1
|
Yang Y, Guo X, Lu H, Liu H. Biomass multi-stage comminution for entrained-flow gasification process. BIORESOURCE TECHNOLOGY 2025:132539. [PMID: 40228721 DOI: 10.1016/j.biortech.2025.132539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 04/16/2025]
Abstract
Entrained-flow gasification is a clean and efficient biomass conversion technology, in which comminution is a critical but energy-consuming process. Multi-stage comminution is proposed to achieve economic operation of biomass gasification. The energy consumption of three representative biomasses (i. e. corn stover, sycamore branch and moso bamboo) was evaluated by employing a target screen size of 1 mm. The results showed that the two-stage milling process reduced the energy of corn stover and sycamore branch by about 27.98 % and 16.84 %, respectively, compared to the single-stage milling process. For moso bamboo, the energy was reduced by only 8.59 %, which is mainly due to the energy consumed for separating and breaking its tough fibers is much higher than that for over-milling. The analysis of energy consumption and particle size can be used to select the operating factors of the hammer mill to produce a suitable size of biomass particles for gasification.
Collapse
Affiliation(s)
- Yunfei Yang
- Shanghai Engineering Research Center of Coal Gasification, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiaolei Guo
- Shanghai Engineering Research Center of Coal Gasification, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Haifeng Lu
- Shanghai Engineering Research Center of Coal Gasification, East China University of Science and Technology, Shanghai 200237, PR China
| | - Haifeng Liu
- Shanghai Engineering Research Center of Coal Gasification, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
2
|
Ponsetto P, Sasal EM, Mazzoli R, Valetti F, Gilardi G. The potential of native and engineered Clostridia for biomass biorefining. Front Bioeng Biotechnol 2024; 12:1423935. [PMID: 39219620 PMCID: PMC11365079 DOI: 10.3389/fbioe.2024.1423935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Since their first industrial application in the acetone-butanol-ethanol (ABE) fermentation in the early 1900s, Clostridia have found large application in biomass biorefining. Overall, their fermentation products include organic acids (e.g., acetate, butyrate, lactate), short chain alcohols (e.g., ethanol, n-butanol, isobutanol), diols (e.g., 1,2-propanediol, 1,3-propanediol) and H2 which have several applications such as fuels, building block chemicals, solvents, food and cosmetic additives. Advantageously, several clostridial strains are able to use cheap feedstocks such as lignocellulosic biomass, food waste, glycerol or C1-gases (CO2, CO) which confer them additional potential as key players for the development of processes less dependent from fossil fuels and with reduced greenhouse gas emissions. The present review aims to provide a survey of research progress aimed at developing Clostridium-mediated biomass fermentation processes, especially as regards strain improvement by metabolic engineering.
Collapse
Affiliation(s)
| | | | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | | |
Collapse
|
3
|
Re A, Mazzoli R. Current progress on engineering microbial strains and consortia for production of cellulosic butanol through consolidated bioprocessing. Microb Biotechnol 2022; 16:238-261. [PMID: 36168663 PMCID: PMC9871528 DOI: 10.1111/1751-7915.14148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/01/2022] [Accepted: 09/07/2022] [Indexed: 01/27/2023] Open
Abstract
In the last decades, fermentative production of n-butanol has regained substantial interest mainly owing to its use as drop-in-fuel. The use of lignocellulose as an alternative to traditional acetone-butanol-ethanol fermentation feedstocks (starchy biomass and molasses) can significantly increase the economic competitiveness of biobutanol over production from non-renewable sources (petroleum). However, the low cost of lignocellulose is offset by its high recalcitrance to biodegradation which generally requires chemical-physical pre-treatment and multiple bioreactor-based processes. The development of consolidated processing (i.e., single-pot fermentation) can dramatically reduce lignocellulose fermentation costs and promote its industrial application. Here, strategies for developing microbial strains and consortia that feature both efficient (hemi)cellulose depolymerization and butanol production will be depicted, that is, rational metabolic engineering of native (hemi)cellulolytic or native butanol-producing or other suitable microorganisms; protoplast fusion of (hemi)cellulolytic and butanol-producing strains; and co-culture of (hemi)cellulolytic and butanol-producing microbes. Irrespective of the fermentation feedstock, biobutanol production is inherently limited by the severe toxicity of this solvent that challenges process economic viability. Hence, an overview of strategies for developing butanol hypertolerant strains will be provided.
