1
|
Meng Q, Zeng W, Liu H, Zhan M, Zhang J, Wu H. The successful application of light to the system of simultaneous nitrification/endogenous denitrification and phosphorus removal: Promotion of partial nitrification and glycogen accumulation metabolism. WATER RESEARCH 2023; 246:120742. [PMID: 37857010 DOI: 10.1016/j.watres.2023.120742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Partial nitrification (PN) and high glycogen accumulating metabolism (GAM) activity are the basis for efficient nitrogen (N) and phosphorus (P) removal in simultaneous nitrification endogenous denitrification and phosphorus removal (SNDPR) systems. However, achieving these processes in practical operations is challenging. This study proposes that light irradiation is a novel strategy to enhance the nutrient removal performance of the SNDPR system with low carbon to nitrogen ratios (C/N of 3.3-4.1) domestic wastewater. Light energy densities (Es) of 55-135 J/g VSS were found to promote the activity of ammonia-oxidizing bacteria (AOB) and GAM, while inhibiting the activity of nitrite-oxidizing bacteria (NOB) and polyphosphate accumulating metabolism (PAM). Long-term exposure to different light patterns at Es of 55-135 J/g VSS revealed that continuous light rapidly achieved PN by inhibiting NOB activity and promoted the growth of glycogen accumulating organisms (GAOs), allowing the removal of above 82 % N and below 80 % P. Intermittent light maintained stable PN by inhibiting the activity and growth of NOB and promoted the growth of polyphosphate accumulating organisms (PAOs) with high GAM activity (Accmulibacer IIC-ii and IIC-iii), allowing the removal of above 82 % N and 95 % P. Flow cytometry and enzyme activity assays showed that light promoted GAM-related enzyme activity and the metabolic activity of partial Accmulibacer II over other endogenous denitrifying bacteria, while inhibiting NOB translation activity. These findings provide a new approach for enhancing nutrient removal, especially for achieving PN and promoting GAM activity, in SNDPR systems treating low C/N ratio domestic wastewater using light irradiation.
Collapse
Affiliation(s)
- Qingan Meng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Hongjun Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Mengjia Zhan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jiayu Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Hongan Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Lu X, Oehmen A, Zhao J, Duan H, Yuan Z, Ye L. Insights on biological phosphorus removal with partial nitrification in single sludge system via sidestream free ammonia and free nitrous acid dosing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165174. [PMID: 37385509 DOI: 10.1016/j.scitotenv.2023.165174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/10/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
The sidestream sludge treatment by free ammonium (FA)/free nitrous acid (FNA) dosing was frequently demonstrated to maintain the nitrite pathway for the partial nitrification (PN) process. Nevertheless, the inhibitory effect of FA and FNA would severely influence polyphosphate accumulating organisms (PAOs), destroying the microbe-based phosphorus (P) removal. Therefore, a strategic evaluation was proposed to successfully achieve biological P removal with a partial nitrification process in a single sludge system by sidestream FA and FNA dosing. Through the long-term operation of 500 days, excellent phosphorus, ammonium and total nitrogen removal performance were achieved at 97.5 ± 2.6 %, 99.1 ± 1.0 % and 75.5 ± 0.4 %, respectively. Stable partial nitrification with a nitrite accumulation ratio (NAR) of 94.1 ± 3.4 was attained. The batch tests also reported the robust aerobic phosphorus uptake based on FA and FNA adapted sludge after exposure of FA and FNA, respectively, suggesting the FA and FNA treatment strategy could potentially offer the opportunity for the selection of PAOs, which synchronously have the tolerance to FA and FNA. Microbial community analysis suggested that Accumulibacter, Tetrasphaera, and Comamonadaceae collectively contributed to the phosphorus removal in this system. Summarily, the proposed work presents a novel and feasible strategy to integrate enhanced biological phosphorus removal (EBPR) and short-cut nitrogen cycling and bring the combined mainstream phosphorus removal and partial nitrification process closer to practical application.
