1
|
Yin L, Zhou Y, Ding N, Fang Y. Recent Advances in Metabolic Engineering for the Biosynthesis of Phosphoenol Pyruvate-Oxaloacetate-Pyruvate-Derived Amino Acids. Molecules 2024; 29:2893. [PMID: 38930958 PMCID: PMC11206799 DOI: 10.3390/molecules29122893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The phosphoenol pyruvate-oxaloacetate-pyruvate-derived amino acids (POP-AAs) comprise native intermediates in cellular metabolism, within which the phosphoenol pyruvate-oxaloacetate-pyruvate (POP) node is the switch point among the major metabolic pathways existing in most living organisms. POP-AAs have widespread applications in the nutrition, food, and pharmaceutical industries. These amino acids have been predominantly produced in Escherichia coli and Corynebacterium glutamicum through microbial fermentation. With the rapid increase in market requirements, along with the global food shortage situation, the industrial production capacity of these two bacteria has encountered two bottlenecks: low product conversion efficiency and high cost of raw materials. Aiming to push forward the update and upgrade of engineered strains with higher yield and productivity, this paper presents a comprehensive summarization of the fundamental strategy of metabolic engineering techniques around phosphoenol pyruvate-oxaloacetate-pyruvate node for POP-AA production, including L-tryptophan, L-tyrosine, L-phenylalanine, L-valine, L-lysine, L-threonine, and L-isoleucine. Novel heterologous routes and regulation methods regarding the carbon flux redistribution in the POP node and the formation of amino acids should be taken into consideration to improve POP-AA production to approach maximum theoretical values. Furthermore, an outlook for future strategies of low-cost feedstock and energy utilization for developing amino acid overproducers is proposed.
Collapse
Affiliation(s)
- Lianghong Yin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanan Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Nana Ding
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yu Fang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
2
|
Kim HJ, Ham S, Shin N, Hwang JH, Oh SJ, Choi TR, Joo JC, Bhatia SK, Yang YH. Tryptophan-Based Hyperproduction of Bioindigo by Combinatorial Overexpression of Two Different Tryptophan Transporters. J Microbiol Biotechnol 2024; 34:969-977. [PMID: 38213292 PMCID: PMC11091664 DOI: 10.4014/jmb.2308.08039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
Indigo is a valuable, natural blue dye that has been used for centuries in the textile industry. The large-scale commercial production of indigo relies on its extraction from plants and chemical synthesis. Studies are being conducted to develop methods for environment-friendly and sustainable production of indigo using genetically engineered microbes. Here, to enhance the yield of bioindigo from an E. coli whole-cell system containing tryptophanase (TnaA) and flavin-containing monooxygenase (FMO), we evaluated tryptophan transporters to improve the transport of aromatic compounds, such as indole and tryptophan, which are not easily soluble and passable through cell walls. Among the three transporters, Mtr, AroP, and TnaB, AroP enhanced indigo production the most. The combination of each transporter with AroP was also evaluated, and the combination of AroP and TnaB showed the best performance compared to the single transporters and two transporters. Bioindigo production was then optimized by examining the culture medium, temperature, isopropyl β-D-1-thiogalactopyranoside concentration, shaking speed (rpm), and pH. The novel strain containing aroP and tnaB plasmid with tnaA and FMO produced 8.77 mM (2.3 g/l) of bioindigo after 66 h of culture. The produced bioindigo was further recovered using a simple method and used as a watercolor dye, showing good mixing with other colors and color retention for a relatively long time. This study presents an effective strategy for enhancing indigo production using a combination of transporters.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sion Ham
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Suk Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Chan Joo
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Ping J, Wang L, Qin Z, Zhou Z, Zhou J. Synergetic engineering of Escherichia coli for efficient production of l-tyrosine. Synth Syst Biotechnol 2023; 8:724-731. [PMID: 38033756 PMCID: PMC10686809 DOI: 10.1016/j.synbio.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
l-Tyrosine, an aromatic non-essential amino acid, is the raw material for many important chemical products, including levodopa, resveratrol, and hydroxytyrosol. It is widely used in the food, drug, and chemical industries. There are many studies on the synthesis of l-tyrosine by microorganisms, however, the low titer of l-tyrosine limited the industrial large-scale production. In order to enhance l-tyrosine production in Escherichia coli, the expression of key enzymes in the shikimate pathway was up- or down-regulated. The l-tyrosine transport system and the acetic acid biosynthesis pathway were modified to further enhance l-tyrosine production. In addition, the phosphoketolase pathway was introduced in combination with cofactor engineering to redirect carbon flux to the shikimate pathway. Finally, after adaptive laboratory evolution to low pH an optimal strain was obtained. The strain can produce 92.5 g/L of l-tyrosine in a 5-L fermenter in 62 h, with a yield of 0.266 g/g glucose.
Collapse
Affiliation(s)
- Jurong Ping
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Lian Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Zhijie Qin
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
4
|
Graboski AL, Kowalewski ME, Simpson JB, Cao X, Ha M, Zhang J, Walton WG, Flaherty DP, Redinbo MR. Mechanism-based inhibition of gut microbial tryptophanases reduces serum indoxyl sulfate. Cell Chem Biol 2023; 30:1402-1413.e7. [PMID: 37633277 DOI: 10.1016/j.chembiol.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023]
Abstract
Indoxyl sulfate is a microbially derived uremic toxin that accumulates in late-stage chronic kidney disease and contributes to both renal and cardiovascular toxicity. Indoxyl sulfate is generated by the metabolism of indole, a compound created solely by gut microbial tryptophanases. Here, we characterize the landscape of tryptophanase enzymes in the human gut microbiome and find remarkable structural and functional similarities across diverse taxa. We leverage this homology through a medicinal chemistry campaign to create a potent pan-inhibitor, (3S) ALG-05, and validate its action as a transition-state analog. (3S) ALG-05 successfully reduces indole production in microbial culture and displays minimal toxicity against microbial and mammalian cells. Mice treated with (3S) ALG-05 show reduced cecal indole and serum indoxyl sulfate levels with minimal changes in other tryptophan-metabolizing pathways. These studies present a non-bactericidal pan-inhibitor of gut microbial tryptophanases with potential promise for reducing indoxyl sulfate in chronic kidney disease.
