur bacteria can only capture up to 10 % light spectra and only 1-5 % of light is converted efficiently for biohydrogen production. To enhance light capture and conversion efficiencies, it is necessary to understand the impact of various light spectra on light harvesting pigments. During photo-fermentation, Rhodobacter sphaeroides KKU-PS1 cultivated at 30 °C and 150 rpm under different light spectra has been investigated. Results revealed that red light is more beneficial for biomass accumulation, whereas green light showed the greatest impact on photo-fermentative biohydrogen production. Light conversion efficiency by green light is 2-folds of that under control white light, hence photo-hydrogen productivity is ranked as green > red > orange > violet > blue > yellow. These experimental data demonstrated that green and red lights are essential for photo-hydrogen and biomass productions of R. sphaeroides and a clearer understanding that possibly pave the way for further photosynthetic enhancement research.
Collapse
Affiliation(s)
- Ming Foong Tiang
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Muhammad Alif Fitri Hanipa
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Safa Senan Mahmod
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, UniMAP, 02600 Arau, Perlis, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, UniMAP, 02600 Arau, Perlis, Malaysia
| | - Muhammad Tarmidzi Zainuddin
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Abdullah Amru Indera Lutfi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bandar Baru Bangi, Selangor Darul Ehsan, Malaysia
| | - Jamaliah Md Jahim
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bandar Baru Bangi, Selangor Darul Ehsan, Malaysia
| | - Mohd Sobri Takriff
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bandar Baru Bangi, Selangor Darul Ehsan, Malaysia; Department of Mechanical and Nuclear Engineering, College of Engineering, University of Sharjah, United Arab Emirates
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Shu-Yii Wu
- Department of Chemical Engineering, Feng Chia University, Taichung 40724, Taiwan; Green Energy Development Center, Feng Chia University, Taichung 40724, Taiwan
| | - Peer Mohamed Abdul
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, UniMAP, 02600 Arau, Perlis, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bandar Baru Bangi, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
2
|
Jaman K, Idrus S, Wahab AMA, Harun R, Daud NNN, Ahsan A, Shams S, Uddin MA. Influence of Molasses Residue on Treatment of Cow Manure in an Anaerobic Filter with Perforated Weed Membrane and a Conventional Reactor: Variations of Organic Loading and a Machine Learning Application. MEMBRANES 2023; 13:159. [PMID: 36837662 PMCID: PMC9966026 DOI: 10.3390/membranes13020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
This study highlighted the influence of molasses residue (MR) on the anaerobic treatment of cow manure (CM) at various organic loading and mixing ratios of these two substrates. Further investigation was conducted on a model-fitting comparison between a kinetic study and an artificial neural network (ANN) using biomethane potential (BMP) test data. A continuous stirred tank reactor (CSTR) and an anaerobic filter with a perforated membrane (AF) were fed with similar substrate at the organic loading rates of (OLR) 1 to OLR 7 g/L/day. Following the inhibition signs at OLR 7 (50:50 mixing ratio), 30:70 and 70:30 ratios were applied. Both the CSTR and the AF with the co-digestion substrate (CM + MR) successfully enhanced the performance, where the CSTR resulted in higher biogas production (29 L/d), SMP (1.24 LCH4/gVSadded), and VS removal (>80%) at the optimum OLR 5 g/L/day. Likewise, the AF showed an increment of 69% for biogas production at OLR 4 g/L/day. The modified Gompertz (MG), logistic (LG), and first order (FO) were the applied kinetic models. Meanwhile, two sets of ANN models were developed, using feedforward back propagation. The FO model provided the best fit with Root Mean Square Error (RMSE) (57.204) and correlation coefficient (R2) 0.94035. Moreover, implementing the ANN algorithms resulted in 0.164 and 0.97164 for RMSE and R2, respectively. This reveals that the ANN model exhibited higher predictive accuracy, and was proven as a more robust system to control the performance and to function as a precursor in commercial applications as compared to the kinetic models. The highest projection electrical energy produced from the on-farm scale (OFS) for the AF and the CSTR was 101 kWh and 425 kWh, respectively. This investigation indicates the high potential of MR as the most suitable co-substrate in CM treatment for the enhancement of energy production and the betterment of waste management in a large-scale application.
Collapse
Affiliation(s)
- Khairina Jaman
- Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Syazwani Idrus
- Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Abdul Malek Abdul Wahab
- School of Mechanical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Razif Harun
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nik Norsyahariati Nik Daud
- Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Amimul Ahsan
- Department of Civil and Environmental Engineering, Islamic University of Technology (IUT), Gazipur 1704, Bangladesh
- Department of Civil and Construction Engineering, Swinburne University of Technology, Melbourne, VIC 3000, Australia
| | - Shahriar Shams
- Faculty of Engineering, Universiti Teknologi Brunei, Gadong BE1410, Brunei
| | - Md. Alhaz Uddin
- Department of Civil Engineering, College of Engineering, Jouf University, Sakaka 42421, Saudi Arabia
| |
Collapse
|
3
|
Sjölin M, Sayed M, Thuvander J, Lipnizki F, Hatti-Kaul R, Wallberg O. Effect of membrane purification and concentration of sucrose in sugar beet molasses for the production of 5-hydroxymethylfurfural. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
4
|
Iyyappan J, Bharathiraja B, Varjani S, PraveenKumar R, Muthu Kumar S. Anaerobic biobutanol production from black strap molasses using Clostridium acetobutylicum MTCC11274: Media engineering and kinetic analysis. BIORESOURCE TECHNOLOGY 2022; 346:126405. [PMID: 34826562 DOI: 10.1016/j.biortech.2021.126405] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Microbial reduction of black strap molasses (BSM) by Clostridium acetobutylicum MTCC 11,274 was performed for the production of biobutanol. The optimum fermentation conditions were predicted using one factor at a time (OFAT) method. The identification of significant parameters was performed using Plackett-Burman Design (PBD). Furthermore the fermentation conditions were optimized using central composite design (CCD). The kinetics of substrate utilization and product formation were investigated. Initial pH, yeast extract concentration (g/L) and total reducing sugar concentration (g/L) were found as significant parameters affecting butanol production using C. acetobutylicum MTCC11274. The maximum butanol production under optimal condition was 10.27 + 0.82 g/L after 24 h. The waste black strap molasses obtained from sugar industry could be used as promising substrate for the production of next generation biofuel.