Collapse
Affiliation(s)
- Xuanyu Lu
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia; Australia Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jing Zhao
- Sustainable minerals institute, the university of Queensland, St. Lucia, QLD 4072, Australia
| | - Haoran Duan
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia; Australia Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Australia Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
3
|
Meng Q, Zeng W, Fan Z, Li S, Peng Y. Sulfide inhibition on polyphosphate accumulating organisms and glycogen accumulating organisms: Cumulative inhibitory effect and recoverability. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131157. [PMID: 36889076 DOI: 10.1016/j.jhazmat.2023.131157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Sulfate in wastewater can be reduced to sulfide and its impact on the stability of enhanced biological phosphorus removal (EBPR) is still unclear. In this study, the metabolic changes and subsequent recovery of polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) were investigated at different sulfide concentrations. The results showed that the metabolic activity of PAOs and GAOs was mainly related to H2S concentration. Under anaerobic conditions, the catabolism of PAOs and GAOs was promoted at H2S concentrations below 79 mg/L S and 271 mg/L S, respectively, and inhibited above these concentrations; whereas anabolism was consistently inhibited in the presence of H2S. The phosphorus (P) release was also pH-dependent due to the intracellular free Mg2+ efflux from PAOs. H2S was more destructive to the esterase activity and membrane permeability of PAOs than those of GAOs and prompted intracellular free Mg2+ efflux of PAOs, resulting in worse aerobic metabolism and subsequent recovery of PAOs than GAOs. Additionally, sulfides facilitated the production of extracellular polymeric substances (EPS), especially tightly bound EPS. The amount of EPS in GAOs was significantly higher than that in PAOs. The above results indicated that sulfide had a stronger inhibition to PAOs than GAOs, and when sulfide was present, GAOs had a competitive advantage over PAOs in EBPR.
Collapse
Affiliation(s)
- Qingan Meng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Zhiwei Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Shuangshuang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
4
|
Rey-Martínez N, Merdan G, Guisasola A, Baeza JA. Nitrite and nitrate inhibition thresholds for a glutamate-fed bio-P sludge. CHEMOSPHERE 2021; 283:131173. [PMID: 34182653 DOI: 10.1016/j.chemosphere.2021.131173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/30/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Enhanced biological phosphorus removal (EBPR) is an efficient and sustainable technology to remove phosphorus from wastewater. A widely known cause of EBPR deterioration in wastewater treatment plants (WWTPs) is the presence of nitrate/nitrite or oxygen in the anaerobic reactor. Moreover, most existing studies on the effect of either permanent aerobic conditions or inhibition of EBPR by nitrate or free nitrous acid (FNA) have been conducted with a "Candidatus Accumulibacter" or Tetrasphaera-enriched sludge, which are the two major reported groups of polyphosphate accumulating organisms (PAO) with key roles in full-scale EBPR WWTPs. This work reports the denitrification capabilities of a bio-P microbial community developed using glutamate as the sole source of carbon and nitrogen. This bio-P sludge exhibited a high denitrifying PAO (DPAO) activity, in fact, 56% of the phosphorus was uptaken under anoxic conditions. Furthermore, this mixed culture was able to use nitrite and nitrate as electron acceptor for P-uptake, being 1.8 μg HNO2-N·L-1 the maximum FNA concentration at which P-uptake can occur. Net P-removal was observed under permanent aerobic conditions. However, this microbial culture was more sensitive to FNA and permanent aerobic conditions compared to "Ca. Accumulibacter"-enriched sludge.
Collapse
Affiliation(s)
- Natalia Rey-Martínez
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Spain.
| | - Gökçe Merdan
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Spain; Department of Environmental Engineering, Namık Kemal University, Turkey.
| | - Albert Guisasola
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Spain.
