1
|
Show S, Akhter R, Paul I, Das P, Bal M, Bhattacharya R, Bose D, Mondal A, Saha S, Halder G. Efficacy of exopolysaccharide in dye-laden wastewater treatment: A comprehensive review. CHEMOSPHERE 2024; 355:141753. [PMID: 38531498 DOI: 10.1016/j.chemosphere.2024.141753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024]
Abstract
The discharge of dye-laden wastewater into the water streams causes severe water and soil pollution, which poses a global threat to aquatic ecosystems and humans. A diverse array of microorganisms such as bacteria, fungi, and algae produce exopolysaccharides (EPS) of different compositions and exhibit great bioflocculation potency to sustainably eradicate dyes from water bodies. Nanomodified chemical composites of EPS enable their recyclability during dye-laden wastewater treatment. Nevertheless, the selection of potent EPS-producing strains and physiological parameters of microbial growth and the remediation process could influence the removal efficiency of EPS. This review will intrinsically discuss the fundamental importance of EPS from diverse microbial origins and their nanomodified chemical composites, the mechanisms in EPS-mediated bioremediation of dyes, and the parametric influences on EPS-mediated dye removal through sorption/bioflocculation. This review will pave the way for designing and adopting futuristic green and sustainable EPS-based bioremediation strategies for dye-laden wastewater in situ and ex situ.
Collapse
Affiliation(s)
- Sumona Show
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Ramisa Akhter
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Indrani Paul
- Department of Biotechnology, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Payal Das
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Manisha Bal
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Riya Bhattacharya
- School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Debajyoti Bose
- School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Amita Mondal
- Department of Chemistry, Vedanta College, Kolkata, 700054, West Bengal, India
| | - Shouvik Saha
- Department of Biotechnology, Brainware University, Barasat, Kolkata, 700125, West Bengal, India.
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India.
| |
Collapse
|
2
|
Qin S, Li Q, Dou J, Man Y, Wu L, Tian H, Jiang M, Liu G. Isolation and characterization of Stenotrophomonas pavanii GXUN74707 with efficient flocculation performance and application in wastewater treatment. Front Microbiol 2024; 15:1367043. [PMID: 38737412 PMCID: PMC11082306 DOI: 10.3389/fmicb.2024.1367043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
The identification of microorganisms with excellent flocculants-producing capability and optimization of the fermentation process are necessary for the wide-scale application of bioflocculants. Therefore, we isolated and identified a highly efficient flocculation performance strain of Stenotrophomonas pavanii GXUN74707 from the sludge. The optimal fermentation and flocculation conditions of strain S. pavanii GXUN74707 was in fermentation medium with glucose and urea as the carbon and nitrogen sources, respectively, at pH 7.0 for 36 h, which treatment of kaolin suspension with 0.5 mL of the fermentation broth resulted in a flocculation rate of 99.0%. The bioflocculant synthesized by strain S. pavanii GXUN74707 was found mainly in the supernatant of the fermentation broth. Chemical analysis revealed that the pure bioflocculant consisted of 79.70% carbohydrates and 14.38% proteins. The monosaccharide components of MBF-GXUN74707 are mainly mannose (5.96 μg/mg), galactose (1.86 μg/mg), and glucose (1.73 μg/mg). Infrared spectrometric analysis showed the presence of carboxyl (COO-), hydroxyl (-OH) groups. The SEM images showed clumps of rod-shaped bacteria with adhesion of extracellular products. Furthermore, the strain decolored dye wastewater containing direct black, direct blue, and Congo red by 89.2%, 95.1%, 94.1%, respectively. The chemical oxygen demand (COD) and biological oxygen demand (BOD) removal rates after treatment of aquaculture wastewater with the fermentation broth were 68% and 23%, respectively. This study is the first to report the performance and application of strain Stenotrophomonas pavanii in wastewater flocculation. The results indicate that strain S. pavanii is a good candidate for the production novel bioflocculants and demonstrates its potential industrial practicality in biotechnology processes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Guofang Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| |
Collapse
|
3
|
Luo B, Su JY, Zhang YF, Xiao YH, Peng YL, Sun ML, Li Y. Alteromonas arenosi sp. nov., a novel bioflocculant-producing bacterium, isolated from intertidal sand. Antonie Van Leeuwenhoek 2024; 117:28. [PMID: 38280034 DOI: 10.1007/s10482-023-01926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/30/2023] [Indexed: 01/29/2024]
Abstract
A novel Gram-stain-negative, strictly aerobic and bioflocculant-producing bacterium, designated as ASW11-36T, was isolated from an intertidal sand collected from coastal areas of Qingdao, PR China. Growth occurred at 15-40 °C (optimum, 30 °C), pH 7.0-9.0 (optimum, pH 7.5) and with 1.5-7.0% (w/v) NaCl (optimum, 2.5-3.0%). In the whole-cell fatty acid pattern prevailed C16:0 and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). The major isoprenoid quinone was determined to be Q-8 and the major polar lipids were phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), one unidentified aminolipid (AL), one unidentified glycolipid (GL), and two lipids (L1, L2). Based on the phylogenetic analyses of 16S rRNA gene sequences and 618 single-copy orthologous clusters, strain ASW11-36T could represent a novel member of the genus Alteromonas and was closely related to Alteromonas flava P0211T (98.4%) and Alteromonas facilis P0213T (98.3%). The pairwise average nucleotide identity and digital DNA-DNA hybridization values of the ASW11-36T genome assembly against the closely related species genomes were 71.8% and 21.7%, respectively, that clearly lower than the proposed thresholds for species. Based on phenotypic, phylogenetic, and chemotaxonomic analyses, strain ASW11-36T is considered to represent a novel species of the genus Alteromonas, for which the name Alteromonas arenosi sp. nov. is proposed. The type strain is ASW11-36T (= KCTC 82496T = MCCC 1K05585T). In addition, the strain yielded 65% of flocculating efficiency in kaolin suspension with CaCl2 addition. The draft genome of ASW11-36T shared abundant putative CAZy family related genes, especially involved in the biosynthesis of exopolysaccharides, implying its potential environmental and biological applications.
Collapse
Affiliation(s)
- Bi Luo
- College of Life Sciences, Financial Assets Department, Shanxi Agricultural University, Taigu, 030801, China
| | - Jing-Yun Su
- College of Life Sciences, Financial Assets Department, Shanxi Agricultural University, Taigu, 030801, China
| | - Ya-Fei Zhang
- College of Life Sciences, Financial Assets Department, Shanxi Agricultural University, Taigu, 030801, China
| | - Yong-Hui Xiao
- College of Life Sciences, Financial Assets Department, Shanxi Agricultural University, Taigu, 030801, China
| | - Yun-Lin Peng
- College of Life Sciences, Financial Assets Department, Shanxi Agricultural University, Taigu, 030801, China
| | - Mei-Ling Sun
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266000, China.
| | - Yi Li
- College of Life Sciences, Financial Assets Department, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
4
|
Xu Z, Zhang T, Hu H, Liu W, Xu P, Tang H. Characterization on nicotine degradation and research on heavy metal resistance of a strain Pseudomonas sp. NBB. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132145. [PMID: 37557045 DOI: 10.1016/j.jhazmat.2023.132145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 08/11/2023]
Abstract
The remediation of polluted sites containing multiple contaminants like nicotine and heavy metals poses significant challenges, due to detrimental effects like cell death. In this study, we isolated a new strain Pseudomonas sp. NBB capable of efficiently degrading nicotine even in high level of heavy metals. It degraded nicotine through pyrrolidine pathway and displayed minimum inhibitory concentrations of 2 mM for barium, copper, and lead, and 5 mM for manganese. In the presence of 2 mM Ba2+ or Pb2+, 3 g L-1 nicotine could be completely degraded within 24 h. Moreover, under 0.5 mM Cu2+ or 5 mM Mn2+ stress, 24.13% and 72.56% of nicotine degradation were achieved in 60 h, respectively. Strain NBB tolerances metal stress by various strategies, including morphological changes, up-regulation of macromolecule transporters, cellular response to DNA damage, and down-regulation of ABC transporters. Notably, among the 153 up-regulated genes, cds_821 was identified as manganese exporter (MneA) after gene disruption and recovery experiments. This study presents a novel strain capable of efficiently degrading nicotine and displaying remarkable resistance to heavy metals. The findings of this research provide valuable insights into the potential application of nicotine bioremediation in heavy metal-contaminated areas.
Collapse
Affiliation(s)
- Zhaoyong Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Tingting Zhang
- China Tobacco Henan Industrial Co. Ltd., Zhengzhou 450000, People's Republic of China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Wenzhao Liu
- China Tobacco Henan Industrial Co. Ltd., Zhengzhou 450000, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
5
|
Yang L, Chen Z, Zhang Y, Lu F, Liu Y, Cao M, He N. Hyperproduction of extracellular polymeric substance in Pseudomonas fluorescens for efficient chromium (VI) absorption. BIORESOUR BIOPROCESS 2023; 10:17. [PMID: 38647825 PMCID: PMC10992911 DOI: 10.1186/s40643-023-00638-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/13/2023] [Indexed: 04/25/2024] Open
Abstract
A novel extracellular polymeric substance (EPS) with flocculating activity produced by Pseudomonas fluorescein isolated from soil was studied in this paper. Firstly, atmospheric and room temperature plasma (ARTP) was applied to get a mutant of P. fluorescein with higher EPS production. A mutant T4-2 exhibited a 106.48% increase in flocculating activity compared to the original strain. The maximum EPS yield from T4-2 was enhanced up to 6.42 g/L, nearly 10 times higher than the original strain on a 3.6-L bioreactor with optimized fermentation conditions. Moreover, the flocculating activity of the mutant reached 3023.4 U/mL, 10.96-fold higher than that of T4. Further identification showed that EPS from mutant T4-2 was mainly composed of polysaccharide (76.67%) and protein (15.8%) with a molecular weight of 1.17 × 105 Da. The EPS showed excellent adsorption capacities of 80.13 mg/g for chromium (VI), which was much higher than many reported adsorbents such as chitosan and cellulose. The adsorption results were described by Langmuir isotherm and pseudo-second-order kinetic model. The thermodynamic parameters (ΔG0, ΔH0 and ΔS0) revealed that the adsorption process was spontaneous and exothermic. Adsorption mechanisms were speculated to be electrostatic interaction, reduction, and chelation.