Collapse
Affiliation(s)
- J Iyyappan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602107, India
| | - B Bharathiraja
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai 600062, India.
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India
| | - R PraveenKumar
- Arunai Engineering College, Tiruvannamalai 606603, India
| | - S Muthu Kumar
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
5
|
Wang C, Jiao L, Meng H, Ji P. Bifunctional heterogeneous catalysts derived from the coordination of adenosine monophosphate to Sn(iv) for effective conversion of sucrose to 5-hydroxymethylfurfural. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01789f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adenosine 5′-monophosphate (AMP) with multiple functional groups was used for the synthesis of Sn-AMPs. The Sn-AMPs have both Brønsted acid and Lewis acid sites. The Sn-AMPs demonstrated a superior capability for catalyzing sugars into HMF.
Collapse
Affiliation(s)
- Chenyu Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Lutong Jiao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Han Meng
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Peijun Ji
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
6
|
Singh H, Paritosh K, Vivekanand V. Microorganism assisted biohydrogen production and bioreactors: an overview. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Himanshi Singh
- Centre for converging technology University of Rajasthan Jaipur Rajasthan India
| | - Kunwar Paritosh
- Centre for Energy and Environment Malaviya National Institute of Technology Jaipur Rajasthan India
| | - Vivekanand Vivekanand
- Centre for Energy and Environment Malaviya National Institute of Technology Jaipur Rajasthan India
| |
Collapse
|
7
|
Microalgal Hydrogen Production in Relation to Other Biomass-Based Technologies—A Review. ENERGIES 2021. [DOI: 10.3390/en14196025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogen is an environmentally friendly biofuel which, if widely used, could reduce atmospheric carbon dioxide emissions. The main barrier to the widespread use of hydrogen for power generation is the lack of technologically feasible and—more importantly—cost-effective methods of production and storage. So far, hydrogen has been produced using thermochemical methods (such as gasification, pyrolysis or water electrolysis) and biological methods (most of which involve anaerobic digestion and photofermentation), with conventional fuels, waste or dedicated crop biomass used as a feedstock. Microalgae possess very high photosynthetic efficiency, can rapidly build biomass, and possess other beneficial properties, which is why they are considered to be one of the strongest contenders among biohydrogen production technologies. This review gives an account of present knowledge on microalgal hydrogen production and compares it with the other available biofuel production technologies.
Collapse
|
8
|
Rodríguez A, Hernández-Herreros N, García JL, Auxiliadora Prieto M. Enhancement of biohydrogen production rate in Rhodospirillum rubrum by a dynamic CO-feeding strategy using dark fermentation. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:168. [PMID: 34362414 PMCID: PMC8343937 DOI: 10.1186/s13068-021-02017-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Rhodospirillum rubrum is a purple non-sulphur bacterium that produces H2 by photofermentation of several organic compounds or by water gas-shift reaction during CO fermentation. Successful strategies for both processes have been developed in light-dependent systems. This work explores a dark fermentation bioprocess for H2 production from water using CO as the electron donor. RESULTS The study of the influence of the stirring and the initial CO partial pressure (pCO) demonstrated that the process was inhibited at pCO of 1.00 atm. Optimal pCO value was established in 0.60 atm. CO dose adaptation to bacterial growth in fed-batch fermentations increased the global rate of H2 production, yielding 27.2 mmol H2 l-1 h-1 and reduced by 50% the operation time. A kinetic model was proposed to describe the evolution of the molecular species involved in gas and liquid phases in a wide range of pCO conditions from 0.10 to 1.00 atm. CONCLUSIONS Dark fermentation in R. rubrum expands the ways to produce biohydrogen from CO. This work optimizes this bioprocess at lab-bioreactor scale studying the influence of the stirring speed, the initial CO partial pressure and the operation in batch and fed-batch regimes. Dynamic CO supply adapted to the biomass growth enhances the productivity reached in darkness by other strategies described in the literature, being similar to that obtained under light continuous syngas fermentations. The kinetic model proposed describes all the conditions tested.