Collapse
Affiliation(s)
- Amanda L Graboski
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark E Kowalewski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua B Simpson
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xufeng Cao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Mary Ha
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jianan Zhang
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - William G Walton
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Matthew R Redinbo
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Tang M, Pan X, Yang T, You J, Zhu R, Yang T, Zhang X, Xu M, Rao Z. Multidimensional engineering of Escherichia coli for efficient synthesis of L-tryptophan. BIORESOURCE TECHNOLOGY 2023; 386:129475. [PMID: 37451510 DOI: 10.1016/j.biortech.2023.129475] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Development of microbial cell factory for L-tryptophan (L-trp) production has received widespread attention but still requires extensive efforts due to weak metabolic flux distribution and low yield. Here, the riboswitch-based high-throughput screening (HTS) platform was established to construct a powerful L-trp-producing chassis cell. To facilitate L-trp biosynthesis, gene expression was regulated by promoter and N-terminal coding sequences (NCS) engineering. Modules of degradation, transport and by-product synthesis related to L-trp production were also fine-tuned. Next, a novel transcription factor YihL was excavated to negatively regulate L-trp biosynthesis. Self-regulated promoter-mediated dynamic regulation of branch pathways was performed and cofactor supply was improved for further L-trp biosynthesis. Finally, without extra addition, the yield of strain Trp30 reached 42.5 g/L and 0.178 g/g glucose after 48 h of cultivation in 5-L bioreactor. Overall, strategies described here worked up a promising method combining HTS and multidimensional regulation for developing cell factories for products in interest.
Collapse
Affiliation(s)
- Mi Tang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Tianjin Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Rongshuai Zhu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
6
|
Gao S, Ma D, Wang Y, Zhang A, Wang X, Chen K. Whole-cell catalyze L-dopa to dopamine via co-expression of transport protein AroP in Escherichia coli. BMC Biotechnol 2023; 23:33. [PMID: 37644483 PMCID: PMC10463401 DOI: 10.1186/s12896-023-00794-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/18/2023] [Indexed: 08/31/2023] Open
Abstract
Dopamine is high-value compound of pharmaceutical interest, but its industrial scale production mostly focuses on chemical synthesis, possessing environment pollution. Bio-manufacturing has caused much attention for its environmental characteristic. Resting cells were employed to as biocatalysts with extraordinary advantages like offering stable surroundings, the inherent presence of expensive cofactors. In this study, whole-cell bioconversion was employed to convert dopa to dopamine. To increase the titer and yield of dopamine production through whole-cell catalysis, three kinds of aromatic amino acid transport protein, AroP, PheP and TyrP, were selected to be co-expressed. The effects of the concentration of L-dopa, pyridoxal-5'- phosphate (PLP), reaction temperature and pH were characterized for improvement of bioconversion. Under optimal conditions, dopamine titer reached 1.44 g/L with molar yield of 46.3%, which is 6.62 times than that of initial conditions. The catalysis productivity of recombinant E. coli co-expressed L-dopa decarboxylase(DDC) and AroP was further enhanced by repeated cell recycling, which maintained over 50% of its initial ability with eight consecutive catalyses. This study was the first to successfully bioconversion of dopamine by whole-cell catalysis. This research provided reference for whole-cell catalysis which is hindered by cell membrane.
Collapse
Affiliation(s)
- Siyuan Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Ding Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Yongtao Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Alei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| |
Collapse
|
7
|
Liu S, Wang BB, Xu JZ, Zhang WG. Engineering of Shikimate Pathway and Terminal Branch for Efficient Production of L-Tryptophan in Escherichia coli. Int J Mol Sci 2023; 24:11866. [PMID: 37511626 PMCID: PMC10380740 DOI: 10.3390/ijms241411866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
L-tryptophan (L-trp), produced through bio-manufacturing, is widely used in the pharmaceutical and food industries. Based on the previously developed L-trp-producing strain, this study significantly improved the titer and yield of L-trp, through metabolic engineering of the shikimate pathway and the L-tryptophan branch. First, the rate-limiting steps in the shikimate pathway were investigated and deciphered, revealing that the combined overexpression of the genes aroE and aroD increased L-trp production. Then, L-trp synthesis was further enhanced at the shaking flask level by improving the intracellular availability of L-glutamine (L-gln) and L-serine (L-ser). In addition, the transport system and the competing pathway of L-trp were also modified, indicating that elimination of the gene TnaB contributed to the extracellular accumulation of L-trp. Through optimizing formulas, the robustness and production efficiency of engineered strains were enhanced at the level of the 30 L fermenter. After 42 h of fed-batch fermentation, the resultant strain produced 53.65 g/L of L-trp, with a yield of 0.238 g/g glucose. In this study, the high-efficiency L-trp-producing strains were created in order to establish a basis for further development of more strains for the production of other highly valuable aromatic compounds or their derivatives.
Collapse
Affiliation(s)
- Shuai Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, China
| | - Bing-Bing Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, China
| |
Collapse
|
8
|
Pei J, Chen S, Yu K, Hu J, Wang Y, Zhang J, Qin Z, Zhang R, Kuo TH, Chung HH, Hsu CC. Metabolomics Characterization of Scleractinia Corals with Different Life-History Strategies: A Case Study about Pocillopora meandrina and Seriatopora hystrix in the South China Sea. Metabolites 2022; 12:metabo12111079. [PMID: 36355162 PMCID: PMC9693324 DOI: 10.3390/metabo12111079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Life-history strategies play a critical role in susceptibility to environmental stresses for Scleractinia coral. Metabolomics, which is capable of determining the metabolic responses of biological systems to genetic and environmental changes, is competent for the characterization of species’ biological traits. In this study, two coral species (Pocillopora meandrina and Seriatopora hystrix in the South China Sea) with different life-history strategies (“competitive” and “weedy”) were targeted, and untargeted mass spectrometry metabolomics combined with molecular networking was applied to characterize their differential metabolic pathways. The results show that lyso-platelet activating factors (lyso-PAFs), diacylglyceryl carboxyhydroxymethylcholine (DGCC), aromatic amino acids, and sulfhydryl compounds were more enriched in P. meandrina, whereas new phospholipids, dehydrated phosphoglycerol dihydroceramide (de-PG DHC), monoacylglycerol (MAG), fatty acids (FA) (C < 18), short peptides, and guanidine compounds were more enriched in S. hystrix. The metabolic pathways involved immune response, energy metabolism, cellular membrane structure regulation, oxidative stress system, secondary metabolite synthesis, etc. While the immune system (lysoPAF) and secondary metabolite synthesis (aromatic amino acids and sulfhydryl compounds) facilitates fast growth and resistance to environmental stressors of P. meandrina, the cell membrane structure (structural lipids), energy storage (storage lipids), oxidative stress system (short peptides), and secondary metabolite synthesis (guanidine compounds) are beneficial to the survival of S. hystrix in harsh conditions. This study contributes to the understanding of the potential molecular traits underlying life-history strategies of different coral species.