Collapse
Affiliation(s)
- Lijie Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Ying Zhang
- Shandong Institute of Commerce and Technology, Jinan, 251000, People's Republic of China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
6
|
Sahoo H, Kisku K, Varadwaj KSK, Acharya P, Naik UC. Mechanism of Cr(VI) reduction by an indigenous Rhizobium pusense CR02 isolated from chromite mining quarry water (CMQW) at Sukinda Valley, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3490-3511. [PMID: 35948793 DOI: 10.1007/s11356-022-22264-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Toxicological assessment of CMQW generated due to chromite mining activities at Sukinda Valley has revealed high chromium contamination along with Zn and Fe. The present study focused on the mechanism of chromate reduction by an indigenous multi-metal tolerant bacterium, Rhizobium pusense CR02, isolated from CMQW. The isolated strain has shown resistance up to 520 mg/L of Cr(VI) with an IC50 value of 385.4 mg/L. The highest reduction rate 8.6 × 10-2/h was recorded with 20 mg/L of initial concentration of Cr(VI). Extracellular (3.06 ± 0.012 U/mL), intracellular (3.60 ± 0.13 U/mL), and membrane (1.89 ± 0.01 U/mL) associated chromate reductases were found to be involved for reduction. The extracellular polymeric substances (EPS) produced by the isolate also enhanced reduction activity of 46.32 ± 1.69 mg/L after 72 h with an initial concentration of 50 mg/L. FTIR analysis revealed the involvement of functional groups -OH, -CO, and -NH for Cr(VI) biosorption whereas P=O, -CO-NH- and -COOH interacted with Cr(III). Zeta potential with less negative surface charge favored reduction of Cr(VI). Treatment of CMQW by bacterial isolate detoxified Cr(VI) minimizing chromosomal aberrations in root cells of Allium cepa L., suggesting the role of Rhizobium pusense CR02 as a promising bio-agent for Cr(VI) detoxification.
Collapse
Affiliation(s)
- Hrudananda Sahoo
- Environmental Microbiology Laboratory, Department of Botany, Ravenshaw University, Cuttack, 753003, India
| | - Kanika Kisku
- Environmental Microbiology Laboratory, Department of Botany, Ravenshaw University, Cuttack, 753003, India
| | | | - Prasannajit Acharya
- Institute of Technical Education and Research, Department of Chemistry, Siksha 'O' Anusandhan (deemed to be University), Bhubaneswar, 751030, India
| | - Umesh Chandra Naik
- Environmental Microbiology Laboratory, Department of Botany, Ravenshaw University, Cuttack, 753003, India.
| |
Collapse
|
7
|
Liu Y, Zeng Y, Yang J, Chen P, Sun Y, Wang M, Ma Y. A bioflocculant from Corynebacterium glutamicum and its application in acid mine wastewater treatment. Front Bioeng Biotechnol 2023; 11:1136473. [PMID: 36926688 PMCID: PMC10011464 DOI: 10.3389/fbioe.2023.1136473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
Although many microorganisms have been found to produce bioflocculants, and bioflocculants have been considered as attractive alternatives to chemical flocculants in wastewater treatment, there are few reports on bioflocculants from the safe strain C. glutamicum, and the application of bioflocculants in acid wastewater treatment is also rare attributed to the high content of metal ions and high acidity of the water. In this study, a novel bioflocculant produced by Corynebacterium glutamicum Cg1-P30 was investigated. An optimal production of this bioflocculant with a yield of 0.52 g/L was achieved by Box-Behnken design, using 12.20 g/L glucose, 4.00 g/L corn steep liquor and 3.60 g/L urea as carbon and nitrogen source. The structural characterization revealed that the bioflocculant was mainly composed of 37.50% neutral sugar, 10.03% uronic acid, 6.32% aminosugar and 16.51% protein. Carboxyl, amine and hydroxyl groups were the functional groups in flocculation. The biofocculant was thermally stable and dependent on metal ions and acidic pH, showing a good flocculating activity of 91.92% at the dosage of 25 mg/L by aid of 1.0 mM Fe3+ at pH 2.0. Due to these unique properties, the bioflocculant could efficiently remove metal ions such as Fe, Al, Zn, and Pb from the real acid mine wastewater sample without pH adjustment, and meanwhile made the acid mine wastewater solution become clear with an increased neutral pH. These findings suggested the great potential application of the non-toxic bioflocculant from C. glutamicum Cg1-P30 in acid mine wastewater treatment.
Collapse
Affiliation(s)
- Yinlu Liu
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yan Zeng
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiangang Yang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Peng Chen
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Min Wang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yanhe Ma
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
8
|
Rocha SMB, do Amorim MR, Costa MKL, da Silva Saraiva TC, Costa RM, Antunes JEL, de Souza Oliveira LM, de Alcantara Neto F, de Medeiros EV, de Araujo Pereira AP, Araujo ASF. Tolerance and reduction of chromium by bacterial strains. Arch Microbiol 2022; 204:730. [DOI: 10.1007/s00203-022-03329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
|
9
|
Dmitrović S, Pajčin I, Lukić N, Vlajkov V, Grahovac M, Grahovac J, Jokić A. Taguchi Grey Relational Analysis for Multi-Response Optimization of Bacillus Bacteria Flocculation Recovery from Fermented Broth by Chitosan to Enhance Biocontrol Efficiency. Polymers (Basel) 2022; 14:polym14163282. [PMID: 36015554 PMCID: PMC9413004 DOI: 10.3390/polym14163282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 02/05/2023] Open
Abstract
Degradation of environment is a challenge to crop production around the world. Biological control of various plant diseases using antagonistic bacteria is an encouraging alternative to traditionally used chemical control strategies. Chitosan as a well-known natural flocculation agent also exhibits antimicrobial activity. The goal of this study was to investigate a dual nature of chitosan in flocculation of Bacillus sp. BioSol021 cultivation broth intended for biocontrol applications. Experiments were performed based on L18 standard Taguchi orthogonal array design with five input parameters (chitosan type and dosage, pH value, rapid and slow mixing rates). In this study, the grey relational analysis was used to perform multi-objective optimization of the chosen responses, i.e., flocculation efficiency and four inhibition zone diameters against the selected phytopathogens. The results have indicated a great potential of a highly efficient method for removal of the Bacillus bacteria from the cultivation broth using chitosan. The good flocculation efficiency and high precipitate antimicrobial activity against the selected phytopathogens were achieved. It has been shown that multiple flocculation performance parameters were improved, resulting in slightly improved response values.
Collapse
Affiliation(s)
- Selena Dmitrović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Ivana Pajčin
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
- Correspondence: (I.P.); (J.G.)
| | - Nataša Lukić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Vanja Vlajkov
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Mila Grahovac
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Jovana Grahovac
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
- Correspondence: (I.P.); (J.G.)
| | - Aleksandar Jokić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
10
|
Jebun N, Alam MZ, Mamun AA, Ahmad Raus R. Novel Myco-Coagulant Produced by Lentinus squarrosulus for Removal of Water Turbidity: Fungal Identification and Flocculant Characterization. J Fungi (Basel) 2022; 8:jof8020192. [PMID: 35205945 PMCID: PMC8877031 DOI: 10.3390/jof8020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
Several river water fungal strains (RWF-1 to RWF-6) were isolated to investigate the potential of having coagulant properties from the metabolites produced by the fungus. The myco-coagulant produced from the liquid-state process was characterized and tested for flocculation of kaolin water. Molecular identification of the fungal strain isolated from river water and characterization of the myco-coagulant produced by the strain are presented in this paper. The genomic DNA of the fungal 18S ribosomal ribonucleic-acid (rRNA) and 28S rRNA genes were used and the species was identified as Lentinus squarrosulus strain 7-4-2 RWF-5. The characterization of myco-coagulant by Fourier-transform infrared spectroscopy (FTIR) showed that hydroxyl, carbonyl, amide and amine groups as principal functional groups were present in the new myco-coagulant. The mean zeta potential value of the myco-coagulant was −7.0 mV while the kaolin solution was −25.2 mV. Chemical analyses of the extracellular myco-coagulant revealed that it contained total sugar (5.17 g/L), total carbohydrate (237 mg/L), protein (295.4 mg/L), glucosamine (1.152 mg/L); and exhibited cellulase activity (20 units/L) and laccase activity (6.22 units/L). Elemental analyses of C, H, O, N and S showed that the weight fractions of each element in the myco-coagulant was 40.9, 6.0, 49.8, 1.7 and 1.4%, respectively. The myco-coagulant showed 97% flocculation activity at a dose of 1.8 mg/L, indicating good flocculation performance compared to that of polyaluminum chloride (PAC). The present work revealed that the fungal strain, L. squarrosulus 7-4-2 RWF-5 is able to produce cationic bio-coagulant. The flocculation mechanism of the novel myco-coagulant was a combination of polymer bridging and charge neutralization.
Collapse
Affiliation(s)
- Nessa Jebun
- Department of Biology, Presidency International School, Chattogram 4217, Bangladesh;
| | - Md Zahangir Alam
- Bioenvironmental Engineering Research Centre (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia (IIUM), Gombak, Kuala Lumpur 50728, Malaysia
- Correspondence: ; Tel.: +60-3-642144571; Fax: +60-3-64214442
| | - Abdullah Al Mamun
- Bioenvironmental Engineering Research Centre (BERC), Department of Civil Engineering, Faculty of Engineering, International Islamic University Malaysia (IIUM), Gombak, Kuala Lumpur 50728, Malaysia;
| | - Raha Ahmad Raus
- Bioprocess and Molecular Engineering Research Unit (BPMERU), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia (IIUM), Gombak, Kuala Lumpur 50728, Malaysia;
| |
Collapse
|
11
|
Xia M, Zhou H, Amanze C, Hu L, Shen L, Yu R, Liu Y, Chen M, Li J, Wu X, Qiu G, Zeng W. A novel polysaccharides-based bioflocculant produced by Bacillus subtilis ZHX3 and its application in the treatment of multiple pollutants. CHEMOSPHERE 2022; 289:133185. [PMID: 34883128 DOI: 10.1016/j.chemosphere.2021.133185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/05/2021] [Accepted: 12/04/2021] [Indexed: 06/13/2023]
Abstract
A high bioflocculant-producing bacterial strain was identified and named Bacillus subtilis ZHX3. Single-factor experiments suggested that 10 g/L starch and 5 g/L yeast extract were optimal for strain ZHX3 to produce bioflocculant MBF-ZHX3. The maximum flocculating rate reached 95.5%, and 3.14 g/L product was extracted after 3 days of cultivation. MBF-ZHX3 was mainly composed of polysaccharides (77.2%) and protein (14.8%). The polysaccharides contained 28.9% uronic acid and 3.7% amino sugar. Rhamnose, arabinose, galactose, glucose, mannose, and galacturonic acid in a molar ratio of 0.35:1.83:3.09:12.66:0.46:3.81 were detected. MBF-ZHX3 had a molecular weight of 10,028 Da and contained abundant groups (-OH, CO, >PO, C-O-C) contributing to flocculation. Adsorption and bridging was considered as the main flocculation mechanism. MBF-ZHX3 was more effective in decolorizing dyes, removing heavy metals and flotation reagents compared to polyacrylamide. The results implied that MBF-ZHX3 has the potential to substitute polyacrylamide in wastewater treatment because of its excellent biological and environmental benefits.