Collapse
Affiliation(s)
- Angela Re
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTorinoItaly,Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| |
Collapse
|
4
|
Xia M, Wang D, Xia Y, Shi H, Tian Z, Zheng Y, Wang M. Oxidoreduction potential controlling for increasing the fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production. Microb Cell Fact 2022; 21:130. [PMID: 35761287 PMCID: PMC9238237 DOI: 10.1186/s12934-022-01824-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background Lignocellulosic biomass is recognized as an effective potential substrate for biobutanol production. Though many pretreatment and detoxification methods have been set up, the fermentability of detoxicated lignocellulosic substrate is still far lower than that of starchy feedstocks. On the other hand, the number of recent efforts on rational metabolic engineering approaches to increase butanol production in Clostridium strains is also quite limited, demonstrating the physiological complexity of solventogenic clostridia. In fact, the strain performance is greatly impacted by process control. developing efficient process control strategies could be a feasible solution to this problem. Results In this study, oxidoreduction potential (ORP) controlling was applied to increase the fermentability of enzymatically hydrolyzed steam-exploded corn stover (SECS) for butanol production. When ORP of detoxicated SECS was controlled at − 350 mV, the period of fermentation was shortened by 6 h with an increase of 27.5% in the total solvent (to 18.1 g/L) and 34.2% in butanol (to 10.2 g/L) respectively. Silico modeling revealed that the fluxes of NADPH, NADH and ATP strongly differed between the different scenarios. Quantitative analysis showed that intracellular concentrations of ATP, NADPH/NADP+, and NADH/NAD+ were increased by 25.1%, 81.8%, and 62.5%. ORP controlling also resulted in a 2.1-fold increase in butyraldehyde dehydrogenase, a 1.2-fold increase in butanol dehydrogenase and 29% increase in the cell integrity. Conclusion ORP control strategy effectively changed the intracellular metabolic spectrum and significantly improved Clostridium cell growth and butanol production. The working mechanism can be summarized into three aspects: First, Glycolysis and TCA circulation pathways were strengthened through key nodes such as pyruvate carboxylase [EC: 6.4.1.1], which provided sufficient NADH and NADPH for the cell. Second, sufficient ATP was provided to avoid “acid crash”. Third, the key enzymes activities regulating butanol biosynthesis and cell membrane integrity were improved. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01824-2.
Collapse
Affiliation(s)
- Menglei Xia
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Di Wang
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Yiming Xia
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Haijiao Shi
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Zhongyu Tian
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
5
|
Costa P, Usai G, Re A, Manfredi M, Mannino G, Bertea CM, Pessione E, Mazzoli R. Clostridium cellulovorans Proteomic Responses to Butanol Stress. Front Microbiol 2021; 12:674639. [PMID: 34367082 PMCID: PMC8336468 DOI: 10.3389/fmicb.2021.674639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Combination of butanol-hyperproducing and hypertolerant phenotypes is essential for developing microbial strains suitable for industrial production of bio-butanol, one of the most promising liquid biofuels. Clostridium cellulovorans is among the microbial strains with the highest potential for direct production of n-butanol from lignocellulosic wastes, a process that would significantly reduce the cost of bio-butanol. However, butanol exhibits higher toxicity compared to ethanol and C. cellulovorans tolerance to this solvent is low. In the present investigation, comparative gel-free proteomics was used to study the response of C. cellulovorans to butanol challenge and understand the tolerance mechanisms activated in this condition. Sequential Window Acquisition of all Theoretical fragment ion spectra Mass Spectrometry (SWATH-MS) analysis allowed identification and quantification of differentially expressed soluble proteins. The study data are available via ProteomeXchange with the identifier PXD024183. The most important response concerned modulation of protein biosynthesis, folding and degradation. Coherent with previous studies on other bacteria, several heat shock proteins (HSPs), involved in protein quality control, were up-regulated such as the chaperones GroES (Cpn10), Hsp90, and DnaJ. Globally, our data indicate that protein biosynthesis is reduced, likely not to overload HSPs. Several additional metabolic adaptations were triggered by butanol exposure such as the up-regulation of V- and F-type ATPases (involved in ATP synthesis/generation of proton motive force), enzymes involved in amino acid (e.g., arginine, lysine, methionine, and branched chain amino acids) biosynthesis and proteins involved in cell envelope re-arrangement (e.g., the products of Clocel_4136, Clocel_4137, Clocel_4144, Clocel_4162 and Clocel_4352, involved in the biosynthesis of saturated fatty acids) and a redistribution of carbon flux through fermentative pathways (acetate and formate yields were increased and decreased, respectively). Based on these experimental findings, several potential gene targets for metabolic engineering strategies aimed at improving butanol tolerance in C. cellulovorans are suggested. This includes overexpression of HSPs (e.g., GroES, Hsp90, DnaJ, ClpC), RNA chaperone Hfq, V- and F-type ATPases and a number of genes whose function in C. cellulovorans is currently unknown.