Collapse
Affiliation(s)
- Alberto Rodríguez
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐of the Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
- Polymer Biotechnology Group, Department of Plant and Microbial Biotechnology, Biological Research Center, Margarita Salas”-CSIC, 28040 Madrid, Spain
| | - Natalia Hernández-Herreros
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐of the Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
- Polymer Biotechnology Group, Department of Plant and Microbial Biotechnology, Biological Research Center, Margarita Salas”-CSIC, 28040 Madrid, Spain
| | - José L. García
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐of the Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
- Environmental Biotechnology Group, Department of Plant and Microbial Biotechnology, Biological Research Center, Margarita Salas”-CSIC 28040, Madrid, Spain
| | - M. Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐of the Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
- Polymer Biotechnology Group, Department of Plant and Microbial Biotechnology, Biological Research Center, Margarita Salas”-CSIC, 28040 Madrid, Spain
| |
Collapse
|
9
|
Samborska K, Bonikowski R, Kalemba D, Barańska A, Jedlińska A, Edris A. Volatile aroma compounds of sugarcane molasses as affected by spray drying at low and high temperature. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia. SUSTAINABILITY 2021. [DOI: 10.3390/su13073877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It has been widely accepted worldwide, that the greenhouse effect is by far the most challenging threat in the new century. Renewable energy has been adopted to prevent excessive greenhouse effects, and to enhance sustainable development. Malaysia has a large amount of biomass residue, which provides the country with the much needed support the foreseeable future. This investigation aims to analyze potentials biomass gases from major biomass residues in Malaysia. The potential biomass gasses can be obtained using biomass conversion technologies, including biological and thermo-chemical technologies. The thermo-chemical conversion technology includes four major biomass conversion technologies such as gasification, combustion, pyrolysis, and liquefaction. Biomass wastes can be attained through solid biomass technologies to obtain syngas which includes carbon monoxide, carbon dioxide, oxygen, hydrogen, and nitrogen. The formation of tar occurs during the main of biomass conversion reaction such as gasification and pyrolysis. The formation of tar hinders equipment or infrastructure from catalytic aspects, which will be applied to prevent the formation of tar. The emission, combustion, and produced gas reactions were investigated. It will help to contribute the potential challenges and strategies, due to sustainable biomass, to harness resources management systems in Malaysia to reduce the problem of biomass residues and waste.
Collapse
|
11
|
Stephens S, Mahadevan R, Allen DG. Engineering Photosynthetic Bioprocesses for Sustainable Chemical Production: A Review. Front Bioeng Biotechnol 2021; 8:610723. [PMID: 33490053 PMCID: PMC7820810 DOI: 10.3389/fbioe.2020.610723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Microbial production of chemicals using renewable feedstocks such as glucose has emerged as a green alternative to conventional chemical production processes that rely primarily on petroleum-based feedstocks. The carbon footprint of such processes can further be reduced by using engineered cells that harness solar energy to consume feedstocks traditionally considered to be wastes as their carbon sources. Photosynthetic bacteria utilize sophisticated photosystems to capture the energy from photons to generate reduction potential with such rapidity and abundance that cells often cannot use it fast enough and much of it is lost as heat and light. Engineering photosynthetic organisms could enable us to take advantage of this energy surplus by redirecting it toward the synthesis of commercially important products such as biofuels, bioplastics, commodity chemicals, and terpenoids. In this work, we review photosynthetic pathways in aerobic and anaerobic bacteria to better understand how these organisms have naturally evolved to harness solar energy. We also discuss more recent attempts at engineering both the photosystems and downstream reactions that transfer reducing power to improve target chemical production. Further, we discuss different methods for the optimization of photosynthetic bioprocess including the immobilization of cells and the optimization of light delivery. We anticipate this review will serve as an important resource for future efforts to engineer and harness photosynthetic bacteria for chemical production.
Collapse
Affiliation(s)
- Sheida Stephens
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - D Grant Allen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Assessment of Multiple Anaerobic Co-Digestions and Related Microbial Community of Molasses with Rice-Alcohol Wastewater. ENERGIES 2020. [DOI: 10.3390/en13184866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molasses is a highly dense and refined byproduct produced in the sugarcane industry, and it contains high amounts of degradable compounds. Through bioconversion, these compounds can be transformed into renewable products. However, the involved biological process is negatively influenced by the high chemical oxygen demand (COD) of molasses and ion concentration. The co-digestion of molasses with rice-alcohol wastewater (RAW) was compared with its mono-digestion at an increasing organic loading rate (OLR). Both processes were assessed by detecting the COD removal rate, the methane contents of biogas, and the structure and composition of microbial communities at different stages. Results showed that the co-digestion is stable up to a maximum OLR of 16 g COD L−1 d−1, whereas after the acclimatization phase, the mono-digestion process was disturbed two times, which occurred at a maximum OLR of 9 and 10 g COD L−1 d−1. The volatile fatty acids (VFAs) observed were 2059.66 mg/L and 1896.9 mg/L, which in mono-digestion causes the inhibition at maximum OLRs. In the co-digestion process, the concomitant COD removal rates and methane content recorded was 90.72 ± 0.63% 64.47% ± 0.59% correspondingly. While in the mono-digestion process, high COD removal rate and methane contents observed were 89.29 ± 0.094% and 61.37 ± 1.06% respectively. From the analysis of microbial communities, it has been observed that both the bacterial and archaeal communities respond differently at unlike stages. However, in both processes, Propionibacteriaceae was the most abundant family in the bacterial communities, whereas Methanosaetaceae was abundant in the archaeal communities. From the current study, it has been concluded that that rice-alcohol wastewater could be a good co-substrate for the anaerobic digestion of molasses in terms of COD removal rate and methane contents production, that could integrate molasses into progressive biogas production with high OLR.