Collapse
Affiliation(s)
- Mingchen Xia
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Han Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Lan Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Yuandong Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Miao Chen
- CSIRO Process Science and Engineering, Clayton, Victoria, 3168, Australia; Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, 3000, Australia
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China; CSIRO Process Science and Engineering, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
12
|
Kurniawan SB, Imron MF, Chik CENCE, Owodunni AA, Ahmad A, Alnawajha MM, Rahim NFM, Said NSM, Abdullah SRS, Kasan NA, Ismail S, Othman AR, Hasan HA. What compound inside biocoagulants/bioflocculants is contributing the most to the coagulation and flocculation processes? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150902. [PMID: 34653447 DOI: 10.1016/j.scitotenv.2021.150902] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Biocoagulants and bioflocculants are alternative items that can be used to substitute the utilization of common-chemical coagulants and flocculants. Biocoagulants/bioflocculants can be extracted from animals, microorganisms, and plants. Moreover, biocoagulants/bioflocculants have specific characteristics that contribute to the coagulation and flocculation processes. The active compounds inside biocoagulants/bioflocculants vary and correspond to the specific working mechanisms, including charge neutralization, sweep coagulation, adsorption, bridging, and patch flocculation. This review paper summarizes the characteristics of biocoagulants/bioflocculants from different sources and its performance in treating various pollutants. Furthermore, this paper discusses the most contributing compounds and functional groups of biocoagulants/bioflocculants that can be related to their working mechanisms. Several functional groups and compounds in biocoagulants/bioflocculants are highlighted in this review article, as well as the correlation between the highlighted groups/compounds to the aforementioned coagulation-flocculation mechanisms. In addition, current knowledge gaps in the study of biocoagulants/bioflocculants and future approaches that may serve as research directions are also emphasized. This review article is expected to shed information on the characteristics of biocoagulants/bioflocculants, which may then become a focus in the optimization to obtain higher performance in future application of coagulation-flocculation processes.
Collapse
Affiliation(s)
- Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Muhammad Fauzul Imron
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia.
| | | | - Amina Adedoja Owodunni
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| | - Azmi Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Department of Polytechnic Education and Community College, Ministry of Higher Education, 62100 Putrajaya, Malaysia
| | - Mohammad Mohammad Alnawajha
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Nurul Farhana Mohd Rahim
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Nor Sakinah Mohd Said
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Nor Azman Kasan
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Suzylawati Ismail
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
13
|
Feng J, Xu Y, Ding J, He J, Shen Y, Lu G, Qin W, Guo H. Optimal production of bioflocculant from Pseudomonas sp. GO2 and its removal characteristics of heavy metals. J Biotechnol 2022; 344:50-56. [PMID: 34973970 DOI: 10.1016/j.jbiotec.2021.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Bioflocculant may be a promising bioactivator for heavy metal removal duo to its eco-friendly properties and remarkable ability to adsorb heavy metals. In this study, bioflocculant production from a bacterium, Pseudomonas sp. GO2, was optimized and its removal efficiency for two heavy metal ions was evaluated. Results demonstrated that the maximal flocculation efficiency was achieved with concentration levels of 5 g/L glucose, 3 g/L casein, and 5 g/L NaCl, with an initial pH of 9.0, and a fermentation time of 48 h. Bioflocculant produced by GO2 had a stronger removal efficiency for Cd2+ than that of Pb2+, with highest removal efficiencies of 85.38% and 80.87%, respectively. The adsorption process was mainly dependent on the monolayer and chemisorption based on the adsorption isotherm and kinetic models. This study demonstrated that bioflocculant produced by the GO2 strain has the potential to be used in heavy metal treatment from industrial wastewater.
Collapse
Affiliation(s)
- Jiayin Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yijie Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jianhui Ding
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jikun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yihan Shen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Guimeng Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Wensheng Qin
- Department of Biology, Lakehead University, Ontario P7B 5E1, Canada
| | - Haipeng Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
14
|
Isolation and Optimization of Culture Conditions of a Bioflocculant-Producing Fungi from Kombucha Tea SCOBY. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12040070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Biolocculants are gaining attention in research due to their environmental friendliness and innocuousness to human in comparison to the conventional flocculants. The present study aimed to investigate the ability of fungi from Kombucha tea SCOBY to produce effective bioflocculant in bulk. A 16S rRNA gene sequence analysis was utilized to identify the isolate. The medium composition (carbon and nitrogen sources) and culture conditions (inoculum size, temperature, shaking speed, pH, and time) were optimized using one-factor-at-a-time method. The functional groups, morphology, and crystallinity of the bioflocculant were evaluated using Fourier transform infrared (FT-IR), scan electron microscope (SEM) and X-ray diffractometry (XRD). The fungus was found to be Pichia kudriavzevii MH545928.1. It produced a bioflocculant with flocculating activity of 99.1% under optimum conditions; 1% (v/v) inoculum size, glucose and peptone as nutrient sources, 35 °C, pH 7 and the shaking speed of 140 rpm for 60 h. A cumulus-like structure was revealed by SEM; FT-IR displayed the presence of hydroxyl, carboxyl, amine, and thiocynates. The XRD analysis demonstrated the bioflocculant to have big particles with diffraction peaks at 10° and 40° indicating its crystallinity. Based on the obtained results, P. kudriavzevii MH545928.1 has potential industrial applicability as a bioflocculant producer.
Collapse
|
15
|
Isolation, Identification and Characterization of Bioflocculant-Producing Bacteria from Activated Sludge of Vulindlela Wastewater Treatment Plant. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1030038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The low microbial flocculant yields and efficiencies limit their industrial applications. There is a need to identify bacteria with high bioflocculant production. The aim of this study was to isolate and identify a bioflocculant-producing bacterium from activated sludge wastewater and characterise its bioflocculant activity. The identification of the isolated bacterium was performed by 16S rRNA gene sequencing analysis. The optimal medium composition (carbon and nitrogen sources, cations and inoculum size) and culture conditions (temperature, pH, shaking speed and time) were evaluated by the one-factor-at-a-time method. The morphology, functional groups, crystallinity and pyrolysis profile of the bioflocculant were analysed using scanning electron microscope (SEM), Fourier transform infrared (FTIR) and thermogravimetric (TGA) analysis. The bacterium was identified as Proteus mirabilis AB 932526.1. Its optimal medium and culture conditions were: sucrose (20 g/L), yeast extract (1.2 g/L), MnCl2 (1 g/L), pH 6, 30 °C, inoculation volume (3%), shaking speed (120 rpm) for 72 h of cultivation. SEM micrograph revealed the bioflocculant to be amorphous. FTIR analysis indicated the presence of hydroxyl, carboxyl and amino groups. The bioflocculant was completely pyrolyzed at temperatures above 800 °C. The bacterium has potential to produce bioflocculant of industrial importance.
Collapse
|
16
|
Li NJ, Lan Q, Wu JH, Liu J, Zhang XH, Zhang F, Yu HQ. Soluble microbial products from the white-rot fungus Phanerochaete chrysosporium as the bioflocculant for municipal wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146662. [PMID: 34030296 DOI: 10.1016/j.scitotenv.2021.146662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Soluble microbial products (SMP), a type of polymers released from microbial metabolism and decay, show great potential for wastewater treatment as bioflocculants; however, biogenic flocculant utilization is currently limited to bacterial SMP. In this study, SMP produced by Phanerochaete chrysosporium BKMF-1767 (SMP-P) was investigated to determine the application potential of fungal SMP. SMP-P exhibited high flocculation activity in kaolin suspension at a dosage range of 0.67-0.84 mg/L with Ca2+ assistance, comparable to that of commercial polyacrylamide. The high molecular weight polysaccharides (2.0 × 106-4.7 × 107 Da) in SMP-P, which enabled flocculation via the bridging mechanism and served as the dominant active constituent, were composed of glucose and arabinose at a molar ratio of 1: 0.03, with (1 → 4, 6)-linked glucose as the main backbone and a small proportion of branched structures. They contained hydroxyl and carboxyl, effective functional groups for the flocculation process, and displayed parallel self-orientation behavior in water. Efficient chemical oxygen demand removal was achieved during municipal wastewater treatment using SMP-P as the bioflocculant. This study demonstrates the feasibility of utilizing fugal SMP as bioflocculants and provides guidance for their practical application.
Collapse
Affiliation(s)
- Ning-Jie Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qi Lan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jing-Hang Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jie Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xue-Hong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Feng Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China.