Collapse
Affiliation(s)
- Paolo Costa
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giulia Usai
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.,Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy.,Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Angela Re
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Diseases, Università del Piemonte Orientale, Novara, Italy.,Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Giuseppe Mannino
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Cinzia Margherita Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Enrica Pessione
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
6
|
Mavrommati M, Daskalaki A, Papanikolaou S, Aggelis G. Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol Adv 2021; 54:107795. [PMID: 34246744 DOI: 10.1016/j.biotechadv.2021.107795] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022]
Abstract
Adaptive laboratory evolution (ALE) is an innovative approach for the generation of evolved microbial strains with desired characteristics, by implementing the rules of natural selection as presented in the Darwinian Theory, on the laboratory bench. New as it might be, it has already been used by several researchers for the amelioration of a variety of characteristics of widely used microorganisms in biotechnology. ALE is used as a tool for the deeper understanding of the genetic and/or metabolic pathways of evolution. Another important field targeted by ALE is the manufacturing of products of (high) added value, such as ethanol, butanol and lipids. In the current review, we discuss the basic principles and techniques of ALE, and then we focus on studies where it has been applied to bacteria, fungi and microalgae, aiming to improve their performance to biotechnological procedures and/or inspect the genetic background of evolution. We conclude that ALE is a promising and efficacious method that has already led to the acquisition of useful new microbiological strains in biotechnology and could possibly offer even more interesting results in the future.
Collapse
Affiliation(s)
- Maria Mavrommati
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece; Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Alexandra Daskalaki
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - George Aggelis
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
7
|
Exposure to 1-Butanol Exemplifies the Response of the Thermoacidophilic Archaeon Sulfolobus acidocaldarius to Solvent Stress. Appl Environ Microbiol 2021; 87:AEM.02988-20. [PMID: 33741627 PMCID: PMC8208165 DOI: 10.1128/aem.02988-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/09/2021] [Indexed: 12/18/2022] Open
Abstract
Sulfolobus acidocaldarius is a thermoacidophilic crenarchaeon with optimal growth at 80°C and pH 2 to 3. Due to its unique physiological properties, allowing life at environmental extremes, and the recent availability of genetic tools, this extremophile has received increasing interest for biotechnological applications. In order to elucidate the potential of tolerating process-related stress conditions, we investigated the response of S. acidocaldarius toward the industrially relevant organic solvent 1-butanol. In response to butanol exposure, biofilm formation of S. acidocaldarius was enhanced and occurred at up to 1.5% (vol/vol) 1-butanol, while planktonic growth was observed at up to 1% (vol/vol) 1-butanol. Confocal laser-scanning microscopy revealed that biofilm architecture changed with the formation of denser and higher tower-like structures. Concomitantly, changes in the extracellular polymeric substances with enhanced carbohydrate and protein content were determined in 1-butanol-exposed biofilms. Using scanning electron microscopy, three different cell morphotypes were observed in response to 1-butanol. Transcriptome and proteome analyses were performed comparing the response of planktonic and biofilm cells in the absence and presence of 1-butanol. In response to 1% (vol/vol) 1-butanol, transcript levels of genes encoding motility and cell envelope structures, as well as membrane proteins, were reduced. Cell division and/or vesicle formation were upregulated. Furthermore, changes in immune and defense systems, as well as metabolism and general stress responses, were observed. Our findings show that the extreme lifestyle of S. acidocaldarius coincided with a high tolerance to organic solvents. This study provides what may be the first insights into biofilm formation and membrane/cell stress caused by organic solvents in S. acidocaldarius IMPORTANCE Archaea are unique in terms of metabolic and cellular processes, as well as the adaptation to extreme environments. In the past few years, the development of genetic systems and biochemical, genetic, and polyomics studies has provided deep insights into the physiology of some archaeal model organisms. In this study, we used S. acidocaldarius, which is adapted to the two extremes of low pH and high temperature, to study its tolerance and robustness as well as its global cellular response toward organic solvents, as exemplified by 1-butanol. We were able to identify biofilm formation as a primary cellular response to 1-butanol. Furthermore, the triggered cell/membrane stress led to significant changes in culture heterogeneity accompanied by changes in central cellular processes, such as cell division and cellular defense systems, thus suggesting a global response for the protection at the population level.