Collapse
Affiliation(s)
- Jiying Pei
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
| | - Shiguo Chen
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519080, China
- Correspondence:
| | - Junjie Hu
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
| | - Yitong Wang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
| | - Jingjing Zhang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
| | - Zhenjun Qin
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
| | - Ruijie Zhang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
| | - Ting-Hao Kuo
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hsin-Hsiang Chung
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
9
|
Bioprocess Engineering, Transcriptome, and Intermediate Metabolite Analysis of L-Serine High-Yielding Escherichia coli W3110. Microorganisms 2022; 10:microorganisms10101927. [PMID: 36296205 PMCID: PMC9612172 DOI: 10.3390/microorganisms10101927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
L-serine is widely used in the food, cosmetic, and pharmaceutical industries. However, the complicated metabolic network and regulatory mechanism of L-serine production lead to the suboptimal productivity of the direct fermentation of L-serine and limits its large-scale industrial production. In this study, a high-yield L-serine production Escherichia coli strain was constructed by a series of defined genetic modification methodologies. First, L-serine-mediated feedback inhibition was removed and L-serine biosynthetic pathway genes (serAfr, serC, and serB) associated with phosphoglycerate kinase (pgk) were overexpressed. Second, the L-serine conversion pathway was further examined by introducing a glyA mutation (K229G) and deleting other degrading enzymes based on the deletion of initial sdaA. Finally, the L-serine transport system was rationally engineered to reduce uptake and accelerate L-serine export. The optimally engineered strain produced 35 g/L L-serine with a productivity of 0.98 g/L/h and a yield of 0.42 g/g glucose in a 5-L fermenter, the highest productivity and yield of L-serine from glucose reported to date. Furthermore, transcriptome and intermediate metabolite of the high-yield L-serine production Escherichia coli strain were analyzed. The results demonstrated the regulatory mechanism of L-serine production is delicate, and that combined metabolic and bioprocess engineering strategies for L-serine producing strains can improve the productivity and yield.
Collapse
|
10
|
Liu S, Xu JZ, Zhang WG. Advances and prospects in metabolic engineering of Escherichia coli for L-tryptophan production. World J Microbiol Biotechnol 2022; 38:22. [PMID: 34989926 DOI: 10.1007/s11274-021-03212-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
As an important raw material for pharmaceutical, food and feed industry, highly efficient production of L-tryptophan by Escherichia coli has attracted a considerable attention. However, there are complicated and multiple layers of regulation networks in L-tryptophan biosynthetic pathway and thus have difficulty to rewrite the biosynthetic pathway for producing L-tryptophan with high efficiency in E. coli. This review summarizes the biosynthetic pathway of L-tryptophan and highlights the main regulatory mechanisms in E. coli. In addition, we discussed the latest metabolic engineering strategies achieved in E. coli to reconstruct the L-tryptophan biosynthetic pathway. Moreover, we also review a few strategies that can be used in E. coli to improve robustness and streamline of L-tryptophan high-producing strains. Lastly, we also propose the potential strategies to further increase L-tryptophan production by systematic metabolic engineering and synthetic biology techniques.
Collapse
Affiliation(s)
- Shuai Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China.
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China.
| |
Collapse
|
11
|
Guo L, Ding S, Liu Y, Gao C, Hu G, Song W, Liu J, Chen X, Liu L. Enhancing tryptophan production by balancing precursors in Escherichia coli. Biotechnol Bioeng 2021; 119:983-993. [PMID: 34936092 DOI: 10.1002/bit.28019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/20/2021] [Accepted: 11/27/2021] [Indexed: 11/11/2022]
Abstract
Tryptophan, an essential aromatic amino acid, is widely used in animal feed, food additives, and pharmaceuticals. Although sustainable and environmentally friendly, microbial tryptophan production from renewable feedstocks is limited by low biosynthesis and transport rates. Here, an Escherichia coli strain capable of efficient tryptophan production was generated by improving and balancing the supply of precursors and by engineering membrane transporters. Tryptophan biosynthesis was increased by eliminating negative regulatory factors, blocking competing pathways, and preventing tryptophan degradation. Promoter engineering balanced the supply of the precursors erythrose-4-phosphate and phosphoenolpyruvate, as well as the availability of serine. Finally, the engineering of tryptophan transporters prevented feedback inhibition and growth toxicity. Fed-batch fermentation of the final strain (TRP12) in a 5 L bioreactor produced 52.1 g·L-1 of tryptophan, with a yield of 0.171 g·g-1 glucose and productivity of 1.45 g·L-1 ·h-1 . The metabolic engineering strategy described here paves the way for high-performance microbial cell factories aimed at the production of tryptophan as well as other valuable chemicals.
Collapse
Affiliation(s)
- Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Shuang Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yadi Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Guipeng Hu
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Wei Song
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Wang X, Du G, Chen H, Zeng X, Liu B, Guo C, Sheng Q, Yuan Y, Yue T. Comparative Metagenomics Reveals Microbial Communities and Their Associated Functions in Two Types of Fuzhuan Brick Tea. Front Microbiol 2021; 12:705681. [PMID: 34603231 PMCID: PMC8481837 DOI: 10.3389/fmicb.2021.705681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/19/2021] [Indexed: 12/28/2022] Open
Abstract
Fuzhuan brick tea (FBT) is a unique post-fermented tea product, naturally co-fermented by microorganisms, and has gained global popularity due to its potential health benefits for humans. Considerable efforts have been made toward elucidating the microbial diversity within FBT, but an understanding of the underlying FBT community interactions and functions remains poorly studied. Consequently, the microbial communities of two types of FBT, originating from Hunan and Shaanxi provinces, were investigated using comparative shotgun metagenomic sequencing and functional annotations. Metagenomic analysis indicated that two communities shared similar taxonomic and functional attributes. Two samples shared 486 genera, in which Pseudomonas contributed most to the abundant functions within the two samples. The carbohydrate active enzyme functions of the communities primarily comprised GH (32.92%), GT (26.8%), CEs (20.43%), and AAs (18.04%). Furthermore, the overall metabolic pathways encoded by the metagenomes were largely associated with carbohydrate and amino acid metabolism, with nine metabolic pathways that were differential between two groups including penicillin and cephalosporin biosynthesis. Significantly, a total of 35 potential probiotics were inferred, with Pseudomonas putida being the most abundant inferred probiotic (80%) within the FBT communities. This study provides new insights into FBT microbial communities on their potential functions and roles in FBT characteristics.