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
17
|
Assessment of an Integrated and Sustainable Multistage System for the Treatment of Poultry Slaughterhouse Wastewater. MEMBRANES 2021; 11:membranes11080582. [PMID: 34436346 PMCID: PMC8399709 DOI: 10.3390/membranes11080582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
This paper assesses the performance of an integrated multistage laboratory-scale plant, for the treatment of poultry slaughterhouse wastewater (PSW). The system was comprised of an eco-flush dosed bio-physico pre-treatment unit for fats, oil, and grease (FOG) hydrolysis prior to the PSW being fed to a down-flow expanded granular bed reactor (DEGBR), coupled to a membrane bioreactor (DEGBR-MBR). The system's configuration strategy was developed to achieve optimal PSW treatment by introducing the enzymatic pre-treatment unit for the lipid-rich influent (PSW) in order to treat FOG including odour causing constituents such as H2S known to sour anaerobic digestion (AD) such that the PSW pollutant load is alleviated prior to AD treatment. This was conducted to aid the reduction in clogging and sludge washout in the DEGBR-MBR systems and to achieve the optimum reactor and membrane system performance. A performance for the treatment of PSW after lipid reduction was conducted through a qualitative analysis by assessing the pre- and post-pre-treatment units' chemical oxygen demand (COD), total suspended solids (TSS), and FOG concentrations across all other units and, in particular, the membrane units. Furthermore, a similar set-up and operating conditions in a comparative study was also performed. The pre-treatment unit's biodelipidation abilities were characterised by a mean FOG removal of 80% and the TSS and COD removal reached 38 and 56%, respectively. The final acquired removal results on the DEGBR, at an OLR of ~18-45 g COD/L.d, was 87, 93, and 90% for COD, TSS, and FOG, respectively. The total removal efficiency across the pre-treatment-DEGBR-MBR units was 99% for COD, TSS, and FOG. Even at a high OLR, the pre-treatment-DEGBR-MBR train seemed a robust treatment strategy and achieved the effluent quality set requirements for effluent discharge in most countries.
Collapse
|
18
|
Liu C, Sun D, Liu J, Zhu J, Liu W. Recent advances and perspectives in efforts to reduce the production and application cost of microbial flocculants. BIORESOUR BIOPROCESS 2021; 8:51. [PMID: 38650196 PMCID: PMC10992557 DOI: 10.1186/s40643-021-00405-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/08/2021] [Indexed: 01/09/2023] Open
Abstract
Microbial flocculants are macromolecular substances produced by microorganisms. Due to its non-toxic, harmless, and biodegradable advantages, microbial flocculants have been widely used in various industrial fields, such as wastewater treatment, microalgae harvest, activated sludge dewatering, heavy metal ion adsorption, and nanoparticle synthesis, especially in the post-treatment process of fermentation with high safety requirement. However, compared with the traditional inorganic flocculants and organic polymeric flocculants, the high production cost is the main bottleneck that restricts the large-scale production and application of microbial flocculants. To reduce the production cost of microbial flocculant, a series of efforts have been carried out and some exciting research progresses have been achieved. This paper summarized the research advances in the last decade, including the screening of high-yield strains and the construction of genetically engineered strains, search of cheap alternative medium, the extraction and preservation methods, microbial flocculants production as an incidental product of other biological processes, combined use of traditional flocculant and microbial flocculant, and the production of microbial flocculant promoted by inducer. Moreover, this paper prospects the future research directions to further reduce the production cost of microbial flocculants, thereby promoting the industrial production and large-scale application of microbial flocculants.
Collapse
Affiliation(s)
- Cong Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Di Sun
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|
19
|
Fang K, Wang B, Zhang Y, Li H. Optimized production and characterization of cation-independent bioflocculant produced by Klebsiella sp. 59L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7981-7993. [PMID: 33043421 DOI: 10.1007/s11356-020-11162-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
The cation-independent bioflocculant (59LF) extracted from Klebsiella sp. 59L was characterized. 59LF consisted of protein (4.8%) and total sugar (85.2%) with high molecular weight (93.82% of 2120 kDa), and total sugar was composed of 76.45% of neutral sugar, 3.65% of uronic acid, and 1.43% of amino sugar. Results indicated that 59LF was pH tolerant and thermally stable, and the maximum yield of 59LF was 4.078 g/L after 48 h culture. The optimal flocculating activity for Kaolin particles was obtained when the dosage of 59LF was 7.0 mg/L without additional metal ions as coagulant aids. Furthermore, the surface properties of 59LF were observed using a Fourier-transform infrared spectrophotometer and X-ray photoelectron spectroscopy, whereas a porous structure was detected by a scanning electron microscope. Thus, a primary flocculation mechanism of 59LF was proposed. This study provided a potential cation-independent bioflocculant with high productivity and low dosage in future application.
Collapse
Affiliation(s)
- Keyu Fang
- Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Boji Wang
- Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Yao Zhang
- Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Hongjing Li
- Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| |
Collapse
|
20
|
Improved production of an acidic exopolysaccharide, the efficient flocculant, by Lipomyces starkeyi U9 overexpressing UDP-glucose dehydrogenase gene. Int J Biol Macromol 2020; 165:1656-1663. [PMID: 33091476 DOI: 10.1016/j.ijbiomac.2020.10.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 11/21/2022]
Abstract
In order to increase content of glucuronic acid in the exopolysaccharide (EPS) and its flocculating activity, an UDP-glucose dehydrogenase gene was overexpressed in Lipomyces starkeyi V19. The obtained U9 strain could produce 62.1 ± 1.2 g/l EPS while the V19 strain only produced 53.5 ± 1.3 g/l EPS. The compositions of monosaccharides (mannose, glucuronic acid and galactose) in the purified EPS (U9-EPS) from the U9 strain contained 3.79:1:5.52 while those in the purified EPS (V19-EPS) were 3.94:1:6.29. The flocculation rate of the U9-EPS on kaolin clay reached 87.9%, which was significantly higher than that (74.7%) of the V19-EPS while the decolorization rate of Congo Red (CR) by the U9-EPS reached 94.3%, which was significantly higher than that of CR by the V19-EPS (86.23%). The results showed that the purified bioflocculant U9-EPS had effective flocculation of kaolin clay. The U9-EPS also had high ability to flocculate the polluted river water and decolorize Congo red.
Collapse
|
21
|
Using a novel polysaccharide BM2 produced by Bacillus megaterium strain PL8 as an efficient bioflocculant for wastewater treatment. Int J Biol Macromol 2020; 162:374-384. [DOI: 10.1016/j.ijbiomac.2020.06.167] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/05/2023]
|
22
|
Abbas SZ, Yong YC, Ali Khan M, Siddiqui MR, Hakami AAH, Alshareef SA, Otero M, Rafatullah M. Bioflocculants Produced by Bacterial Strains Isolated from Palm Oil Mill Effluent for Application in the Removal of Eriochrome Black T Dye from Water. Polymers (Basel) 2020; 12:polym12071545. [PMID: 32668712 PMCID: PMC7408152 DOI: 10.3390/polym12071545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 11/16/2022] Open
Abstract
Four strains of bioflocculant-producing bacteria were isolated from a palm oil mill effluent (POME). The four bacterial strains were identified as Pseudomonas alcaliphila (B1), Pseudomonas oleovorans (B2), Pseudomonas chengduensis (B3), and Bacillus nitratireducens (B4) by molecular identification. Among the four bacterial strains, Bacillus nitratireducens (B4) achieved the highest flocculating activity (49.15%) towards kaolin clay suspension after eight hours of cultivation time and was selected for further studies. The optimum conditions for Eriochrome Black T (EBT) flocculation regarding initial pH, type of cation, and B4 dosage were determined to be pH 2, Ca2⁺ cations, and a dosage of 250 mL/L of nutrient broth containing B4. Under these conditions, above 90% of EBT dye removal was attained. Fourier transform infrared spectroscopic (FT-IR) analysis of the bioflocculant revealed the presence of hydroxyl, alkyl, carboxyl, and amino groups. This bioflocculant was demonstrated to possess a good flocculating activity, being a promissory, low-cost, harmless, and environmentally friendly alternative for the treatment of effluents contaminated with dyes.
Collapse
Affiliation(s)
- Syed Zaghum Abbas
- Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang 212013, China; (S.Z.A.); (Y.-C.Y.)
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang 212013, China; (S.Z.A.); (Y.-C.Y.)
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.K.); (M.R.S.); (A.A.H.H.); (S.A.A.)
| | - Masoom Raza Siddiqui
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.K.); (M.R.S.); (A.A.H.H.); (S.A.A.)
| | - Afnan Ali Hussain Hakami
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.K.); (M.R.S.); (A.A.H.H.); (S.A.A.)
| | - Shareefa Ahmed Alshareef
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.K.); (M.R.S.); (A.A.H.H.); (S.A.A.)
| | - Marta Otero
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
- Correspondence: (M.O.); (M.R.)
| | - Mohd Rafatullah
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Correspondence: (M.O.); (M.R.)
| |
Collapse
|
23
|
Chouchane H, Najjari A, Neifar M, Cherif H, Askri R, Naili F, Ouzari HI, Cherif A. Unravelling the characteristics of a heteropolysaccharide-protein from an Haloarchaeal strain with flocculation effectiveness in heavy metals and dyes removal. ENVIRONMENTAL TECHNOLOGY 2020; 41:2180-2195. [PMID: 30517064 DOI: 10.1080/09593330.2018.1556742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
The production, characterization and potential application in heavy metals and dyes removal of a novel heteropolysaccharide-protein named, gpHb, produced by an Haloarchaeal strain Halogeometricum borinquense strain A52 were investigated. The highest gpHb yield of 13.96 ± 0.32 g/L was produced under optimized conditions by response surface methodology. We focused on the characteristics and flocculation performance of gpHb. An important attribute of protein with 16 protein types identified that occupied a total content of 50.2% in the gpHb. Additionally, carbohydrate that occupied 30.4% of the total bioflocculant content consisted of three monosaccharides. Fourier transform-infrared spectroscopy indicated the presence of carboxyl, hydroxyl, amine, amide, and sulphate groups. To further study flocculation activities, factors such as bioflocculant dosage, temperature, pH, salinity and cations addition were tested. In comparison to the chemical flocculant polyaluminium chloride, gpHb maintain high activity at large range of salinity and its flocculation activity was higher on both sides of pH 7. Addition of trivalent cation mainly Fe3+ enhances the flocculating rate indicating that the bioflocculant is negatively charged. Its practical applicability was established for heavy metals and dyes removal from saline aqueous solutions. The highest removal efficiency was observed with Cr3+ (91.4%) and Ni2+ (89.60%) and with basic blue 3 (83.8%) and basic red (78.6%). The excellent flocculation activity of gpHb under saline condition suggests its potential industrial utility for treatment of textile and tannery wastewaters.