Collapse
|
8
|
Adaptive laboratory evolution of the fast-growing cyanobacterium Synechococcus elongatus PCC 11801 for improved solvent tolerance. J Biosci Bioeng 2021; 131:491-500. [PMID: 33610455 DOI: 10.1016/j.jbiosc.2020.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 01/09/2023]
Abstract
Cyanobacteria hold promise as cell factories for the photoautotrophic conversion of carbon dioxide to useful chemicals. For the eventual commercial viability of such processes, cyanobacteria need to be engineered for (i) efficient channeling of carbon flux toward the product of interest and (ii) improved product tolerance, the latter being the focus of this study. We chose the recently reported, fast-growing, high light and CO2 tolerant cyanobacterium Synechococcus elongatus PCC 11801 for adaptive laboratory evolution. In two parallel experiments that lasted over 8400 h of culturing and 100 serial passages, S. elongatus PCC 11801 was evolved to tolerate 5 g/L n-butanol or 30 g/L 2,3-butanediol representing a 100% improvement in concentrations tolerated. The evolved strains retained alcohol tolerance even after being passaged several times without the alcohol stress suggesting that the changes were permanent. Whole genome sequencing of the n-butanol evolved strains revealed mutations in a number of stress responsive genes encoding translation initiation factors, RpoB and an ABC transporter. In 2,3-butanediol evolved strains, genes for ClpC, a different ABC transporter, glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase were found to be mutated. Furthermore, the evolved strains showed significant improvement in tolerance toward several other alcohols. Notably, the n-butanol evolved strain could tolerate up to 32 g/L ethanol, thereby making it a promising host for photosynthetic production of biofuels via metabolic engineering.
Collapse
|
9
|
Liu S, Qureshi N, Bischoff K, Darie CC. Proteomic Analysis Identifies Dysregulated Proteins in Butanol-Tolerant Gram-Positive Lactobacillus mucosae BR0713-33. ACS OMEGA 2021; 6:4034-4043. [PMID: 33644533 PMCID: PMC7906490 DOI: 10.1021/acsomega.0c06028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Butanol can be produced biologically through fermentation of lignocellulosic biomass-derived sugars by Gram-positive Clostridium species. For cost-effective production, increased butanol fermentation titers are desired. However, the currently available butanol-fermenting microbes do not tolerate sufficiently high butanol concentrations; thus, new butanol-tolerant strains are desired. One promising strategy is to genetically modify Clostridium species by introducing stress tolerance-associated genes. This study was aimed to seek butanol tolerance genes from other Gram-positive species, which might be better suited than those from Gram-negative E. coli or eukaryotic Saccharomyces cerevisiae. Several butanol-tolerant lactobacilli were reported previously, and Lactobacillus mucosae BR0713-33, which showed the most robust anaerobic growth in 4% butanol, was used here for proteomics analyses. Cellular proteins that responded to 2, 3, and 4% butanol were characterized. Twenty-nine proteins that were identified were dysregulated in response to increased concentrations of butanol in L. mucosae . Seventeen genes involved in coding for stress-tolerant proteins GroES, GroEL, and DnaK and genes involved in substrate utilization, fatty acid metabolism, and nucleotide synthesis were induced by increased butanol, and 12 genes involving energy production (F0F1ATP synthases) and redox balance preservation were repressed by increased butanol. These results can help guide targeted engineering strategies to improve tolerance and production of biobutanol.