Collapse
Affiliation(s)
- Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China.,Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Xianyang, China
| | - Gengan Du
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China.,Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Xianyang, China
| | - Hong Chen
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China.,Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Xianyang, China
| | - Xuejun Zeng
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China.,Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Xianyang, China
| | - Bin Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China.,Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Xianyang, China
| | - Chunfeng Guo
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China.,Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Xianyang, China
| | - Qinglin Sheng
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China.,Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Xianyang, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China.,Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Xianyang, China.,College of Food Science and Technology, Northwest University, Xi'an, China
| |
Collapse
|
13
|
Ahmed MS, Lauersen KJ, Ikram S, Li C. Efflux Transporters' Engineering and Their Application in Microbial Production of Heterologous Metabolites. ACS Synth Biol 2021; 10:646-669. [PMID: 33751883 DOI: 10.1021/acssynbio.0c00507] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolic engineering of microbial hosts for the production of heterologous metabolites and biochemicals is an enabling technology to generate meaningful quantities of desired products that may be otherwise difficult to produce by traditional means. Heterologous metabolite production can be restricted by the accumulation of toxic products within the cell. Efflux transport proteins (transporters) provide a potential solution to facilitate the export of these products, mitigate toxic effects, and enhance production. Recent investigations using knockout lines, heterologous expression, and expression profiling of transporters have revealed candidates that can enhance the export of heterologous metabolites from microbial cell systems. Transporter engineering efforts have revealed that some exhibit flexible substrate specificity and may have broader application potentials. In this Review, the major superfamilies of efflux transporters, their mechanistic modes of action, selection of appropriate efflux transporters for desired compounds, and potential transporter engineering strategies are described for potential applications in enhancing engineered microbial metabolite production. Future studies in substrate recognition, heterologous expression, and combinatorial engineering of efflux transporters will assist efforts to enhance heterologous metabolite production in microbial hosts.
Collapse
Affiliation(s)
- Muhammad Saad Ahmed
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Abid Majeed Road, The Mall, Rawalpindi 46000, Pakistan
| | - Kyle J. Lauersen
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Sana Ikram
- Beijing Higher Institution Engineering Research Center for Food Additives and Ingredients, Beijing Technology & Business University (BTBU), Beijing 100048, P. R. China
| | - Chun Li
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
14
|
Analyzing the genetic characteristics of a tryptophan-overproducing Escherichia coli. Bioprocess Biosyst Eng 2021; 44:1685-1697. [PMID: 33748869 DOI: 10.1007/s00449-021-02552-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
L-tryptophan (L-trp) production in Escherichia coli has been developed by employing random mutagenesis and selection for a long time, but this approach produces an unclear genetic background. Here, we generated the L-trp overproducer TPD5 by combining an intracellular L-trp biosensor and fluorescence-activated cell sorting (FACS) in E. coli, and succeeded in elucidating the genetic basis for L-trp overproduction. The most significant identified positive mutations affected TnaA (deletion), AroG (S211F), TrpE (A63V), and RpoS (nonsense mutation Q33*). The underlying structure-function relationships of the feedback-resistant AroG (S211F) and TrpE (A63V) mutants were uncovered based on protein structure modeling and molecular dynamics simulations, respectively. According to transcriptomic analysis, the global regulator RpoS not only has a great influence on cell growth and morphology, but also on carbon utilization and the direction of carbon flow. Finally, by balancing the concentrations of the L-trp precursors' serine and glutamine based on the above analysis, we further increased the titer of L-trp to 3.18 g/L with a yield of 0.18 g/g. The analysis of the genetic characteristics of an L-trp overproducing E. coli provides valuable information on L-trp synthesis and elucidates the phenotype and complex cellular properties in a high-yielding strain, which opens the possibility to transfer beneficial mutations and reconstruct an overproducer with a clean genetic background.
Collapse
|
15
|
Gao X, Jing X, Liu X, Lindblad P. Biotechnological Production of the Sunscreen Pigment Scytonemin in Cyanobacteria: Progress and Strategy. Mar Drugs 2021; 19:129. [PMID: 33673485 PMCID: PMC7997468 DOI: 10.3390/md19030129] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
Scytonemin is a promising UV-screen and antioxidant small molecule with commercial value in cosmetics and medicine. It is solely biosynthesized in some cyanobacteria. Recently, its biosynthesis mechanism has been elucidated in the model cyanobacterium Nostoc punctiforme PCC 73102. The direct precursors for scytonemin biosynthesis are tryptophan and p-hydroxyphenylpyruvate, which are generated through the shikimate and aromatic amino acid biosynthesis pathway. More upstream substrates are the central carbon metabolism intermediates phosphoenolpyruvate and erythrose-4-phosphate. Thus, it is a long route to synthesize scytonemin from the fixed atmospheric CO2 in cyanobacteria. Metabolic engineering has risen as an important biotechnological means for achieving sustainable high-efficiency and high-yield target metabolites. In this review, we summarized the biochemical properties of this molecule, its biosynthetic gene clusters and transcriptional regulations, the associated carbon flux-driving progresses, and the host selection and biosynthetic strategies, with the aim to expand our understanding on engineering suitable cyanobacteria for cost-effective production of scytonemin in future practices.
Collapse
Affiliation(s)
- Xiang Gao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China;
| | - Xin Jing
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China;
| | - Xufeng Liu
- Microbial Chemistry, Department of Chemistry-Ångstrom, Uppsala University, Box 523, 751 20 Uppsala, Sweden;
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångstrom, Uppsala University, Box 523, 751 20 Uppsala, Sweden;
| |
Collapse
|
16
|
Liu X. Effects of Methyl Donors on L-Tryptophan Fermentation. Bioengineered 2021:21655979.2021.1882821. [PMID: 33522354 DOI: 10.1080/21655979.2021.1882821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022] Open
Abstract
Methyl donors, a class of compounds that supply methyl groups to methyl acceptors, play important roles in the function, growth, and proliferation of cells; however, the methyl donor content in cells is not sufficient to meet their normal needs. In L-tryptophan production with E. coli, the growth and acid-producing ability of E. coli cells are weak due to the presence of exogenous plasmids that inhibit the growth of E. coli, and reduce the efficiency of exogenous gene expression. Therefore, the effect of methyl donors on L-tryptophan production was investigated. Among the methyl donors tested, choline chloride showed the most significant effect in promoting fermentation, followed by methionine. The optimum addition method involved the addition of 1.5 g/L methionine to the culture medium, combined with continuous feeding with a glucose solution containing 1 g/L choline chloride. The final tryptophan titer reached 53.5 g/L; the highest biomass of bacteria reached 51.8 g/L; and the main by-product, acetic acid, was reduced to 2.23 g/L, which had a significant impact on the fermentation results.