| | - Juan Antonio Baeza
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
5
|
Lu X, Duan H, Oehmen A, Carvalho G, Yuan Z, Ye L. Achieving combined biological short-cut nitrogen and phosphorus removal in a one sludge system with side-stream sludge treatment. WATER RESEARCH 2021; 203:117563. [PMID: 34419918 DOI: 10.1016/j.watres.2021.117563] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Biological nitrogen (N) removal via the short-cut pathway (NH4+-N→NO2--N→N2) is economically attractive in wastewater treatment plants (WWTPs). However, biological phosphorus (P) removal processes remain a bottleneck in these systems due to the strong inhibitory effect of nitrite or its protonated form (HNO2, free nitrous acid - FNA) on polyphosphate accumulating organisms (PAOs). In this study, a novel combined nitrogen and phosphorus removal strategy was verified and achieved in a biological short-cut nitrogen removal system via side-stream sludge treatment with FNA, and the mechanisms impacting this process were investigated. The side-stream FNA treatment process applied here led to a significant reduction in the real sludge retention time (SRT) in the mainstream (approximately 2.7 days) based on the biocidal effect of FNA to the majority of the organisms. This work also found that around 40% of the P uptake activity was still maintained at a much higher FNA level of 38 μg N/L with potential PAOs, which highly broadened the current knowledge of PAOs community. An economic analysis revealed advantages of the proposed as compared to conventional biological nitrogen and phosphorus removal (13% savings in total cost), biological short-cut nitrogen removal (via FNA treatment) with chemical phosphorus precipitation (21% savings) and conventional biological nitrogen removal with chemical precipitation (27% savings). Overall, this study presents a novel and viable retrofit strategy in integrating biological short-cut nitrogen removal with EBPR for next generation WWTPs.
Collapse
Affiliation(s)
- Xuanyu Lu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Haoran Duan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Gilda Carvalho
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
6
|
Chae S, Murugesan B, Kim H, Duvvuru DK, Lee T, Choi YH, Baek MH, Nadagouda MN. Advanced Phosphorus Recovery from Municipal Wastewater using Anoxic/Aerobic Membrane Bioreactors and Magnesium Carbonate-Based Pellets. ACS ES&T WATER 2021; 1:10.1021/acsestwater.0c00300. [PMID: 34676375 PMCID: PMC8525428 DOI: 10.1021/acsestwater.0c00300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Effective recovery of phosphorus from municipal wastewater could be one of the best practical alternatives to protect aquatic environments from eutrophication and save natural phosphorus resources. This paper focuses on validating magnesium carbonate (MgCO3)-based pellets combined with a bench-scale anoxic/aerobic membrane bioreactor (MBR) system for advanced phosphorus recovery from municipal wastewater. As the flow rate of wastewater into the MgCO3 column decreased from 10 L/d to 2.5 L/d, the phosphorus recovery rate of the MgCO3-based pellets increased from 54.3 to 93.5%. However, the column's severe clogging was found after a 13-days operation due to the high removal of total suspended solids (TSS) (~82%) through the MgCO3 column. The anoxic/aerobic MBR introduction provided efficient removal of TSS, organic matter, and ammonia nitrogen before the MgCO3 column. The combination of MBR with the MgCO3 column achieved 73.1% phosphorus recovery from municipal wastewater without physical clogging. The P recovery capacity of the MgCO3-based pellets was maintained at 0.47 mg ortho-P/g MgCO3-based pellet during the continuous operation. Physical and chemical properties of MgCO3-based pellets before and after the experiment were characterized using scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) surface area analyzer.
Collapse
Affiliation(s)
- Soryong Chae
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Brindha Murugesan
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Hyunsik Kim
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Dilip Kumar Duvvuru
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States; U.S. Environmental Protection Agency, ORD, CESER, WID, CMTB, Cincinnati, Ohio 45268, United States
| | - Tae Lee
- U.S. Environmental Protection Agency, ORD, CESER, WID, CMTB, Cincinnati, Ohio 45268, United States
| | - Yang-Hun Choi
- Water Treatment Development Team, LOTTE CHEMICAL Advanced Materials, Uiwang-si, Gyeonngi-do 16073, Republic of Korea
| | - Mi-Hwa Baek
- Monomer R&D Division, LOTTE CHEMICAL R&D Center, Daejeon 34110, Republic of Korea
| | - Mallikarjuna N Nadagouda
- U.S. Environmental Protection Agency, ORD, CESER, WID, CMTB, Cincinnati, Ohio 45268, United States
| |
Collapse
|
7
|
Duan H, Gao S, Li X, Ab Hamid NH, Jiang G, Zheng M, Bai X, Bond PL, Lu X, Chislett MM, Hu S, Ye L, Yuan Z. Improving wastewater management using free nitrous acid (FNA). WATER RESEARCH 2020; 171:115382. [PMID: 31855696 DOI: 10.1016/j.watres.2019.115382] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 05/06/2023]
Abstract
Free nitrous acid (FNA), the protonated form of nitrite, has historically been an unwanted substance in wastewater systems due to its inhibition on a wide range of microorganisms. However, in recent years, advanced understanding of FNA inhibitory and biocidal effects on microorganisms has led to the development of a series of FNA-based applications that improve wastewater management practices. FNA has been used in sewer systems to control sewer corrosion and odor; in wastewater treatment to achieve carbon and energy efficient nitrogen removal; in sludge management to improve the sludge reduction and energy recovery; in membrane systems to address membrane fouling; and in wastewater algae systems to facilitate algae harvesting. This paper aims to comprehensively and critically review the current status of FNA-based applications in improving wastewater management. The underlying mechanisms of FNA inhibitory and biocidal effects are also reviewed and discussed. Knowledge gaps and current limitations of the FNA-based applications are identified; and perspectives on the development of FNA-based applications are discussed. We conclude that the FNA-based technologies have great potential for enhancing the performance of wastewater systems; however, further development and demonstration at larger scales are still required for their wider applications.