Collapse
|
13
|
Capson-Tojo G, Batstone DJ, Grassino M, Vlaeminck SE, Puyol D, Verstraete W, Kleerebezem R, Oehmen A, Ghimire A, Pikaar I, Lema JM, Hülsen T. Purple phototrophic bacteria for resource recovery: Challenges and opportunities. Biotechnol Adv 2020; 43:107567. [PMID: 32470594 DOI: 10.1016/j.biotechadv.2020.107567] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
Sustainable development is driving a rapid focus shift in the wastewater and organic waste treatment sectors, from a "removal and disposal" approach towards the recovery and reuse of water, energy and materials (e.g. carbon or nutrients). Purple phototrophic bacteria (PPB) are receiving increasing attention due to their capability of growing photoheterotrophically under anaerobic conditions. Using light as energy source, PPB can simultaneously assimilate carbon and nutrients at high efficiencies (with biomass yields close to unity (1 g CODbiomass·g CODremoved-1)), facilitating the maximum recovery of these resources as different value-added products. The effective use of infrared light enables selective PPB enrichment in non-sterile conditions, without competition with other phototrophs such as microalgae if ultraviolet-visible wavelengths are filtered. This review reunites results systematically gathered from over 177 scientific articles, aiming at producing generalized conclusions. The most critical aspects of PPB-based production and valorisation processes are addressed, including: (i) the identification of the main challenges and potentials of different growth strategies, (ii) a critical analysis of the production of value-added compounds, (iii) a comparison of the different value-added products, (iv) insights into the general challenges and opportunities and (v) recommendations for future research and development towards practical implementation. To date, most of the work has not been executed under real-life conditions, relevant for full-scale application. With the savings in wastewater discharge due to removal of organics, nitrogen and phosphorus as an important economic driver, priorities must go to using PPB-enriched cultures and real waste matrices. The costs associated with artificial illumination, followed by centrifugal harvesting/dewatering and drying, are estimated to be 1.9, 0.3-2.2 and 0.1-0.3 $·kgdry biomass-1. At present, these costs are likely to exceed revenues. Future research efforts must be carried out outdoors, using sunlight as energy source. The growth of bulk biomass on relatively clean wastewater streams (e.g. from food processing) and its utilization as a protein-rich feed (e.g. to replace fishmeal, 1.5-2.0 $·kg-1) appears as a promising valorisation route.
Collapse
Affiliation(s)
- Gabriel Capson-Tojo
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia; CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Damien J Batstone
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - María Grassino
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Daniel Puyol
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, Móstoles, Spain.
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium; Avecom NV, Industrieweg 122P, 9032 Wondelgem, Belgium.
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands.
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Anish Ghimire
- Department of Environmental Science and Engineering, Kathmandu University, Dhulikhel, Nepal.
| | - Ilje Pikaar
- School of Civil Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Juan M Lema
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Tim Hülsen
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
14
|
Zhang T, Jiang D, Zhang H, Lee DJ, Zhang Z, Zhang Q, Jing Y, Zhang Y, Xia C. Effects of different pretreatment methods on the structural characteristics, enzymatic saccharification and photo-fermentative bio-hydrogen production performance of corn straw. BIORESOURCE TECHNOLOGY 2020; 304:122999. [PMID: 32087543 DOI: 10.1016/j.biortech.2020.122999] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
In this study, the effects of different pretreatment methods, including hydrothermal, acid, alkali, acid-heat, and alkali-heat on the structural characteristics, enzymatic saccharification and photo-fermentative bio-hydrogen production performance of corn straw were investigated. Results revealed that all the studied pretreatments effectively destroyed the corn straw structure and improved its enzymatic saccharification potential. The alkali-heat and alkali pretreatment showed significant advantage in reducing sugars release, and the highest total reducing sugar concentration of 23.07 g/L was obtained under the pretreatment condition of 2% NaOH-Heat. The maximum cumulative hydrogen yield of 137.76 mL/g TS was achieved from 2% NaOH pretreated corn straw, while corn straw pretreated with 4% NaOH-heat had the minimum cumulative hydrogen yield of 44.20 mL/g TS. These results suggest that appropriate pretreatment can effectively destroy the corn straw structure and enhance its enzymatic saccharification and hydrogen production performance.
Collapse
Affiliation(s)
- Tian Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Danping Jiang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of MOA of China, Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China.
| | - Yanyan Jing
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of MOA of China, Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Yang Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Chenxi Xia
- Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| |
Collapse
|
15
|
Chandrasekhar K, Kumar S, Lee BD, Kim SH. Waste based hydrogen production for circular bioeconomy: Current status and future directions. BIORESOURCE TECHNOLOGY 2020; 302:122920. [PMID: 32029301 DOI: 10.1016/j.biortech.2020.122920] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 05/08/2023]
Abstract
The present fossil fuel-based energy sector has led to significant industrial growth. On the other hand, the dependence on fossil fuels leads to adverse impact on the environment through releases of greenhouse gases. In this scenario, one possible substitute is biohydrogen, an eco-friendly energy carrier as high-energy produces. The substrates rich in organic compounds like organic waste/wastewater are very useful for improved hydrogen generation through the dark fermentation. Thus, this review article, initially, the status of biohydrogen production from organic waste and various strategies to enhance the process efficiency are concisely discussed. Then, the practical confines of biohydrogen processes are thoroughly discussed. Also, alternate routes such as multiple process integration approach by adopting biorefinery concept to increase overall process efficacy are considered to address industrial-level applications. To conclude, future perspectives besides with possible ways of transforming dark fermentation effluent to biofuels and biochemicals, which leads to circular bioeconomy, are discussed.