Collapse
Affiliation(s)
- Xiaocui Liu
- Department of Life Science of Shanxi Datong University, Datong Shanxi 037009, China
| |
Collapse
|
17
|
Li Z, Wang H, Ding D, Liu Y, Fang H, Chang Z, Chen T, Zhang D. Metabolic engineering of Escherichia coli for production of chemicals derived from the shikimate pathway. ACTA ACUST UNITED AC 2020; 47:525-535. [DOI: 10.1007/s10295-020-02288-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022]
Abstract
Abstract
The shikimate pathway is indispensable for the biosynthesis of natural products with aromatic moieties. These products have wide current and potential applications in food, cosmetics and medicine, and consequently have great commercial value. However, compounds extracted from various plants or synthesized from petrochemicals no longer satisfy the requirements of contemporary industries. As a result, an increasing number of studies has focused on this pathway to enable the biotechnological manufacture of natural products, especially in E. coli. Furthermore, the development of synthetic biology, systems metabolic engineering and high flux screening techniques has also contributed to improving the biosynthesis of high-value compounds based on the shikimate pathway. Here, we review approaches based on a combination of traditional and new metabolic engineering strategies to increase the metabolic flux of the shikimate pathway. In addition, applications of this optimized pathway to produce aromatic amino acids and a range of natural products is also elaborated. Finally, this review sums up the opportunities and challenges facing this field.
Collapse
Affiliation(s)
- Zhu Li
- grid.33763.32 0000 0004 1761 2484 Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology Tianjin University 300072 Tianjin China
- grid.9227.e 0000000119573309 Key Laboratory of Systems Microbial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.9227.e 0000000119573309 Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
| | - Huiying Wang
- grid.9227.e 0000000119573309 Key Laboratory of Systems Microbial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.9227.e 0000000119573309 Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
| | - Dongqin Ding
- grid.9227.e 0000000119573309 Key Laboratory of Systems Microbial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.9227.e 0000000119573309 Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.410726.6 0000 0004 1797 8419 University of Chinese Academy of Sciences 100049 Beijing China
| | - Yongfei Liu
- grid.9227.e 0000000119573309 Key Laboratory of Systems Microbial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.9227.e 0000000119573309 Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
| | - Huan Fang
- grid.9227.e 0000000119573309 Key Laboratory of Systems Microbial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.9227.e 0000000119573309 Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
| | - Zhishuai Chang
- grid.33763.32 0000 0004 1761 2484 Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology Tianjin University 300072 Tianjin China
| | - Tao Chen
- grid.33763.32 0000 0004 1761 2484 Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology Tianjin University 300072 Tianjin China
| | - Dawei Zhang
- grid.9227.e 0000000119573309 Key Laboratory of Systems Microbial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.9227.e 0000000119573309 Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.410726.6 0000 0004 1797 8419 University of Chinese Academy of Sciences 100049 Beijing China
| |
Collapse
|
18
|
Braga A, Faria N. Bioprocess Optimization for the Production of Aromatic Compounds With Metabolically Engineered Hosts: Recent Developments and Future Challenges. Front Bioeng Biotechnol 2020; 8:96. [PMID: 32154231 PMCID: PMC7044121 DOI: 10.3389/fbioe.2020.00096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/03/2020] [Indexed: 12/18/2022] Open
Abstract
The most common route to produce aromatic chemicals - organic compounds containing at least one benzene ring in their structure - is chemical synthesis. These processes, usually starting from an extracted fossil oil molecule such as benzene, toluene, or xylene, are highly environmentally unfriendly due to the use of non-renewable raw materials, high energy consumption and the usual production of toxic by-products. An alternative way to produce aromatic compounds is extraction from plants. These extractions typically have a low yield and a high purification cost. This motivates the search for alternative platforms to produce aromatic compounds through low-cost and environmentally friendly processes. Microorganisms are able to synthesize aromatic amino acids through the shikimate pathway. The construction of microbial cell factories able to produce the desired molecule from renewable feedstock becomes a promising alternative. This review article focuses on the recent advances in microbial production of aromatic products, with a special emphasis on metabolic engineering strategies, as well as bioprocess optimization. The recent combination of these two techniques has resulted in the development of several alternative processes to produce phenylpropanoids, aromatic alcohols, phenolic aldehydes, and others. Chemical species that were unavailable for human consumption due to the high cost and/or high environmental impact of their production, have now become accessible.
Collapse
Affiliation(s)
- Adelaide Braga
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | | |
Collapse
|
19
|
Xu D, Zhang Z, Liu Z, Xu Q. Using enzymatic hydrolyzate as new nitrogen source for L-tryptophan fermentation by E.coli. Bioengineered 2019; 11:1-10. [PMID: 31795804 PMCID: PMC6961590 DOI: 10.1080/21655979.2019.1700092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
This study presents new methods for hydrolyzing bacterial cell in cyclic utilization of waste bacterial cell for L-tryptophan production by fermentation. Using enzymatic hydrolysis of the pre-treated bacterial cells which were collected from an L-tryptophan fermentation broth, trypsin was selected as the optimal protease for hydrolyzing the bacterial cell. The optimum conditions for hydrolysis were determined by the orthogonal test. Hydrolyzate was then dealt with a compound protease to further increase its content of free amino acids. With the optimum conditions of pH = 8, temperature of 37°C, treatment time of 6 h, and E/S of 4%, the final content of free amino acids in the hydrolyzate was 500.61 mg/g. The hydrolyzate and the yeast extract were added to the medium at the proportion of 1:1, which served as an organic nitrogen source for L-tryptophan production by fermentation. The production of L-tryptophan was 53.87 g/L, and the highest biomass was 53.45 g/L. As an organic nitrogen source, this hydrolyzate satisfies the requirements for L-tryptophan production by fermentation.
Collapse
Affiliation(s)
- Da Xu
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, PR China.,Tianjin Engineering Lab of Efficient and Green Amino Acid Manufacture, Tianjin University of Science and Technology, Tianjin, PR China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Zhen Zhang
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, PR China.,Tianjin Engineering Lab of Efficient and Green Amino Acid Manufacture, Tianjin University of Science and Technology, Tianjin, PR China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Ziqiang Liu
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, PR China.,Tianjin Engineering Lab of Efficient and Green Amino Acid Manufacture, Tianjin University of Science and Technology, Tianjin, PR China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Qingyang Xu
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, PR China.,Tianjin Engineering Lab of Efficient and Green Amino Acid Manufacture, Tianjin University of Science and Technology, Tianjin, PR China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| |
Collapse
|
20
|
Du L, Zhang Z, Xu Q, Chen N. Central metabolic pathway modification to improve L-tryptophan production in Escherichia coli. Bioengineered 2019; 10:59-70. [PMID: 30866700 PMCID: PMC6527064 DOI: 10.1080/21655979.2019.1592417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 11/07/2022] Open
Abstract
Tryptophan, an aromatic amino acid, has been widely used in food industry because it participates in the regulation of protein synthesis and metabolic network in vivo. In this study, we obtained a strain named TRP03 by enhancing the tryptophan synthesis pathway, which could accumulate tryptophan at approximately 35 g/L in a 5 L bioreactor. We then modified the central metabolic pathway of TRP03, to increase the supply of the precursor phosphoenolpyruvate (PEP), the genes related to PEP were modified. Furthermore, citric acid transport system and TCA were upregulated to effectively increase cell growth. We observed that strain TRP07 that could accumulate tryptophan at approximately 49 g/L with a yield of 0.186 g tryptophan/g glucose in a 5 L bioreactor. By-products such as glutamate and acetic acid were reduced to 0.8 g/L and 2.2 g/L, respectively.