Collapse
Affiliation(s)
- Habib Chouchane
- ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, Univ. Manouba, Ariana, Tunisia
| | - Afef Najjari
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Université Tunis El Manar, Tunis, Tunisia
| | - Mohamed Neifar
- ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, Univ. Manouba, Ariana, Tunisia
| | - Hanen Cherif
- ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, Univ. Manouba, Ariana, Tunisia
| | - Refka Askri
- ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, Univ. Manouba, Ariana, Tunisia
| | - Fatma Naili
- ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, Univ. Manouba, Ariana, Tunisia
| | - Hadda Imene Ouzari
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Université Tunis El Manar, Tunis, Tunisia
| | - Ameur Cherif
- ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, Univ. Manouba, Ariana, Tunisia
| |
Collapse
|
24
|
Insight on Extraction and Characterisation of Biopolymers as the Green Coagulants for Microalgae Harvesting. WATER 2020. [DOI: 10.3390/w12051388] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review presents the extractions, characterisations, applications and economic analyses of natural coagulant in separating pollutants and microalgae from water medium, known as microalgae harvesting. The promising future of microalgae as a next-generation energy source is reviewed and the significant drawbacks of conventional microalgae harvesting using alum are evaluated. The performances of natural coagulant in microalgae harvesting are studied and proven to exceed the alum. In addition, the details of each processing stage in the extraction of natural coagulant (plant, microbial and animal) are comprehensively discussed with justifications. This information could contribute to future exploration of novel natural coagulants by providing description of optimised extraction steps for a number of natural coagulants. Besides, the characterisations of natural coagulants have garnered a great deal of attention, and the strategies to enhance the flocculating activity based on their characteristics are discussed. Several important characterisations have been tabulated in this review such as physical aspects, including surface morphology and surface charges; chemical aspects, including molecular weight, functional group and elemental properties; and thermal stability parameters including thermogravimetry analysis and differential scanning calorimetry. Furthermore, various applications of natural coagulant in the industries other than microalgae harvesting are revealed. The cost analysis of natural coagulant application in mass harvesting of microalgae is allowed to evaluate its feasibility towards commercialisation in the industrial. Last, the potentially new natural coagulants, which are yet to be exploited and applied, are listed as the additional information for future study.
Collapse
|
25
|
Hassimi AH, Ezril Hafiz R, Muhamad MH, Sheikh Abdullah SR. Bioflocculant production using palm oil mill and sago mill effluent as a fermentation feedstock: Characterization and mechanism of flocculation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 260:110046. [PMID: 32090804 DOI: 10.1016/j.jenvman.2019.110046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
This study was conducted to examine the production of bioflocculants using agricultural wastewater as a fermentation feedstock under different temperatures and incubation times. The mechanism of flocculation was studied to gain a detailed understanding of the flocculation activity. The highest bioflocculant yield (2.03 g/L) at a temperature of 40 °C was produced in a palm oil mill effluent medium (BioF-POME). Bioflocculant produced from a fermented SME medium (BioF-SME) showed the highest activity. The flocculation tests for colour and turbidity removal from lake water indicated that BioF-SME and BioF-POME performed comparably to commercial alum. Analyses of the bioflocculants using liquid chromatography-mass spectrometry (LC-MS) found that the bioflocculants contained xylose and glucose. The mechanism study showed that flocculation occurred through charge neutralization and interparticle bridging between the bioflocculant polymer and the particles in the lake water. Thus, agricultural wastewater can be used as a fermentation feedstock for high-quality bioflocculants.
Collapse
Affiliation(s)
- Abu Hasan Hassimi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Razali Ezril Hafiz
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Mohd Hafizuddin Muhamad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
26
|
Wang T, Tang X, Zhang S, Zheng J, Zheng H, Fang L. Roles of functional microbial flocculant in dyeing wastewater treatment: Bridging and adsorption. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121506. [PMID: 31699487 DOI: 10.1016/j.jhazmat.2019.121506] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/23/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Congo red (CR) is a typical and widely used azo dye in industries. It possesses the serious threat to ecosystem and public for its indiscriminate discharge. Microbial flocculant (MBF) with various functional groups is a potential flocculant applied in dyeing wastewater treatment, and it has the advantages of high treatment efficiency, biodegradability and non-toxicity. In this study, the functional groups, amino group, ammonium group and acyloxy group, were grafted onto MBF to further improve its thermal stability, solubility and performance. Grafting copolymerization occurred at the amino group of MBF was confirmed by XPS. Polyaluminum silicate (PSA) and self-prepared functional microbial flocculant, MBF-g-P(AM-DAC), played different roles in CR wastewater treatment. PSA contributed to charge neutralization, but its yielded flocs were small. On the contrary, MBF-g-P(AM-DAC) possessed weak charge neutralization but big flocs. Its settlement efficiency has significantly improved. The unsaturated active sites on MBF-g-P(AM-DAC) and its flocs contributed to the adsorption of CR in terms of high surface area and adsorption capacity of the flocs. Physical adsorption and chemical adsorption were both discovered in the treatment.
Collapse
Affiliation(s)
- Tao Wang
- Chongqing Key Laboratory of Catalysis & Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, PR China
| | - Xiaomin Tang
- Chongqing Key Laboratory of Catalysis & Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| | - Shixin Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jie Zheng
- Chongqing Key Laboratory of Catalysis & Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, PR China
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Ling Fang
- Chongqing Key Laboratory of Catalysis & Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, PR China
| |
Collapse
|
27
|
Mohd Luthfi W, Alias H, Tay G, Lee C. Production and characterization of bioflocculant via solid state fermentation process using oil palm empty fruit bunch fibers as substrate. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Mohammed JN, Wan Dagang WRZ. Implications for industrial application of bioflocculant demand alternatives to conventional media: waste as a substitute. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:1807-1822. [PMID: 32144213 DOI: 10.2166/wst.2020.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The biodegradability and safety of the bioflocculants make them a potential alternative to non-biodegradable chemical flocculants for wastewater treatment. However, low yield and production cost has been reported to be the limiting factor for large scale bioflocculant production. Although the utilization of cheap nutrient sources is generally appealing for large scale bioproduct production, exploration to meet the demand for them is still low. Although much progress has been achieved at laboratory scale, Industrial production and application of bioflocculant is yet to be viable due to cost of the production medium and low yield. Thus, the prospects of bioflocculant application as an alternative to chemical flocculants is linked to evaluation and utilization of cheap alternative and renewable nutrient sources. This review evaluates the latest literature on the utilization of waste/wastewater as an alternative substitute for conventional expensive nutrient sources. It focuses on the mechanisms and metabolic pathways involved in microbial flocculant synthesis, culture conditions and nutrient requirements for bioflocculant production, pre-treatment, and also optimization of waste substrate for bioflocculant synthesis and bioflocculant production from waste and their efficiencies. Utilization of wastes as a microbial nutrient source drastically reduces the cost of bioflocculant production and increases the appeal of bioflocculant as a cost-effective alternative to chemical flocculants.
Collapse
Affiliation(s)
- Jibrin Ndejiko Mohammed
- Department of Microbiology, Ibrahim Badamasi Babangida University, PMB11, Lapai, Niger State, Nigeria; Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor, Malaysia E-mail:
| | | |
Collapse
|
29
|
Role of Bacterial Bioflocculant on Antibiofilm Activity and Metal Removal Efficiency. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.3.59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Ayangbenro AS, Babalola OO, Aremu OS. Bioflocculant production and heavy metal sorption by metal resistant bacterial isolates from gold mining soil. CHEMOSPHERE 2019; 231:113-120. [PMID: 31128345 DOI: 10.1016/j.chemosphere.2019.05.092] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/06/2019] [Accepted: 05/12/2019] [Indexed: 06/09/2023]
Abstract
Two bioflocculant producing bacterial isolates from mining soil samples were investigated for their application in heavy metal removal. The bacterial isolates were identified as Pseudomonas koreensis and Pantoea sp. using 16S rRNA gene. Cadmium resistant genes cadA and CzcD were detected in Pantoea sp. while P. koreensis harbor CzcD and chrA responsible for Cd and Cr resistance respectively. The isolates showed maximum flocculating activity of 71.3% and 51.7% with glucose and yield of 2.98 g L-1 and 3.26 g L-1 for Pantoea sp. and P. koreensis respectively. The optimum flocculating activity was achieved at pH 7.5 and temperature of 30 °C. Fourier transform infrared analysis of the bioflocculants produced by the two isolates showed the presence of carboxyl, hydroxyl and amino groups characteristic of polysaccharide and protein. Heavy metal sorption by bioflocculant of Pantoea sp. removed 51.2% Cd, 52.5% Cr and 80.5% Pb while that of P. koreensis removed 48.5% Cd, 42.5% Cr and 73.7% Pb. The bioflocculants produced have potential in metal removal from industrial wastes.
Collapse
Affiliation(s)
- Ayansina Segun Ayangbenro
- Food Security and Safety Niche,Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche,Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| | - Oluwole Samuel Aremu
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
31
|
Culture optimization for production and characterization of bioflocculant by Aspergillus flavus grown on chicken viscera hydrolysate. World J Microbiol Biotechnol 2019; 35:121. [DOI: 10.1007/s11274-019-2696-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
|
32
|
Mohammed JN, Wan Dagang WRZ. Development of a new culture medium for bioflocculant production using chicken viscera. MethodsX 2019; 6:1467-1472. [PMID: 31289724 PMCID: PMC6593163 DOI: 10.1016/j.mex.2019.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/04/2019] [Indexed: 11/22/2022] Open
Abstract
The economy of mass bioflocculant production and its industrial application is couple with the cost of production. The growth medium is the most significant factor that accounts for the production cost. In order to find a substitute for the expensive commercial media mostly the carbon and nitrogen sources used for bioflocculant production, we use chicken viscera as a sole source of nutrient for bioflocculant production. The culture conditions for Aspergillus flavus S44-1 growth and bioflocculant yield were optimized through one factor at a time (OFAT). The use of chicken viscera as a sole source to develop a culture medium seems to be more appropriate, simple, reduce cost of bioflocculant production and in addition offers a sustainable means of managing environmental pollution by the poultry waste. In this article, we focus on detailed description of the steps involve in developing an optimized culture medium using chicken viscera as a sole source for bioflocculant production. A new media for bioflocculant production was developed from chicken viscera. The culture conditions for bioflocculant production were determined and optimized. The bioflocculant yield and efficiency were parallel to mycelial weight at log phase.