Collapse
Affiliation(s)
- K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440 020, India
| | - Byung-Don Lee
- Institute of Chemical and Environmental Process, JEONJIN ENTECH,.LTD, Busan 46729, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
16
|
Kumar S, Sharma S, Thakur S, Mishra T, Negi P, Mishra S, Hesham AEL, Rastegari AA, Yadav N, Yadav AN. Bioprospecting of Microbes for Biohydrogen Production: Current Status and Future Challenges. BIOPROCESSING FOR BIOMOLECULES PRODUCTION 2019:443-471. [DOI: 10.1002/9781119434436.ch22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
| | | | | | | | | | | | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture; Assiut University; Assiut Egypt
| | - Ali A. Rastegari
- Department of Molecular and Cell Biochemistry, Falavarjan Branch; Islamic Azad University; Isfahan Iran
| | - Neelam Yadav
- Gopi Nath P.G. College; Veer Bahadur Singh Purvanchal University; India
| | | |
Collapse
|
17
|
|
18
|
Carlozzi P, Touloupakis E, Di Lorenzo T, Giovannelli A, Seggiani M, Cinelli P, Lazzeri A. Whey and molasses as inexpensive raw materials for parallel production of biohydrogen and polyesters via a two-stage bioprocess: New routes towards a circular bioeconomy. J Biotechnol 2019; 303:37-45. [PMID: 31351109 DOI: 10.1016/j.jbiotec.2019.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 11/30/2022]
Abstract
Consecutive dark-fermentation and photo-fermentation stages were investigated for a profitable circular bio-economy. H2 photo-production versus poly(3-hydroxybutyrate) (P3HB) accumulation is a modern biotechnological approach to use agro-food industrial byproducts as no-cost rich-nutrient medium in eco-sustainable biological processes. Whey and molasses are very important byproducts rich in nutrients that lactic acid bacteria can convert, by dark-fermentation, in dark fermented effluents of whey (DFEW) and molasses (DFEM). These effluents are proper media for culturing purple non-sulfur bacteria, which are profitable producers of P3HB and H2. The results of the present study show that Lactobacillus sp. and Rhodopseudomonas sp. S16-VOGS3 are two representative genera for mitigation of environmental impact. The highest productivity of P3HB (4.445 mg/(L·h)) was achieved culturing Rhodopseudomonas sp. S16-VOGS3, when feeding the bacterium with 20% of DFEM; the highest H2 production rate of 4.46 mL/(L·h) was achieved when feeding the bacterium with 30% of DFEM.
Collapse
Affiliation(s)
- Pietro Carlozzi
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy.
| | - Eleftherios Touloupakis
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy
| | - Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy
| | - Alessio Giovannelli
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy
| | - Maurizia Seggiani
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| |
Collapse
|
19
|
Hassan SH, el Nasser A. Zohri A, Kassim RM. Electricity generation from sugarcane molasses using microbial fuel cell technologies. ENERGY 2019; 178:538-543. [DOI: 10.1016/j.energy.2019.04.087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
20
|
Gabra FA, Abd-Alla MH, Danial AW, Abdel-Basset R, Abdel-Wahab AM. Production of biofuel from sugarcane molasses by diazotrophic Bacillus and recycle of spent bacterial biomass as biofertilizer inoculants for oil crops. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Abstract
Bio-hydrogen production (BHP) produced from renewable bio-resources is an attractive route for green energy production, due to its compelling advantages of relative high efficiency, cost-effectiveness, and lower ecological impact. This study reviewed different BHP pathways, and the most important enzymes involved in these pathways, to identify technological gaps and effective approaches for process intensification in industrial applications. Among the various approaches reviewed in this study, a particular focus was set on the latest methods of chemicals/metal addition for improving hydrogen generation during dark fermentation (DF) processes; the up-to-date findings of different chemicals/metal addition methods have been quantitatively evaluated and thoroughly compared in this paper. A new efficiency evaluation criterion is also proposed, allowing different BHP processes to be compared with greater simplicity and validity.
Collapse
|
22
|
Assawamongkholsiri T, Reungsang A, Sittijunda S. Photo-hydrogen and lipid production from lactate, acetate, butyrate, and sugar manufacturing wastewater with an alternative nitrogen source by Rhodobacter sp . KKU-PS1. PeerJ 2019; 7:e6653. [PMID: 30976463 PMCID: PMC6451836 DOI: 10.7717/peerj.6653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/21/2019] [Indexed: 11/20/2022] Open
Abstract
Photo-hydrogen and lipid production from individual synthetic volatile fatty acids (VFAs) and sugar manufacturing wastewater (SMW) by Rhodobacter sp. KKU-PS1 with sodium glutamate or Aji-L (i.e., waste from the process of crystallizing monosodium glutamate) as a nitrogen source was investigated. Using individual synthetic VFAs, the maximum hydrogen production was achieved with Aji-L as a nitrogen source rather than sodium glutamate. The maximum hydrogen production was 1,727, 754 and 1,353 mL H2/L, respectively, using 25 mM of lactate, 40 mM of acetate and 15mM of butyrate as substrates. Under these conditions, lipid was produced in the range of 10.6–16.9% (w/w). Subsequently, photo-hydrogen and lipid production from SMW using Aji-L as nitrogen source was conducted. Maximal hydrogen production and hydrogen yields of 1,672 mL H2/L and 1.92 mol H2/mol substrate, respectively, were obtained. Additionally, lipid content and lipid production of 21.3% (w/w) and 475 mg lipid/L were achieved. The analysis of the lipid and fatty acid components revealed that triacyglycerol (TAG) and C18:1 methyl ester were the main lipid and fatty acid components, respectively, found in Rhodobacter sp. KKU-PS1 cells.