Collapse
Affiliation(s)
- Lihong Du
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhen Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qingyang Xu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ning Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
21
|
Xu Q, Bai F, Chen N, Bai G. Utilization of acid hydrolysate of recovered bacterial cell as a novel organic nitrogen source for L-tryptophan fermentation. Bioengineered 2019; 10:23-32. [PMID: 30885096 PMCID: PMC6527063 DOI: 10.1080/21655979.2019.1586053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In this study, waste bacterial cell (WBC) was recovered and used as an alternative to yeast extract in L-tryptophan fermentation. The effects of sulfuric acid concentration and temperature on the hydrolysis of WBC were optimized and the amino acid content in the waste bacterial cell hydrolysate (WBCH) was increased. Plackett-Burman and Box-Behnken design analysis revealed the optimum composition of the WBCH-based fermentation medium to be 22.47 g/L WBCH, 2.26 g/L KH2PO4, and 1.25 mg/L vitamin H. L-tryptophan yield and productivity with WBCH as the nitrogen source were 52.3 g/L and 2.16 g/L/h, respectively, which were 13% and 18% higher than those obtained with the yeast extract as the nitrogen source. In addition, WBCH did not affect the growth of Escherichia coli during L-tryptophan fermentation. Cost accounting showed that WBCH could be used as a novel and cheap organic nitrogen source for industrial L-tryptophan production.
Collapse
Affiliation(s)
- Qingyang Xu
- a College of Biotechnology , Tianjin University of Science and Technology , Tianjin , China.,b State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin , China
| | - Fang Bai
- b State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin , China
| | - Ning Chen
- a College of Biotechnology , Tianjin University of Science and Technology , Tianjin , China
| | - Gang Bai
- b State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin , China
| |
Collapse
|
22
|
Metabolic engineering for improving l-tryptophan production in Escherichia coli. ACTA ACUST UNITED AC 2019; 46:55-65. [DOI: 10.1007/s10295-018-2106-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/03/2018] [Indexed: 11/26/2022]
Abstract
Abstract
l-Tryptophan is an important aromatic amino acid that is used widely in the food, chemical, and pharmaceutical industries. Compared with the traditional synthetic methods, production of l-tryptophan by microbes is environmentally friendly and has low production costs, and feed stocks are renewable. With the development of metabolic engineering, highly efficient production of l-tryptophan in Escherichia coli has been achieved by eliminating negative regulation factors, improving the intracellular level of precursors, engineering of transport systems and overexpression of rate-limiting enzymes. However, challenges remain for l-tryptophan biosynthesis to be cost-competitive. In this review, successful and applicable strategies derived from metabolic engineering for increasing l-tryptophan accumulation in E. coli are summarized. In addition, perspectives for further efficient production of l-tryptophan are discussed.
Collapse
|
23
|
Tröndle J, Trachtmann N, Sprenger GA, Weuster-Botz D. Fed-batch production ofl-tryptophan from glycerol using recombinantEscherichia coli. Biotechnol Bioeng 2018; 115:2881-2892. [DOI: 10.1002/bit.26834] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/27/2018] [Accepted: 09/05/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Julia Tröndle
- Institute of Biochemical Engineering, Department of Mechanical Engineering Technical University of Munich; Garching Germany
| | - Natalia Trachtmann
- Institute of Microbiology, Center of Biochemical Engineering, University of Stuttgart; Stuttgart Germany
| | - Georg A. Sprenger
- Institute of Microbiology, Center of Biochemical Engineering, University of Stuttgart; Stuttgart Germany
| | - Dirk Weuster-Botz
- Institute of Biochemical Engineering, Department of Mechanical Engineering Technical University of Munich; Garching Germany
| |
Collapse
|
24
|
Xu Q, Bai F, Chen N, Bai G. Removing the by-products acetic acid and NH 4 + from the l -tryptophan broth by vacuum thin film evaporation during l -tryptophan production. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
25
|
Jing K, Tang Y, Yao C, del Rio-Chanona EA, Ling X, Zhang D. Overproduction of L-tryptophan via simultaneous feed of glucose and anthranilic acid from recombinantEscherichia coliW3110: Kinetic modeling and process scale-up. Biotechnol Bioeng 2017; 115:371-381. [DOI: 10.1002/bit.26398] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/04/2017] [Accepted: 08/02/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Keju Jing
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen China
- The Key Lab for Synthetic Biotechnology of Xiamen City; Xiamen University; Xiamen China
| | - Yuanwei Tang
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen China
| | - Chuanyi Yao
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen China
| | - Ehecatl A. del Rio-Chanona
- Centre for Process Systems Engineering; Imperial College London, South Kensington Campus; London UK
- Department of Chemical Engineering and Biotechnology; University of Cambridge; Cambridge UK
| | - Xueping Ling
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen China
| | - Dongda Zhang
- Centre for Process Systems Engineering; Imperial College London, South Kensington Campus; London UK
| |
Collapse
|
26
|
Gene modification of Escherichia coli and incorporation of process control to decrease acetate accumulation and increase ʟ-tryptophan production. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1289-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
27
|
Gene modification of the acetate biosynthesis pathway in Escherichia coli and implementation of the cell recycling technology to increase L-tryptophan production. PLoS One 2017. [PMID: 28622378 PMCID: PMC5473561 DOI: 10.1371/journal.pone.0179240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The implementation of a novel cell recycling technology based on a special disk centrifuge during microbial fermentation process can continuously separate the product and harmful intermediates, while maintaining the cell viability owing to the installed cooling system. Acetate accumulation is an often encountered problem in L-tryptophan fermentation by Escherichia coli. To extend our previous studies, the current study deleted the key genes underlying acetate biosynthesis to improve l-tryptophan production. The deletion of the phosphotransacetylase (pta)-acetate kinase (ackA) pathway in a gltB (encoding glutamate synthase) mutant of E. coli TRTHB, led to the highest production of l-tryptophan (47.18 g/L) and glucose conversion rate (17.83%), with a marked reduction in acetate accumulation (1.22 g/L). This strain, TRTHBPA, was then used to investigate the effects of the cell recycling process on L-tryptophan fermentation. Four different strategies were developed concerning two issues, the volume ratio of the concentrated cell solution and clear solution and the cell recycling period. With strategy I (concentrated cell solution: clear solution, 1: 1; cell recycling within 24-30 h), L-tryptophan production and the glucose conversion rate increased to 55.12 g/L and 19.75%, respectively, 17.55% and 10.77% higher than those without the cell recycling. In addition, the biomass increased by 13.52% and the fermentation period was shortened from 40 h to 32 h. These results indicated that the cell recycling technology significantly improved L-tryptophan production by E. coli.