Collapse
Affiliation(s)
- Jibrin Ndejiko Mohammed
- Department of Microbiology, Ibrahim Badamasi Babangida University, PMB 11, Lapai, Nigeria.,Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | | |
Collapse
|
33
|
Bhattacharya A, Mathur M, Kumar P, Malik A. Potential role of N-acetyl glucosamine in Aspergillus fumigatus-assisted Chlorella pyrenoidosa harvesting. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:178. [PMID: 31320926 PMCID: PMC6617575 DOI: 10.1186/s13068-019-1519-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Algal harvesting is a major cost which increases biofuel production cost. Algal biofuels are widely studied as third-generation biofuel. However, they are yet not viable because of its high production cost which is majorly contributed by energy-intensive biomass harvesting techniques. Biological harvesting method like fungal-assisted harvesting of microalgae is highly efficient but poses a challenge due to its slow kinetics and poorly understood mechanism. RESULTS In this study, we investigate Aspergillus fumigatus-Chlorella pyrenoidosa attachment resulting in a harvesting efficiency of 90% within 4 h. To pinpoint the role of extracellular metabolite, several experiments were performed by eliminating the C. pyrenoidosa or A. fumigatus spent medium from the C. pyrenoidosa-A. fumigatus mixture. In the absence of A. fumigatus spent medium, the harvesting efficiency dropped to 20% compared to > 90% in the control, which was regained after addition of A. fumigatus spent medium. Different treatments of A. fumigatus spent medium showed drop in harvesting efficiency after periodate treatment (≤ 20%) and methanol-chloroform extraction (≤ 20%), indicating the role of sugar-like moiety. HR-LC-MS (high-resolution liquid chromatography-mass spectrometry) results confirmed the presence of N-acetyl-d-glucosamine (GlcNAc) and glucose in the spent medium. When GlcNAc was used as a replacement of A. fumigatus spent medium for harvesting studies, the harvesting process was significantly faster (p < 0.05) till 4 h compared to that with glucose. Further experiments indicated that metabolically active A. fumigatus produced GlcNAc from glucose. Concanavalin A staining and FTIR (Fourier transform infrared spectroscopy) analysis of A. fumigatus spent medium- as well as GlcNAc-incubated C. pyrenoidosa cells suggested the presence of GlcNAc on its cell surface indicated by dark red dots and GlcNAc-specific peaks, while no such characteristic dots or peaks were observed in normal C. pyrenoidosa cells. HR-TEM (High-resolution Transmission electron microscopy) showed the formation of serrated edges on the C. pyrenoidosa cell surface after treatment with A. fumigatus spent medium or GlcNAc, while Atomic force microscopy (AFM) showed an increase in roughness of the C. pyrenoidosa cells surface upon incubation with A. fumigatus spent medium. CONCLUSIONS Results strongly suggest that GlcNAc present in A. fumigatus spent medium induces surface changes in C. pyrenoidosa cells that mediate the attachment to A. fumigatus hyphae. Thus, this study provides a better understanding of the A. fumigatus-assisted C. pyrenoidosa harvesting process.
Collapse
Affiliation(s)
- Arghya Bhattacharya
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016 India
| | - Megha Mathur
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016 India
| | - Pushpendar Kumar
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016 India
| | - Anushree Malik
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016 India
| |
Collapse
|
34
|
Gouveia JG, Silva ALDS, Santos ECLD, Martins ES, López AMQ. OPTIMIZATION OF BIOFLOCCULANT PRODUCTION BY Bacillus spp. FROM SUGARCANE CROP SOIL OR FROM SLUDGE OF THE AGROINDUSTRIAL EFFLUENT. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190362s20180360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Biotechnological application of endophytic filamentous bipolaris and curvularia: a review on bioeconomy impact. World J Microbiol Biotechnol 2019; 35:69. [PMID: 31011888 DOI: 10.1007/s11274-019-2644-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
Abstract
The filamentous Bipolaris and Curvularia genera consist of species known to cause severe diseases in plants and animals amounting to an estimated annual loss of USD $10 billion worldwide. Despite the harmful effect of Bipolaris and Curvularia species, scarce attention is paid on beneficial areas where the fungi are used in industrial processes to generate biotechnological products. Catalytic potential of Bipolaris and Curvularia species in the production of biodiesel, bioflucculant, biosorbent, and mycoherbicide are promising for the bioeconomy. It is herein demonstrated that knowledge-based application of some endophytic Bipolaris and Curvularia species are indispensable vectors of sustainable economic development. In the twenty-first century, India, China, and the USA have taken progress in the biotechnological application of these fungi to generate wealth. As such, some Bipolaris and Curvularia species significantly impact on global crop improvement, act as catalyst in batch-reactors for biosynthesis of industrial enzymes and medicines, bioengineer of green-nanoparticle, agent of biofertilizer, bioremediation and bio-hydrometallurgy. For the first time, this study discusses the current advances in biotechnological application of Bipolaris and Curvularia species and provide new insights into the prospects of optimizing their bioengineering potential for developing bioeconomy.
Collapse
|
36
|
Qiao N, Gao M, Zhang X, Du Y, Fan X, Wang L, Liu N, Yu D. Trichosporon fermentans biomass flocculation from soybean oil refinery wastewater using bioflocculant produced from Paecilomyces sp. M2-1. Appl Microbiol Biotechnol 2019; 103:2821-2831. [PMID: 30680435 DOI: 10.1007/s00253-019-09643-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/01/2019] [Accepted: 01/06/2019] [Indexed: 12/20/2022]
Abstract
The soybean oil refinery (SOR) wastewater contains a high concentration of chemical oxygen demand (COD) and lipid, so the direct emissions of SOR wastewater will result in environmental pollution and waste of resources. Oleaginous yeast Trichosporon fermentans can consume organic materials in SOR wastewater to synthesize microbial oil, which achieves the purpose of SOR wastewater resource utilization. The effective harvesting technology of oleaginous yeasts can improve the utilization efficiency. In this study, Paecilomyces sp. M2-1 with high flocculating activity was isolated. The flocculants produced by M2-1 (MBF2-1) include 75% (w/w) polysaccharides, rely on cations, and display the flocculation percentage of above 77% in the range of pH 2-11. Especially under alkaline conditions, the flocculation percentage can be kept above 97%. The results of scanning electron microscope observation and zeta potential measurements suggested that the bridging, net trapping, and sweeping were the main flocculation mechanism of MBF2-1. MBF2-1 could flocculate T. fermentans that was used to reduce the organic matter in SOR wastewater and to produce microbial oil. Under the optimum conditions, the flocculation percentage of MBF2-1 against T. fermentans from SOR wastewater can reach 95%. Fatty acid content percent in microbial oil from T. fermentans was not almost affected by flocculation of MBF2-1. Moreover, MBF2-1 can further remove 55% and 53% of COD and oil content in the fermented SOR wastewater, respectively. The properties and high flocculating percentage displayed by MBF2-1 indicated its potential application prospect in oleaginous yeast harvest and food industry wastewater treatment.
Collapse
Affiliation(s)
- Nan Qiao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.,School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, 132012, China
| | - Mingxing Gao
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, 132012, China
| | - Xiuzhen Zhang
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, China
| | - Yundi Du
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, 132012, China
| | - Xue Fan
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, 132012, China
| | - Lei Wang
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, China
| | - Na Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.
| | - Dayu Yu
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, China.
| |
Collapse
|
37
|
Abu Tawila ZMM, Ismail S, Abu Amr SS, Abou Elkhair EK. A novel efficient bioflocculant QZ-7 for the removal of heavy metals from industrial wastewater. RSC Adv 2019; 9:27825-27834. [PMID: 35530503 PMCID: PMC9070865 DOI: 10.1039/c9ra04683f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 07/31/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, a novel bioflocculant QZ-7 was produced from Bacillus salmalaya 139SI for industrial wastewater treatment. Biochemical analysis, FTIR, scanning electron microscopy-energy dispersive X-ray spectroscopy, and thermogravimetric analysis were performed. A synthetic wastewater sample was used to validate the performance of the prepared OZ-7 for the adsorption efficiency of As, Zn2+ Pb2+, Cu2+, and Cd2+ under optimal experimental conditions such as initial metal concentrations, pH, contact time (h) and QZ-7 adsorbent dosage (mg mL−1). The maximum removal efficiency for Zn2+ (81.3%), As (78.6%), Pb2+ (77.9%), Cu2+ (76.1%), and Cd2+ (68.7%) was achieved using an optimal bioflocculant dosage of 60 mg L−1 at 2 h shaking time, 100 rpm and pH 7. Furthermore, the obtained optimum experimental conditions were validated using real industrial wastewater and the removal efficiencies of 89.8%, 77.4% and 58.4% were obtained for As, Zn2+ and Cu2+, respectively. The results revealed that the prepared bioflocculant QZ-7 has the capability to be used for the removal of heavy metals from industrial wastewater. In this study, a novel bioflocculant was produced using Bacillus salmalaya 139SI for industrial waste water treatment.![]()
Collapse
Affiliation(s)
- Zayed M. M. Abu Tawila
- Institute of Biological Science
- Faculty of Science
- University of Malaya
- Kuala Lumpur
- Malaysia
| | - Salmah Ismail
- Institute of Biological Science
- Faculty of Science
- University of Malaya
- Kuala Lumpur
- Malaysia
| | - Salem S. Abu Amr
- Malaysian Institute of Chemical & Bioengineering Technology
- Universiti Kuala Lumpur, (UniKL, MICET)
- Melaka
- Malaysia
| | | |
Collapse
|
38
|
Ndejiko JM, Zana Wan Dagang WR. Flocculation behaviour of bioflocculant produced from chicken viscera. E3S WEB OF CONFERENCES 2019; 90:01013. [DOI: 10.1051/e3sconf/20199001013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The flocculation performance of bioflocculant produced by Aspergillus flavus S44-1 grown on chicken viscera hydrolysate was investigated. The investigations were carried out using jar testing and kaolin clay suspension as model wastewater. The bioflocculant yielded a minimum of 83.1% efficiency in flocculating 2-12 g L-1 kaolin clay suspension over a wide temperature range (4-80 °C) and functioned maximally at neutral pH. The bioflocculant significantly flocculated different suspended particles such as activated carbon (92%), soil solid (94.8%), and algae (69.4%) at varying concentrations. Bridging mediated by cation is suggested as the main mechanism of flocculation by the present bioflocculant.