Collapse
Affiliation(s)
- Thitirut Assawamongkholsiri
- Research and Development of GM Plant & Microbe Detection Laboratory/Biotechnology Research and Development Office, Department of Agriculture, Bangkok, Thailand
| | - Alissara Reungsang
- Department of Biotechnology/Faculty of Technology/Khon Kaen University, Khon Kaen, Thailand.,Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, Thailand
| | - Sureewan Sittijunda
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
23
|
Silva FTM, Bessa LP, Vieira LM, Moreira FS, de Souza Ferreira J, Batista FRX, Cardoso VL. Dark fermentation effluent as substrate for hydrogen production from Rhodobacter capsulatus highlighting the performance of different fermentation systems. 3 Biotech 2019; 9:153. [PMID: 30944800 PMCID: PMC6435761 DOI: 10.1007/s13205-019-1676-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/13/2019] [Indexed: 11/28/2022] Open
Abstract
Hydrogen production by biological route is a potentially sustainable alternative. Nowadays, energy production from sustainable sources has become urgent for several countries as well as for international policies. In this perspective, hydrogen has gained substantial global attention as clean, sustainable, and versatile energy carrier. In the current work, the resulting effluent from dark fermentation, rich in organic acids, was used as substrate for the purple non-sulfur bacteria (PNS) Rhodobacter capsulatus. In the first stage, experiments were carried out in bioreactors of 50 mL to check the influence of the composition of the effluent dark fermentation. The results proved that the provision of a sugar source improved bio-H2 production. The lactose and lactic acid concentrations exceeding 4.4 and 12 g/L, respectively, resulted in a productivity of up to 37.14 mmol H2/L days. Based on initial conditions obtained on the previous assays, in the second stage, a photo-fermentation in enlarged scale (1.5 L) was performed with the purpose to monitor the production of hydrogen and metabolites, sugar consumption and growth cells during the process. It was observed that the maximum productivity obtained was 98.23 mmol H2/L days in 26 h of process.
Collapse
Affiliation(s)
- Felipe Thalles Moreira Silva
- School of Chemical Engineering, Federal University of Uberlandia, Av. João Naves de Ávila 2121, Santa Mônica, Uberlândia, MG 38408-144 Brazil
| | - Lidiane Pereira Bessa
- School of Chemical Engineering, Federal University of Uberlandia, Av. João Naves de Ávila 2121, Santa Mônica, Uberlândia, MG 38408-144 Brazil
| | - Lucas Mendes Vieira
- School of Chemical Engineering, Federal University of Uberlandia, Av. João Naves de Ávila 2121, Santa Mônica, Uberlândia, MG 38408-144 Brazil
| | - Felipe Santos Moreira
- School of Chemical Engineering, Federal University of Uberlandia, Av. João Naves de Ávila 2121, Santa Mônica, Uberlândia, MG 38408-144 Brazil
| | - Juliana de Souza Ferreira
- School of Chemical Engineering, Federal University of Uberlandia, Av. João Naves de Ávila 2121, Santa Mônica, Uberlândia, MG 38408-144 Brazil
| | - Fabiana Regina Xavier Batista
- School of Chemical Engineering, Federal University of Uberlandia, Av. João Naves de Ávila 2121, Santa Mônica, Uberlândia, MG 38408-144 Brazil
| | - Vicelma Luiz Cardoso
- School of Chemical Engineering, Federal University of Uberlandia, Av. João Naves de Ávila 2121, Santa Mônica, Uberlândia, MG 38408-144 Brazil
| |
Collapse
|
24
|
Assessment of sugarcane industry: Suitability for production, consumption, and utilization. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.aasci.2018.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Sağır E, Yucel M, Hallenbeck PC. Demonstration and optimization of sequential microaerobic dark- and photo-fermentation biohydrogen production by immobilized Rhodobacter capsulatus JP91. BIORESOURCE TECHNOLOGY 2018; 250:43-52. [PMID: 29153649 DOI: 10.1016/j.biortech.2017.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Hydrogen generation from complex substrates composed of simple sugars has the potential to mitigate future worldwide energy demand. The biohydrogen potential of a sequential microaerobic dark- and photo-fermentative system was investigated using immobilized Rhodobacter capsulatus JP91. Biological hydrogen production from glucose was carried out using a batch process and a bench-scale bioreactor. Response surface methodology with a Box-Behnken design was employed to optimize key parameters such as inoculum concentration, oxygen concentration, and glucose concentration. The maximum hydrogen production (21 ± 0.25 mmol H2/L) and yield (7.8 ± 0.1 mol H2/mol glucose) were obtained at 6 mM glucose, 4.5% oxygen and 62.5 v/v% inoculum concentration, demonstrating the feasibility of enhanced hydrogen production by immobilized R. capsulatus JP91 in a sequential system. This is the first time that a sequential process using an immobilized system has been described. This system also achieved the highest hydrogen yield obtained by an immobilized system so far.