Collapse
|
28
|
Cheng L, Yang X, Li S, Fu Q, Fu S, Wang J, Li F, Lei L, Shen Z. Impact of gene modification of phosphotransferase system on expression of glutamate dehydrogenase protein of Streptococcus suis in Escherichia coli. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1304179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Likun Cheng
- Post-doctoral Scientific Research Workstation, Key Laboratory of High Cell Density Fermentation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, P.R. China
- Post-doctoral Studies Center, College of Animal Medicine, Jilin University, Changchun, P.R. China
- Shandong Binzhou Research, Development and Promotion Center For Livestock and Poultry Propolis Vaccine, Binzhou, P.R. China
- Shandong Lvdu Bio-science and Technology Co. Ltd., Binzhou, P.R. China
| | - Xiuyan Yang
- Shandong Lvdu Bio-science and Technology Co. Ltd., Binzhou, P.R. China
| | - Shuguang Li
- Post-doctoral Scientific Research Workstation, Key Laboratory of High Cell Density Fermentation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, P.R. China
- Shandong Binzhou Research, Development and Promotion Center For Livestock and Poultry Propolis Vaccine, Binzhou, P.R. China
| | - Qiang Fu
- Post-doctoral Scientific Research Workstation, Key Laboratory of High Cell Density Fermentation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, P.R. China
| | - Shijun Fu
- Post-doctoral Scientific Research Workstation, Key Laboratory of High Cell Density Fermentation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, P.R. China
| | - Jinliang Wang
- Post-doctoral Scientific Research Workstation, Key Laboratory of High Cell Density Fermentation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, P.R. China
| | - Feng Li
- Post-doctoral Scientific Research Workstation, Key Laboratory of High Cell Density Fermentation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, P.R. China
- Shandong Lvdu Bio-science and Technology Co. Ltd., Binzhou, P.R. China
| | - Liancheng Lei
- Post-doctoral Studies Center, College of Animal Medicine, Jilin University, Changchun, P.R. China
| | - Zhiqiang Shen
- Post-doctoral Scientific Research Workstation, Key Laboratory of High Cell Density Fermentation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, P.R. China
- Shandong Binzhou Research, Development and Promotion Center For Livestock and Poultry Propolis Vaccine, Binzhou, P.R. China
- Shandong Lvdu Bio-science and Technology Co. Ltd., Binzhou, P.R. China
| |
Collapse
|
29
|
Panichkin VB, Livshits VA, Biryukova IV, Mashko SV. Metabolic engineering of Escherichia coli for L-tryptophan production. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683816090052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
|
31
|
Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration. Appl Microbiol Biotechnol 2016; 101:559-568. [DOI: 10.1007/s00253-016-7772-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/01/2016] [Indexed: 01/09/2023]
|
32
|
Improvement of the production of L-tryptophan in Escherichia coli by application of a dissolved oxygen stage control strategy. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1172-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
33
|
Martínez JA, Bolívar F, Escalante A. Shikimic Acid Production in Escherichia coli: From Classical Metabolic Engineering Strategies to Omics Applied to Improve Its Production. Front Bioeng Biotechnol 2015; 3:145. [PMID: 26442259 PMCID: PMC4585142 DOI: 10.3389/fbioe.2015.00145] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/07/2015] [Indexed: 12/02/2022] Open
Abstract
Shikimic acid (SA) is an intermediate of the SA pathway that is present in bacteria and plants. SA has gained great interest because it is a precursor in the synthesis of the drug oseltamivir phosphate (OSF), an efficient inhibitor of the neuraminidase enzyme of diverse seasonal influenza viruses, the avian influenza virus H5N1, and the human influenza virus H1N1. For the purposes of OSF production, SA is extracted from the pods of Chinese star anise plants (Illicium spp.), yielding up to 17% of SA (dry basis content). The high demand for OSF necessary to manage a major influenza outbreak is not adequately met by industrial production using SA from plants sources. As the SA pathway is present in the model bacteria Escherichia coli, several "intuitive" metabolically engineered strains have been applied for its successful overproduction by biotechnological processes, resulting in strains producing up to 71 g/L of SA, with high conversion yields of up to 0.42 (mol SA/mol Glc), in both batch and fed-batch cultures using complex fermentation broths, including glucose as a carbon source and yeast extract. Global transcriptomic analyses have been performed in SA-producing strains, resulting in the identification of possible key target genes for the design of a rational strain improvement strategy. Because possible target genes are involved in the transport, catabolism, and interconversion of different carbon sources and metabolic intermediates outside the central carbon metabolism and SA pathways, as genes involved in diverse cellular stress responses, the development of rational cellular strain improvement strategies based on omics data constitutes a challenging task to improve SA production in currently overproducing engineered strains. In this review, we discuss the main metabolic engineering strategies that have been applied for the development of efficient SA-producing strains, as the perspective of omics analysis has focused on further strain improvement for the production of this valuable aromatic intermediate.
Collapse
Affiliation(s)
- Juan Andrés Martínez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
34
|
Efflux systems in bacteria and their metabolic engineering applications. Appl Microbiol Biotechnol 2015; 99:9381-93. [PMID: 26363557 DOI: 10.1007/s00253-015-6963-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/20/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
Abstract
The production of valuable chemicals from metabolically engineered microbes can be limited by excretion from the cell. Efflux is often overlooked as a bottleneck in metabolic pathways, despite its impact on alleviating feedback inhibition and product toxicity. In the past, it has been assumed that endogenous efflux pumps and membrane porins can accommodate product efflux rates; however, there are an increasing number of examples wherein overexpressing efflux systems is required to improve metabolite production. In this review, we highlight specific examples from the literature where metabolite export has been studied to identify unknown transporters, increase tolerance to metabolites, and improve the production capabilities of engineered bacteria. The review focuses on the export of a broad spectrum of valuable chemicals including amino acids, sugars, flavins, biofuels, and solvents. The combined set of examples supports the hypothesis that efflux systems can be identified and engineered to confer export capabilities on industrially relevant microbes.