Collapse
Affiliation(s)
- Haoran Duan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Shuhong Gao
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, United States
| | - Xuan Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nur Hafizah Ab Hamid
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Min Zheng
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xue Bai
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xuanyu Lu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Mariella M Chislett
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Shihu Hu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
8
|
Dorofeev AG, Nikolaev YA, Mardanov AV, Pimenov NV. Role of Phosphate-Accumulating Bacteria in Biological Phosphorus Removal from Wastewater. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820010056] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Ribera-Guardia A, Marques R, Arangio C, Carvalheira M, Oehmen A, Pijuan M. Distinctive denitrifying capabilities lead to differences in N2O production by denitrifying polyphosphate accumulating organisms and denitrifying glycogen accumulating organisms. BIORESOURCE TECHNOLOGY 2016; 219:106-113. [PMID: 27479801 DOI: 10.1016/j.biortech.2016.07.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 06/06/2023]
Abstract
This study aims at investigating the denitrification kinetics in two separate enriched cultures of denitrifying polyphosphate accumulating organisms (dPAO) and denitrifying glycogen accumulating organisms (dGAO) and compare their N2O accumulation potential under different conditions. Two sequencing batch reactors were inoculated to develop dPAO and dGAO enriched microbial communities separately. Seven batch tests with different combinations of electron acceptors (nitrate, nitrite and/or nitrous oxide) were carried out with the enriched biomass from both reactors. Results indicate that in almost all batch tests, N2O accumulated for both cultures, however dPAOs showed a higher denitrification capacity compared to dGAOs due to their higher nitrogen oxides reduction rates. Additionally, the effect of the simultaneous presence of several electron acceptors in the reduction rates of the different nitrogen oxides was also assessed in dPAOs and dGAOs.
Collapse
Affiliation(s)
- Anna Ribera-Guardia
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, 17003 Girona, Spain
| | - Ricardo Marques
- UCIBIO, REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Corrado Arangio
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, 17003 Girona, Spain; Dipartimento di ingegneria civile e architettura (DICAR), Università di Catania, 95100 Catania, Sicily, Italy
| | - Monica Carvalheira
- UCIBIO, REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Adrian Oehmen
- UCIBIO, REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Maite Pijuan
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, 17003 Girona, Spain.
| |
Collapse
|
10
|
Ye Y, Ngo HH, Guo W, Liu Y, Zhang X, Guo J, Ni BJ, Chang SW, Nguyen DD. Insight into biological phosphate recovery from sewage. BIORESOURCE TECHNOLOGY 2016; 218:874-881. [PMID: 27434305 DOI: 10.1016/j.biortech.2016.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/01/2016] [Accepted: 07/02/2016] [Indexed: 06/06/2023]
Abstract
The world's increasing population means that more food production is required. A more sustainable supply of fertilizers mainly consisting of phosphate is needed. Due to the rising consumption of scarce resources and limited natural supply of phosphate, the recovery of phosphate and their re-use has potentially high market value. Sewage has high potential to recover a large amount of phosphate in a circular economy approach. This paper focuses on utilization of biological process integrated with various subsequent processes to concentrate and recycle phosphate which are derived from liquid and sludge phases. The phosphate accumulation and recovery are discussed in terms of mechanism and governing parameters, recovery efficiency, application at plant-scale and economy.