Collapse
Affiliation(s)
- Emrah Sağır
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, CP6128 Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada; Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Meral Yucel
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Patrick C Hallenbeck
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, CP6128 Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada; Life Sciences Research Center, Department of Biology, United States Air Force Academy, USA.
| |
Collapse
|
26
|
Biological Hydrogen Production From Renewable Resources by Photofermentation. ADVANCES IN BIOENERGY 2018. [DOI: 10.1016/bs.aibe.2018.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
27
|
Reungsang A, Zhong N, Yang Y, Sittijunda S, Xia A, Liao Q. Hydrogen from Photo Fermentation. GREEN ENERGY AND TECHNOLOGY 2018. [DOI: 10.1007/978-981-10-7677-0_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
28
|
Stephen AJ, Archer SA, Orozco RL, Macaskie LE. Advances and bottlenecks in microbial hydrogen production. Microb Biotechnol 2017; 10:1120-1127. [PMID: 28834420 PMCID: PMC5609275 DOI: 10.1111/1751-7915.12790] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 11/28/2022] Open
Abstract
Biological production of hydrogen is poised to become a significant player in the future energy mix. This review highlights recent advances and bottlenecks in various approaches to biohydrogen processes, often in concert with management of organic wastes or waste CO2. Some key bottlenecks are highlighted in terms of the overall energy balance of the process and highlighting the need for economic and environmental life cycle analyses with regard also to socio‐economic and geographical issues.
Collapse
Affiliation(s)
- Alan J Stephen
- School ofChemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sophie A Archer
- School ofChemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Rafael L Orozco
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Lynne E Macaskie
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
29
|
Single-stage photofermentative biohydrogen production from sugar beet molasses by different purple non-sulfur bacteria. Bioprocess Biosyst Eng 2017; 40:1589-1601. [DOI: 10.1007/s00449-017-1815-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/12/2017] [Indexed: 11/28/2022]
|
30
|
Tsioptsias C, Lionta G, Samaras P. Microalgae-activated sludge treatment of molasses wastewater in sequencing batch photo-bioreactor. ENVIRONMENTAL TECHNOLOGY 2017; 38:1120-1126. [PMID: 27494440 DOI: 10.1080/09593330.2016.1218552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The aim of this work was the examination of the treatment potential of molasses wastewater, by the utilization of activated sludge and microalgae. The systems used included a sequencing batch bioreactor and a similar photo-bioreactor, favoring microalgae growth. The microalgae treatment of molasses wastewater mixture resulted in a considerable reduction in the total nitrogen content. A reduction in the ammonium and nitrate content was observed in the photo-bioreactor, while the effluent's total nitrogen consisted mainly of 50% organic nitrogen. The transformation of the nitrogen forms in the photo-bioreactor was attributed to microalgae activity, resulting in the production of a better quality effluent. Lower COD removal was observed for the photo-bioreactor than the control, which however increased, by the replacement of the anoxic phase by a long aeration period. The mechanism of nitrogen removal included both the denitrification process during the anoxic stage and the microalgae activities, as the replacement of the anoxic stage resulted in low total nitrogen removal capacities. A decrease in the photobioreactor performance was observed after 35 days of operation due to biofilm formation on the light tube surface, while the operation at higher temperature accelerated microalgae growth, resulting thus in the early failure of the photoreactor.
Collapse
Affiliation(s)
- Costas Tsioptsias
- a Department of Food Technology , Alexander Technological Educational Institute of Thessaloniki , Sindos, Greece
| | - Gesthimani Lionta
- a Department of Food Technology , Alexander Technological Educational Institute of Thessaloniki , Sindos, Greece
| | - Petros Samaras
- a Department of Food Technology , Alexander Technological Educational Institute of Thessaloniki , Sindos, Greece
| |
Collapse
|
31
|
Zhang Q, Wang Y, Zhang Z, Lee DJ, Zhou X, Jing Y, Ge X, Jiang D, Hu J, He C. Photo-fermentative hydrogen production from crop residue: A mini review. BIORESOURCE TECHNOLOGY 2017; 229:222-230. [PMID: 28108074 DOI: 10.1016/j.biortech.2017.01.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Photofermentative hydrogen production from crop residues, if feasible, can lead to complete conversion of organic substances to hydrogen (and carbon dioxide). This mini review lists the studies on photofermentative hydrogen production using crop residues as feedstock. Pretreatment methods, substrate structure, mechanism of photosynthetic bacteria growth and metabolism were discussed. Photofermentative hydrogen production from pure culture, consortia and mutants, and the geometry, light sources, mass transfer resistances and the operational strategies of the photo-bioreactor were herein reviewed. Future studies of regulation mechanism of photosynthetic bacteria, such as highly-efficient strain breeding and gene reconstruction, and development of new-generation photo-bioreactor were suggested.
Collapse
Affiliation(s)
- Quanguo Zhang
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yi Wang
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zhiping Zhang
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Duu-Jong Lee
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, PR China; Department of Chemical Engineering, National Taiwan University, Taipei 10607, Taiwan.