Collapse
|
35
|
Impact of deletion of the genes encoding acetate kinase on production of L-tryptophan by Escherichia coli. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1103-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
36
|
Rodriguez A, Martínez JA, Flores N, Escalante A, Gosset G, Bolivar F. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microb Cell Fact 2014; 13:126. [PMID: 25200799 PMCID: PMC4174253 DOI: 10.1186/s12934-014-0126-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/17/2014] [Indexed: 11/10/2022] Open
Abstract
The production of aromatic amino acids using fermentation processes with recombinant microorganisms can be an advantageous approach to reach their global demands. In addition, a large array of compounds with alimentary and pharmaceutical applications can potentially be synthesized from intermediates of this metabolic pathway. However, contrary to other amino acids and primary metabolites, the artificial channelling of building blocks from central metabolism towards the aromatic amino acid pathway is complicated to achieve in an efficient manner. The length and complex regulation of this pathway have progressively called for the employment of more integral approaches, promoting the merge of complementary tools and techniques in order to surpass metabolic and regulatory bottlenecks. As a result, relevant insights on the subject have been obtained during the last years, especially with genetically modified strains of Escherichia coli. By combining metabolic engineering strategies with developments in synthetic biology, systems biology and bioprocess engineering, notable advances were achieved regarding the generation, characterization and optimization of E. coli strains for the overproduction of aromatic amino acids, some of their precursors and related compounds. In this paper we review and compare recent successful reports dealing with the modification of metabolic traits to attain these objectives.
Collapse
|
37
|
Wang J, Cheng LK, Wang J, Liu Q, Shen T, Chen N. Genetic engineering of Escherichia coli to enhance production of L-tryptophan. Appl Microbiol Biotechnol 2013; 97:7587-96. [PMID: 23775271 DOI: 10.1007/s00253-013-5026-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 05/08/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
Abstract
Reducing the accumulation of acetate in Escherichia coli cultures can decrease carbon efflux as by-products and reduce acetate toxicity, and therefore enable high cell density cultivation. The concentration of intracellular amino acids can be decreased by genetic modifications of the corresponding amino acid transport systems. This can increase the levels of amino acids in the fermentation broth by decreasing the feedback inhibition on the corresponding biosynthetic pathways. Here, the effects of genetic manipulation of phosphate acetyltransferase (pta), high affinity tryptophan transporter (mtr) and aromatic amino acid exporter (yddG) on L-tryptophan production were investigated. The pta mutants accumulated less acetate and showed higher capacity for producing L-tryptophan as compared with the parental strain. The strains lacking mtr, or overexpressed yddG, or with the both mtr knockout and yddG overexpression, accumulated lower concentrations of intracellular tryptophan but higher production of extracellular L-tryptophan. In the L-tryptohan fed-batch fermentation of an E. coli derived from TRTH0709/pMEL03 having deletion of pta-mtr and overexpression of yddG in a 30-L fermentor, the maximum concentration of L-tryptophan (48.68 g/L) was obtained, which represented a 15.96 % increase as compared with the parental strain. Acetate accumulated to a concentration of 0.95 g/L. The intracellular concentration of L-tryptophan was low, and the glucose conversion rate reached a high level of 21.87 %, which was increased by 15.53 % as compared with the parent strain.
Collapse
Affiliation(s)
- Jian Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
38
|
Knocking out analysis of tryptophan permeases in Escherichia coli for improving L-tryptophan production. Appl Microbiol Biotechnol 2013; 97:6677-83. [PMID: 23695779 DOI: 10.1007/s00253-013-4988-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
Three permeases, Mtr, TnaB, and AroP, are involved in the uptake of L-tryptophan in Escherichia coli. These permeases possess individual function for cell transportation and metabolism, and affect extracellular L-tryptophan accumulation. In this study, by knocking out three tryptophan permeases separately and simultaneously in L-tryptophan-producing strain E. coli GPT1002, we analyzed the effect of permease knock out on L-tryptophan uptake, cell growth, and L-tryptophan production. We found that TnaB is the main transporter that is responsible for the uptake of L-tryptophan. Inactivation of tnaB improved the L-tryptophan production significantly, and inactivation of aroP has an additive effect on tnaB mutant. Quantitative real-time PCR analysis confirmed that knocking out permeases affects gene transcription and cell metabolism in many metabolic pathways. The tryptophan permease-deficient GPT1017 mutant exhibited the highest L-tryptophan production at 2.79 g l(-1), which is 51.6 % higher than that produced by the control strain. In 5-l bioreactor fermentation, the L-tryptophan production in GPT1017 reached 16.3 g l(-1).
Collapse
|
39
|
Luo W, Huang J, Zhu X, Huang L, Cai J, Xu Z. Enhanced production of l-tryptophan with glucose feeding and surfactant addition and related metabolic flux redistribution in the recombinant Escherichia coli. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0029-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
40
|
Cheng LK, Wang J, Xu QY, Zhao CG, Shen ZQ, Xie XX, Chen N. Strategy for pH control and pH feedback-controlled substrate feeding for high-level production of L-tryptophan by Escherichia coli. World J Microbiol Biotechnol 2013; 29:883-90. [PMID: 23283691 DOI: 10.1007/s11274-012-1243-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/17/2012] [Indexed: 11/29/2022]
Abstract
Optimum production of L-tryptophan by Escherichia coli depends on pH. Here, we established conditions for optimizing the production of L-tryptophan. The optimum pH range was 6.5-7.2, and pH was controlled using a three-stage strategy [pH 6.5 (0-12 h), pH 6.8 (12-24 h), and pH 7.2 (24-38 h)]. Specifically, ammonium hydroxide was used to adjust pH during the initial 24 h, and potassium hydroxide and ammonium hydroxide (1:2, v/v) were used to adjust pH during 24-38 h. Under these conditions, NH4 (+) and K(+) concentrations were kept below the threshold for inhibiting L-tryptophan production. Optimization was also accomplished using ratios (v/v) of glucose to alkali solutions equal to 4:1 (5-24 h) and 6:1 (24-38 h). The concentration of glucose and the pH were controlled by adjusting the pH automatically. Applying a pH-feedback feeding method, the steady-state concentration of glucose was maintained at approximately 0.2 ± 0.02 g/l, and acetic acid accumulated to a concentration of 1.15 ± 0.03 g/l, and the plasmid stability was 98 ± 0.5 %. The final, optimized concentration of L-tryptophan was 43.65 ± 0.29 g/l from 52.43 ± 0.38 g/l dry cell weight.
Collapse
Affiliation(s)
- Li-Kun Cheng
- Key Laboratory of Industrial Microbiology of Education Ministry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|