Collapse
Affiliation(s)
- Yuanyao Ye
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Xinbo Zhang
- Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Jianbo Guo
- Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Bing-Jie Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy and Engineering, Kyonggi University, 442-760, Republic of Korea
| |
Collapse
|
11
|
Li WW, Zhang HL, Sheng GP, Yu HQ. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process. WATER RESEARCH 2015; 86:85-95. [PMID: 26143588 DOI: 10.1016/j.watres.2015.06.034] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 06/17/2015] [Accepted: 06/20/2015] [Indexed: 05/06/2023]
Abstract
Enhanced biological phosphorus removal (EBPR) process is known to mainly rely on the ability of phosphorus-accumulating organisms to take up, transform and store excess amount of phosphorus (P) inside the cells. However, recent studies have revealed considerable accumulation of P also in the extracellular polymeric substances (EPS) of sludge, implying a non-negligible role of EPS in P removal by EBPR sludge. However, the contribution of EPS to P uptake and the forms of accumulated extracellular P vary substantially in different studies, and the underlying mechanism of P transformation and transportation in EPS remains poorly understood. This review provides a new recognition into the P removal process in EBPR system by incorporating the role of EPS. It overviews on the characteristics of P accumulation in EPS, explores the mechanism of P transformation and transportation in EBPR sludge and EPS, summarizes the main influential factors for the P-accumulation properties of EPS, and discusses the remaining knowledge gaps and needed future efforts that may lead to better understanding and use of such an EPS role for maximizing P recovery from wastewater.
Collapse
Affiliation(s)
- Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Hai-Ling Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China.
| |
Collapse
|
12
|
An efficient process for wastewater treatment to mitigate free nitrous acid generation and its inhibition on biological phosphorus removal. Sci Rep 2015; 5:8602. [PMID: 25721019 PMCID: PMC4342570 DOI: 10.1038/srep08602] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/23/2015] [Indexed: 11/08/2022] Open
Abstract
Free nitrous acid (FNA), which is the protonated form of nitrite and inevitably produced during biological nitrogen removal, has been demonstrated to strongly inhibit the activity of polyphosphate accumulating organisms (PAOs). Herein we reported an efficient process for wastewater treatment, i.e., the oxic/anoxic/oxic/extended-idle process to mitigate the generation of FNA and its inhibition on PAOs. The results showed that this new process enriched more PAOs which thereby achieved higher phosphorus removal efficiency than the conventional four-step (i.e., anaerobic/oxic/anoxic/oxic) biological nutrient removal process (41 ± 7% versus 30 ± 5% in abundance of PAOs and 97 ± 0.73% versus 82 ± 1.2% in efficiency of phosphorus removal). It was found that this new process increased pH value but decreased nitrite accumulation, resulting in the decreased FNA generation. Further experiments showed that the new process could alleviate the inhibition of FNA on the metabolisms of PAOs even under the same FNA concentration.
Collapse
|
13
|
|
14
|
Gao SH, Fan L, Yuan Z, Bond PL. The concentration-determined and population-specific antimicrobial effects of free nitrous acid on Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol 2014; 99:2305-12. [PMID: 25412579 DOI: 10.1007/s00253-014-6211-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 11/29/2022]
Abstract
There is great potential to use free nitrous acid (FNA/HNO2), the protonated form of nitrite, as an antimicrobial agent due to its bacteriostatic and bactericidal effects on a range of microorganisms. Here, we determine the effects of FNA on the opportunistic pathogen Pseudomonas aeruginosa PAO1, a well-studied denitrifier capable of nitrate/nitrite reduction in its anaerobic respiration. It was seen that lower FNA concentrations in the range of 0.1 to 0.2 mg N/L exerted a temporary inhibitory effect on the growth of P. aeruginosa, while respiratory inhibition was not detected until an FNA concentration of 1.0 mg N/L was applied. The FNA concentration of 5.0 mg N/L caused complete cell killing and likely cell lysis. The results suggest concentration-related and multiple antimicrobial effects of FNA. Differential killing of FNA in the P. aeruginosa subpopulations was detected, suggesting intrastrain heterogeneity, and does not support the idea of specific concentrations of FNA bringing about bacteriostatic and bactericidal effects on this species. A delayed recovery from FNA treatment suggested that FNA caused cell damage which required repair prior to the organism showing cell growth. The results of the study provide insight of the inhibitory and biocidal mechanisms of FNA on this important microorganism.