Collapse
|
39
|
Microbial Flocculants as an Alternative to Synthetic Polymers for Wastewater Treatment: A Review. Symmetry (Basel) 2018. [DOI: 10.3390/sym10110556] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microorganisms such as bacteria, fungi, and microalgae have been used to produce bioflocculants with various structures. These polymers are active substances that are biodegradable, environmentally harmless, and have flocculation characteristics. Most of the developed microbial bioflocculants displayed significant flocculating activity (FA > 70–90%) depending on the strain used and on the operating parameters. These biopolymers have been investigated and successfully used for wastewater depollution in the laboratory. In various cases, selected efficient microbial flocculants could reduce significantly suspended solids (SS), turbidity, chemical oxygen demand (COD), total nitrogen (Nt), dye, and heavy metals, with removal percentages exceeding 90% depending on the bioflocculating materials and on the wastewater characteristics. Moreover, bioflocculants showed acceptable results for sludge conditioning (accepted levels of dry solids, specific resistance to filtration, moisture, etc.) compared to chemicals. This paper explores various bioflocculants produced by numerous microbial strains. Their production procedures and flocculating performance will be included. Furthermore, their efficiency in the depollution of wastewater will be discussed.
Collapse
|
40
|
Abu Tawila ZM, Ismail S, Dadrasnia A, Usman MM. Production and Characterization of a Bioflocculant Produced by Bacillus salmalaya 139SI-7 and Its Applications in Wastewater Treatment. Molecules 2018; 23:molecules23102689. [PMID: 30340415 PMCID: PMC6222882 DOI: 10.3390/molecules23102689] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/29/2018] [Accepted: 09/11/2018] [Indexed: 11/16/2022] Open
Abstract
The production, optimization, and characterization of the bioflocculant QZ-7 synthesized by a novel Bacillus salmalaya strain 139SI isolated from a private farm soil in Selangor, Malaysia, are reported. The flocculating activity of bioflocculant QZ-7 present in the selected strain was found to be 83.3%. The optimal culture for flocculant production was achieved after cultivation at 35.5 °C for 72 h at pH 7 ± 0.2, with an inoculum size of 5% (v/v) and sucrose and yeast extract as carbon and nitrogen sources. The maximum flocculating activity was found to be 92.6%. Chemical analysis revealed that the pure bioflocculant consisted of 79.08% carbohydrates and 15.4% proteins. The average molecular weight of the bioflocculant was calculated to be 5.13 × 10⁵ Da. Infrared spectrometric analysis showed the presence of carboxyl (COO-), hydroxyl (-OH), and amino (-NH₂) groups, polysaccharides and proteins. The bioflocculant QZ-7 exhibited a wide pH stability range from 4 to 7, with a flocculation activity of 85% at pH 7 ± 0.2. In addition, QZ-7 was thermally stable and retained more than 80% of its flocculating activity after being heated at 80 °C for 30 min. SEM analysis revealed that QZ-7 exhibited a clear crystalline brick-shaped structure. After treating wastewater, the bioflocculant QZ-7 showed significant flocculation performance with a COD removal efficiency of 93%, whereas a BOD removal efficiency of 92.4% was observed in the B. salmalaya strain 139SI. These values indicate the promising applications of the bioflocculant QZ-7 in wastewater treatment.
Collapse
Affiliation(s)
- Zayed M Abu Tawila
- Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
- Department of Biology, Faculty of Science, Al-Azhar University, Gaza, Palestine.
| | - Salmah Ismail
- Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Arezoo Dadrasnia
- Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Mohammed Maikudi Usman
- Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
41
|
Guo H, Hong C, Zheng B, Jiang D, Qin W. Improving enzymatic digestibility of wheat straw pretreated by a cellulase-free xylanase-secreting Pseudomonas boreopolis G22 with simultaneous production of bioflocculants. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:250. [PMID: 30245742 PMCID: PMC6142706 DOI: 10.1186/s13068-018-1255-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Xylan removal by bacterial pretreatments has been confirmed to increase the digestibility of biomass. Here, an effective xylan removal technique has been developed to enhance the digestibility of wheat straw and simultaneously produce bioflocculants by a cellulase-free xylanase-secreting strain, Pseudomonas boreopolis G22. RESULTS The results indicated that P. boreopolis G22 is an alkaliphilic strain which can secrete abundant amounts of xylanase. This xylanase had activity levels of 2.67-1.75 U mL-1 after an incubation period of 5-25 days. The xylanase showed peak activity levels at pH 8.6, and retained more than 85% relative activity in the pH range of 7.2-9.8. After 15 days of cultivation, the hemicellulose contents of the wheat straw were significantly decreased by 32.5%, while its cellulose contents were increased by 27.3%, compared to that of the control. The maximum reducing sugars released from the 15-day-pretreated wheat straw were 1.8-fold higher than that of the untreated wheat straw, under optimal enzymatic hydrolysis conditions. In addition, a maximum bioflocculant yield of 2.08 g L-1 was extracted from the fermentation broth after 15 days of incubation. The aforementioned bioflocculants could be used to efficiently decolorize a dye solution. CONCLUSIONS The results indicate that the cellulase-free xylanase-secreting P. boreopolis G22 may be a potential strain for wheat straw pretreatments. The strain G22 does not only enhance the enzymatic digestibility of wheat straw, but also simultaneously produces a number of bioflocculants that can be used for various industrial applications.
Collapse
Affiliation(s)
- Haipeng Guo
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1 Canada
| | - Chuntao Hong
- Academy of Agricultural Sciences of Ningbo City, Ningbo, 315040 China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300 China
| | - Dean Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1 Canada
| |
Collapse
|
42
|
Xia X, Lan S, Li X, Xie Y, Liang Y, Yan P, Chen Z, Xing Y. Characterization and coagulation-flocculation performance of a composite flocculant in high-turbidity drinking water treatment. CHEMOSPHERE 2018; 206:701-708. [PMID: 29783055 DOI: 10.1016/j.chemosphere.2018.04.159] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Klebsiella variicola B16, a microbial bioflocculant (MBF-B16)-producing bacteria, was isolated and identified by its 16S rRNA sequence, biochemical properties, and physiological characteristics. The effects of culture conditions on MBF-B16 production, including carbon source, nitrogen source, C/N ratio, initial pH, and culture temperature, were investigated in this study. Results showed that 6.96 g of MBF-B16 could be extracted from a 1-L culture broth under optimized conditions. Chemical analysis showed that polysaccharide and protein were the main components. The neutral sugar consisted of galactose only, which was proposed in Klebsiella genus for the first time. In addition, a composite flocculant (CF) that contains polyaluminum ferric chloride (PAFC) and MBF-B16 for the removal of turbidity and SS in drinking water was optimized by response surface methodology. CF could reduce PAFC dosage by about 56.2-72%. Charge neutralization and adsorption bridging effect were the primary flocculation mechanisms.
Collapse
Affiliation(s)
- Xiang Xia
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Shuhuan Lan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Xudong Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Yifei Xie
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China.
| | - Yajie Liang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Peihan Yan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Zhengyang Chen
- Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (SEKL-SW), Chengdu University of Technology State Environmental Protection, Chengdu University of Technology, 610059, Chengdu, PR China
| | - Yunxiao Xing
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Sichuan, PR China
| |
Collapse
|
43
|
|
44
|
Agunbiade M, Pohl C, Ashafa O. Bioflocculant production from Streptomyces platensis and its potential for river and waste water treatment. Braz J Microbiol 2018; 49:731-741. [PMID: 29674102 PMCID: PMC6175721 DOI: 10.1016/j.bjm.2017.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 11/26/2022] Open
Abstract
A bacterium isolated from Sterkfontein dam was confirmed to produce bioflocculant with excellent flocculation activity. The 16S rDNA nucleotide sequence analyses revealed the bacteria to have 99% similarity to Streptomyces platensis strain HBUM174787 and the sequence was deposited in the Genbank as Streptomyces platensis with accession number FJ 486385.1. Culture conditions for optimal production of the bioflocculant included glucose as a sole carbon source, resulting in flocculating activity of 90%. Other optimal conditions included: peptone as nitrogen source; presence of Mg2+ as cations and inoculum size of 1.0% (v/v) at neutral pH of 7. Optimum dose of the purified bioflocculant for the clarification of 4g/L kaolin clay suspension at neutral pH was 0.2mg/mL. Energy Dispersive X-ray analysis confirmed elemental composition of the purified bioflocculant in mass proportion (%w/w): carbon (21.41), oxygen (35.59), sulphur (26.16), nitrogen (0.62) and potassium (7.48). Fourier Transform Infrared Spectroscopy (FTIR) indicated the presence of hydroxyl, carboxyl, methoxyl and amino group in the bioflocculant. The bioflocculant produced by S. platensis removed chemical oxygen demand (COD) in river water and meat processing wastewater at efficiencies of 63.1 and 46.6% respectively and reduced their turbidity by 84.3 and 75.6% respectively. The high flocculating rate and removal efficiencies displayed by S. platensis suggests its industrial application in wastewater treatment.
Collapse
Affiliation(s)
- Mayowa Agunbiade
- University of the Free State, Qwaqwa Campus, Department of Plant Sciences, Phytomedicine and Phytopharmacology Research Group, Phuthaditjhaba, South Africa; University of the Free State, Department of Microbial, Biochemical & Food Biotechnology, Bloemfontein, South Africa
| | - Carolina Pohl
- University of the Free State, Department of Microbial, Biochemical & Food Biotechnology, Bloemfontein, South Africa
| | - Omotayo Ashafa
- University of the Free State, Qwaqwa Campus, Department of Plant Sciences, Phytomedicine and Phytopharmacology Research Group, Phuthaditjhaba, South Africa.
| |
Collapse
|
45
|
Chouchane H, Mahjoubi M, Ettoumi B, Neifar M, Cherif A. A novel thermally stable heteropolysaccharide-based bioflocculant from hydrocarbonoclastic strain Kocuria rosea BU22S and its application in dye removal. ENVIRONMENTAL TECHNOLOGY 2018; 39:859-872. [PMID: 28357896 DOI: 10.1080/09593330.2017.1313886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/27/2017] [Indexed: 06/06/2023]
Abstract
A new bioflocculant named pKr produced by hydrocarbonoclastic strain Kocuria rosea BU22S (KC152976) was investigated. Gas chromatography-flame ionization detector (GC-FID) analysis confirmed the high potential of the strain BU22S in the degradation of n-alkanes. Plackett-Burman experimental design and response surface methodology were carried out to optimize pKr production. Glucose, peptone and incubation time were found to be the most significant factors affecting bioflocculant production. Maximum pKr production was about 4.72 ± 0.02 g/L achieved with 15.61 g/L glucose, 6.45 g/L peptone and 3 days incubation time. Chemical analysis of pKr indicated that it contained 71.62% polysaccharides, 16.36% uronic acid and 2.83% proteins. Thin layer chromatography analysis showed that polysaccharides fraction consisted of galactose and xylose. Fourier transform infrared analysis revealed the presence of many functional groups, hydroxyl, carboxyl, methoxyl, acetyl and amide that likely contribute to flocculation. K. rosea pKr showed high flocculant potential using kaolin clay at different pH (2-11), temperature (0-100°C) and cation concentrations. The bioflocculant was particularly effective in flocculating soluble anionic dyes, Reactive Blue 4 and Acid Yellow, with a decolorization efficiency of 76.4% and 72.6%, respectively. The outstanding flocculating performances suggest that pKr could be useful for bioremediation applications.