| | - Xuehua Zhou
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yanyan Jing
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xumeng Ge
- Department of Food, Agricultural and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096, USA
| | - Danping Jiang
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Jianjun Hu
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Chao He
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, PR China
| |
Collapse
|
32
|
Tsioptsias C, Lionta G, Deligiannis A, Samaras P. Enhancement of the performance of a combined microalgae-activated sludge system for the treatment of high strength molasses wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 183:126-132. [PMID: 27589919 DOI: 10.1016/j.jenvman.2016.08.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 05/07/2023]
Abstract
The treatment of molasses wastewater, by a combined microalgae-activated sludge process, for the simultaneous organics and total nitrogen reduction, was examined. Further enhancement of the performance of the combined process was accomplished, by means of biofilm carriers or electrocoagulation. A LED light tube was immersed into the reactor tank aiming to enhance the growth of photosynthetic microalgae, while in a similar unit, biofilm carriers were added to the system, representing a moving bed bioreactor. Exposure of the activated sludge biocommunity to light source, resulted in the growth of microalgae and photoreactors exhibited higher removal rates of total nitrogen and nitrates. However, operation at longer times resulted in low effluent quality due to the presence of microalgae cells as a result of high growth rates, and potential light shading effect. Nevertheless, the moving bed system was more beneficial than the single photoreactor, as biofilm carriers provided a self cleaning capacity of the light source, reducing the effect of microalgae deposition. Advanced treatment of the biological effluents, by electrocoagulation, increased even more the process efficiency: the combined photobioreactor and electrocoagulation process resulted in about 78% COD removal and more than 35% total nitrogen removal in the effluent, where nitrates represented almost the single form of total nitrogen.
Collapse
Affiliation(s)
- Costas Tsioptsias
- Department of Food Technology, Alexander Technological Education Institute of Thessaloniki, Sindos, GR-57400 Thessaloniki, Greece.
| | - Gesthimani Lionta
- Department of Food Technology, Alexander Technological Education Institute of Thessaloniki, Sindos, GR-57400 Thessaloniki, Greece
| | - Andreas Deligiannis
- Department of Food Technology, Alexander Technological Education Institute of Thessaloniki, Sindos, GR-57400 Thessaloniki, Greece
| | - Petros Samaras
- Department of Food Technology, Alexander Technological Education Institute of Thessaloniki, Sindos, GR-57400 Thessaloniki, Greece
| |
Collapse
|
33
|
Biohydrogen Production from Lignocellulosic Biomass: Technology and Sustainability. ENERGIES 2015. [DOI: 10.3390/en81112357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
A New Hydrogen-Producing Strain and Its Characterization of Hydrogen Production. Appl Biochem Biotechnol 2015; 177:1676-89. [DOI: 10.1007/s12010-015-1845-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
|
35
|
In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass. Anaerobe 2015; 34:125-31. [DOI: 10.1016/j.anaerobe.2015.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 12/13/2022]
|
36
|
Abd-Alla MH, Bagy MMK, Morsy FM, Hassan EA. Enhancement of biodiesel, hydrogen and methane generation from molasses by Cunninghamella echinulata and anaerobic bacteria through sequential three-stage fermentation. ENERGY 2014; 78:543-554. [DOI: 10.1016/j.energy.2014.10.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
37
|
Wu X, Lin H, Zhu J. Optimization of continuous hydrogen production from co-fermenting molasses with liquid swine manure in an anaerobic sequencing batch reactor. BIORESOURCE TECHNOLOGY 2013; 136:351-359. [PMID: 23567702 DOI: 10.1016/j.biortech.2013.02.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/22/2013] [Accepted: 02/23/2013] [Indexed: 06/02/2023]
Abstract
This study investigated and optimized the operational conditions for continuous hydrogen production from sugar beet molasses, co-fermented with liquid swine manure in an anaerobic sequencing batch reactor. Results indicated that pH, HRT and total solids content in the swine manure (TS) had significant impact on all the responses such as biogas production rate (BPR), hydrogen content (HC), hydrogen production rate (HPR), and hydrogen yield (HY), although the highest level of each response was achieved at different combination of the three variables. The maximum BPR, HC, HPR and HY of 32.21 L/d, 30.51%, 2.23 L/d/L and 1.57 mol-H2/mol-sugar were estimated at the optimal pH, HRT, and TS of 5.55, 15.78 h, and 0.71% for BPR; 5.22, 12.04, and 0.69 for HC; 5.32, 15.62, and 0.78% for HPR; and 5.36, 17.56, and 0.74% for HY, respectively. Good linear relationships of the predicted and tested results for all the parameters were observed.
Collapse
Affiliation(s)
- Xiao Wu
- Southern Research and Outreach Center, University of Minnesota, Waseca, MN 56093, USA
| | | | | |
Collapse
|
38
|
Oncel S, Sabankay M. Microalgal biohydrogen production considering light energy and mixing time as the two key features for scale-up. BIORESOURCE TECHNOLOGY 2012; 121:228-234. [PMID: 22858490 DOI: 10.1016/j.biortech.2012.06.079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/21/2012] [Accepted: 06/26/2012] [Indexed: 06/01/2023]
Abstract
This study focuses on a scale-up procedure considering two vital parameters light energy and mixing for microalgae cultivation, taking Chlamydomonas reinhardtii as the model microorganism. Applying two stage hydrogen production protocol to 1L flat type and 2.5L tank type photobioreactors hydrogen production was investigated with constant light energy and mixing time. The conditions that provide the shortest transfer time to anaerobic culture (light energy; 2.96 kJ s(-1)m(-3) and mixing time; 1 min) and highest hydrogen production rate (light energy; 1.22 kJ s(-1)m(-3) and mixing time; 2.5 min) are applied to 5L photobioreactor. The final hydrogen production for 5L system after 192 h was measured as 195 ± 10 mL that is comparable with the other systems is a good validation for the scale-up procedure.
Collapse
Affiliation(s)
- S Oncel
- Department of Bioengineering, Faculty of Engineering, University of Ege, 35100 Bornova, Izmir, Turkey.
| | | |
Collapse
|