Collapse
Affiliation(s)
- Shu-Hong Gao
- Advanced Water Management Centre, The University of Queensland, Level 4 Gehrmann Building, St. Lucia, Brisbane, QLD, 4072, Australia
| | | | | | | |
Collapse
|
15
|
Wang Y, Guo G, Wang H, Stephenson T, Guo J, Ye L. Long-term impact of anaerobic reaction time on the performance and granular characteristics of granular denitrifying biological phosphorus removal systems. WATER RESEARCH 2013; 47:5326-37. [PMID: 23863379 DOI: 10.1016/j.watres.2013.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/30/2013] [Accepted: 06/06/2013] [Indexed: 05/12/2023]
Abstract
Removal of nitrogen and phosphorus (P) from wastewater is successfully and widely practiced in systems employing both granular sludge technology and enhanced biological P removal (EBPR) processes; however, the key parameter, anaerobic reaction time (AnRT), has not been thoroughly investigated. Successful EBPR is highly dependent on an appropriate AnRT, which induces carbon and polyphosphate metabolism by phosphorus accumulating organisms (PAOs). Therefore, the long-term impact of AnRT on denitrifying P removal performance and granular characteristics was investigated in three identical granular sludge sequencing batch reactors with AnRTs of 90 (R1), 120 (R2) and 150 min (R3). The microbial community structures and anaerobic stoichiometric parameters related to various AnRTs were monitored over time. Free nitrite acid (FNA) accumulation (e.g., 0.0008-0.0016 mg HNO2-N/L) occurred frequently owing to incomplete denitrification in the adaptation period, especially in R3, which influenced the anaerobic/anoxic intracellular intermediate metabolites and activities of intracellular enzymes negatively, resulting in lower levels of poly-P and reduced activity of polyphosphate kinase. As a result, the Accumulibacter-PAOs population decreased from 51 ± 2.5% to 43 ± 2.1% when AnRT was extended from 90 to 150 min, leading to decreased denitrifying P removal performance. Additionally, frequent exposure of microorganisms to the FNA accumulation and anaerobic endogenous conditions in excess AnRT cases (e.g., 150 min) stimulated increased extracellular polymeric substances (EPS) production by microorganisms, resulting in enhanced granular formation and larger granules (size of 0.6-1.2 mm), but decreasing anaerobic PHA synthesis and glycogen hydrolysis. Phosphorus removal capacity was mediated to some extent by EPS adsorption in granular sludge systems that possessed more EPS, longer AnRT and relatively higher GAOs.
Collapse
Affiliation(s)
- Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| | | | | | | | | | | |
Collapse
|
16
|
Zuthi MFR, Guo WS, Ngo HH, Nghiem LD, Hai FI. Enhanced biological phosphorus removal and its modeling for the activated sludge and membrane bioreactor processes. BIORESOURCE TECHNOLOGY 2013; 139:363-374. [PMID: 23659759 DOI: 10.1016/j.biortech.2013.04.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 06/02/2023]
Abstract
A modified activated sludge process (ASP) for enhanced biological phosphorus removal (EBPR) needs to sustain stable performance for wastewater treatment to avoid eutrophication in the aquatic environment. Unfortunately, the overall efficiency of the EBPR in ASPs and membrane bioreactors (MBRs) is frequently hindered by different operational/system constraints. Moreover, although phosphorus removal data from several wastewater treatment systems are available, a comprehensive mathematical model of the process is still lacking. This paper presents a critical review that highlights the core issues of the biological phosphorus removal in ASPs and MBRs while discussing the inhibitory process requirements for other nutrients' removal. This mini review also successfully provided an assessment of the available models for predicting phosphorus removal in both ASP and MBR systems. The advantages and limitations of the existing models were discussed together with the inclusion of few guidelines for their improvement.
Collapse
Affiliation(s)
- M F R Zuthi
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | | | | | | | | |
Collapse
|