Collapse
Affiliation(s)
- Habib Chouchane
- a Univ. Manouba , ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 , Ariana , Tunisia
| | - Mouna Mahjoubi
- a Univ. Manouba , ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 , Ariana , Tunisia
- b Faculty of Science of Bizerte , University of Carthage , Bizerte , Tunisia
| | - Besma Ettoumi
- c Department of Food Environmental and Nutritional Sciences (DeFENS) , University of Milan , Milan , Italy
| | - Mohamed Neifar
- a Univ. Manouba , ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 , Ariana , Tunisia
| | - Ameur Cherif
- a Univ. Manouba , ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 , Ariana , Tunisia
| |
Collapse
|
46
|
Guo J, Liu J, Yang Y, Zhou Y, Jiang S, Chen C. Fermentation and kinetics characteristics of a bioflocculant from potato starch wastewater and its application. Sci Rep 2018; 8:3631. [PMID: 29483543 PMCID: PMC5827517 DOI: 10.1038/s41598-018-21796-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/08/2018] [Indexed: 11/09/2022] Open
Abstract
Potato starch wastewater was used as fermentation medium for Rhodococcus erythropolis to produce bioflocculant. Kinetics of cell growth and bioflocculant production were firstly constructed. After fermentation for 60 h, 0.97 g of bioflocculant with polysaccharides nature was extracted from 1 L of fermentation liquor. Kinetics characteristics showed that cell growth and bioflocculant production could be simulated well with Logistic and Luedeking-Piret equations, respectively. When R. erythropolis was in logarithm growth phase, COD, ammonium, and TP of the potato starch wastewater medium were rapidly down to 1736, 188, and 146 mg/L, respectively, from 7836, 975, and 712 mg/L, while the medium's exactly pH value was almost not changed. Furthermore, bioflocculant flocculation can be used as an effective pretreatment way for potato starch wastewater, and it was feasible in actual treatment projects in Ronghua Starch Co., Ltd., Sichuan Province.
Collapse
Affiliation(s)
- Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China.
| | - Jianying Liu
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Yijin Yang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Yuling Zhou
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Shilin Jiang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Cheng Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| |
Collapse
|
47
|
Pu S, Ma H, Deng D, Xue S, Zhu R, Zhou Y, Xiong X. Isolation, identification, and characterization of an Aspergillus niger bioflocculant-producing strain using potato starch wastewater as nutrilite and its application. PLoS One 2018; 13:e0190236. [PMID: 29304048 PMCID: PMC5755778 DOI: 10.1371/journal.pone.0190236] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 12/11/2017] [Indexed: 11/30/2022] Open
Abstract
A bioflocculant (MBFA18) was produced by Aspergillus niger (A18) using potato starch wastewater (PSW) as nutrients. The cultivation processes and flocculating treatment for PSW purification were systematically studied. The flocculating rate of the MBFA 18 achieved 90.06% (kaolin clay) under the optimal cultivation condition (PSW with 5950 mg/L COD, 20 g/L glucose, 0.2 g/L urea and without phosphorus source addition and pH adjustment). Furthermore, effects of flocculant dosage, initial pH, coagulant aid (CaCl2) addition and sedimentation time on the PSW treatment were discussed and studied in detail. The optimum flocculation treatment conditions were determined according to the treatment efficiency, cost and flocculation conditions. During the PSW treatment, 2 mL/L bioflocculant (1.89 g/L) dosage and 0.5 mol/L coagulant aid addition were applied without pH adjustment and 91.15% COD and 60.22% turbidity removal rate could be achieved within 20 min. The comparative study between the bioflocculant and conventional chemical flocculants showed excellent flocculating efficiency of MBFA 18 with lower cost (4.7 yuan/t), which indicated that the bioflocculant MBFA 18 produced in PSW substrate has a great potential to be an alternative flocculant in PSW treatment.
Collapse
Affiliation(s)
- Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, Sichuan, P.R. China
- Department of Civil and Environment Engineering, The Hong Kong Polytechnic University, Hong Kong, P.R. China
- * E-mail:
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, Sichuan, P.R. China
- Department of Civil and Environment Engineering, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Daili Deng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, Sichuan, P.R. China
| | - Shengyang Xue
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, Sichuan, P.R. China
| | - Rongxin Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, Sichuan, P.R. China
| | - Yan Zhou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, Sichuan, P.R. China
| | - Xingying Xiong
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, Sichuan, P.R. China
| |
Collapse
|
48
|
Sun R, Sun P, Zhang J, Esquivel-Elizondo S, Wu Y. Microorganisms-based methods for harmful algal blooms control: A review. BIORESOURCE TECHNOLOGY 2018; 248:12-20. [PMID: 28801171 DOI: 10.1016/j.biortech.2017.07.175] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 06/07/2023]
Abstract
Harmful algal blooms (HABs) are a worldwide problem with numerous negative effects on water systems, which have prompted researchers to study applicable measures to inhibit and control them. This review summarized the current microorganisms-based methods or technologies aimed at controlling HABs. Based on their characteristics, these methods can be divided into two categories: methods based on single-species microorganisms and methods based on microbial aggregates, and four types: methods for rapid decrease of algal cells density (e.g., alga-bacterium and alga-fungus bioflocculation), inhibition of harmful algal growth, lysis of harmful algae (e.g. algicidal bacteria, fungi, and actinomycete), and methods based on microbial aggregates (periphytons and biofilms). An integrative process of "flocculation-lysis-degradation-nutrients regulation" is proposed to control HABs. This review not only offers a systematic understanding of HABs control technologies based on microorganisms but also elicits a re-thinking of HABs control based on microbial aggregates.
Collapse
Affiliation(s)
- Rui Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China.
| | - Jianhong Zhang
- Resources & Environment Business Dept., International Engineering Consulting Corporation, Beijing 100048, China
| | - Sofia Esquivel-Elizondo
- Swette Center for Environmental Biotechnology at Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287-5701, USA
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| |
Collapse
|
49
|
Xia X, Liang Y, Lan S, Li X, Xie Y, Yuan W. Production and flocculating properties of a compound biopolymer flocculant from corn ethanol wastewater. BIORESOURCE TECHNOLOGY 2018; 247:924-929. [PMID: 30060431 DOI: 10.1016/j.biortech.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/27/2017] [Accepted: 10/01/2017] [Indexed: 06/08/2023]
Abstract
A compound biopolymer flocculant (CBF) produced using corn ethanol wastewater as substrate was investigated. After optimization of culture conditions, 3.08 g/L of purified CBF was extracted from the culture broth following 48 h of cultivation. The CBF macromolecule is mainly composed of protein (15.9%) and polysaccharide (81.8%). The polysaccharide component includes neutral sugars (28.92%), amino sugars (4.04%) and uronic acid (11.69%), with the neutral sugars being glucose, mannose, and lactose at a molar ratio of 4.1:1.5:1.9. CBF is pH tolerant from 3.0 to 12.0 and thermal tolerant from 20 to 100 °C, allowing for its application over a wide range of conditions. Furthermore, the Langmuir model better describes CBF adsorption on kaolin clay, as compared to the Freundlich model. Charge neutralization and bridging mechanisms are the primary flocculation mechanisms. In addition, CBF shows a high methylene blue removal efficiency. These results indicate that this compound biopolymer flocculant has great potential in dye wastewater treatment.
Collapse
Affiliation(s)
- Xiang Xia
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Yajie Liang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Shuhuan Lan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Xudong Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Yifei Xie
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China.
| | - Wei Yuan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| |
Collapse
|
50
|
Characterization of a novel bioflocculant from a marine bacterium and its application in dye wastewater treatment. BMC Biotechnol 2017; 17:84. [PMID: 29149843 PMCID: PMC5693566 DOI: 10.1186/s12896-017-0404-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/31/2017] [Indexed: 01/15/2023] Open
Abstract
Background The identification of microorganisms with excellent flocculant-producing capability and optimization of the fermentation process are necessary for the wide-scale application of bioflocculants. Thus, we evaluated the flocculant-producing ability of a novel strain identified by the screening of marine bacteria, and we report for the first time the properties of the bioflocculant produced by Alteromonas sp. in the treatment of dye wastewater. Results A bioflocculant-producing bacterium was isolated from seawater and identified as Alteromonas sp. CGMCC 10612. The optimal carbon and nitrogen sources for the strain were 30 g/L glucose and 1.5 g/L wheat flour. In a 2-L fermenter, the flocculating activity and bioflocculant yield reached maximum values of 2575.4 U/mL and 11.18 g/L, respectively. The bioflocculant was separated and showed good heat and pH stability. The purified bioflocculant was a proteoglycan consisting of 69.61% carbohydrate and 21.56% protein (wt/wt). Infrared spectrometry further indicated the presence of hydroxyl, carboxyl and amino groups preferred for flocculation. The bioflocculant was a nanoparticle polymer with an average mass of 394,000 Da. The purified bioflocculant was able to remove Congo Red, Direct Black and Methylene Blue at efficiencies of 98.5%, 97.9% and 72.3% respectively. Conclusions The results of this study indicated that the marine strain Alteromonas sp. is a good candidate for the production of a novel bioflocculant and suggested its potential industrial utility for biotechnological processes. Electronic supplementary material The online version of this article (10.1186/s12896-017-0404-z) contains supplementary material, which is available to authorized users.
Collapse
|