Collapse
Affiliation(s)
- Siqing Liu
- Renewable
Product Technology Research Unit, National Center for Agricultural
Utilization Research, Agricultural Research Service, U.S. Department
of Agriculture, Peoria, Illinois 61604, United States
| | - Nasib Qureshi
- Bioenery
Research Unit, National Center for Agricultural Utilization Research,
Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois 61604, United States
| | - Kenneth Bischoff
- Renewable
Product Technology Research Unit, National Center for Agricultural
Utilization Research, Agricultural Research Service, U.S. Department
of Agriculture, Peoria, Illinois 61604, United States
| | - Costel C. Darie
- Biochemistry
& Proteomics Group, Department of Chemistry & Biomolecular
Science, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
10
|
Vasylkivska M, Branska B, Sedlar K, Jureckova K, Provaznik I, Patakova P. Phenotypic and Genomic Analysis of Clostridium beijerinckii NRRL B-598 Mutants With Increased Butanol Tolerance. Front Bioeng Biotechnol 2020; 8:598392. [PMID: 33224939 PMCID: PMC7674653 DOI: 10.3389/fbioe.2020.598392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/20/2020] [Indexed: 11/19/2022] Open
Abstract
N-Butanol, a valuable solvent and potential fuel extender, can be produced via acetone-butanol-ethanol (ABE) fermentation. One of the main drawbacks of ABE fermentation is the high toxicity of butanol to producing cells, leading to cell membrane disruption, low culture viability and, consequently, low produced concentrations of butanol. The goal of this study was to obtain mutant strains of Clostridium beijerinckii NRRL B-598 with improved butanol tolerance using random chemical mutagenesis, describe changes in their phenotypes compared to the wild-type strain and reveal changes in the genome that explain improved tolerance or other phenotypic changes. Nine mutant strains with stable improved features were obtained by three different approaches and, for two of them, ethidium bromide (EB), a known substrate of efflux pumps, was used for either selection or as a mutagenic agent. It is the first utilization of this approach for the development of butanol-tolerant mutants of solventogenic clostridia, for which generally there is a lack of knowledge about butanol efflux or efflux mechanisms and their regulation. Mutant strains exhibited increase in butanol tolerance from 36% up to 127% and the greatest improvement was achieved for the strains for which EB was used as a mutagenic agent. Additionally, increased tolerance to other substrates of efflux pumps, EB and ethanol, was observed in all mutants and higher antibiotic tolerance in some of the strains. The complete genomes of mutant strains were sequenced and revealed that improved butanol tolerance can be attributed to mutations in genes encoding typical stress responses (chemotaxis, autolysis or changes in cell membrane structure), but, also, to mutations in genes X276_07980 and X276_24400, encoding efflux pump regulators. The latter observation confirms the importance of efflux in butanol stress response of the strain and offers new targets for rational strain engineering.
Collapse
Affiliation(s)
- Maryna Vasylkivska
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czechia
| | - Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czechia
| | - Karel Sedlar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Katerina Jureckova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Ivo Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czechia
| |
Collapse
|
11
|
How to outwit nature: Omics insight into butanol tolerance. Biotechnol Adv 2020; 46:107658. [PMID: 33220435 DOI: 10.1016/j.biotechadv.2020.107658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
The energy crisis, depletion of oil reserves, and global climate changes are pressing problems of developed societies. One possibility to counteract that is microbial production of butanol, a promising new fuel and alternative to many petrochemical reagents. However, the high butanol toxicity to all known microbial species is the main obstacle to its industrial implementation. The present state of the art review aims to expound the recent advances in modern omics approaches to resolving this insurmountable to date problem of low butanol tolerance. Genomics, transcriptomics, and proteomics show that butanol tolerance is a complex phenomenon affecting multiple genes and their expression. Efflux pumps, stress and multidrug response, membrane transport, and redox-related genes are indicated as being most important during butanol challenge, in addition to fine-tuning of global regulators of transcription (Spo0A, GntR), which may further improve tolerance. Lipidomics shows that the alterations in membrane composition (saturated lipids and plasmalogen increase) are very much species-specific and butanol-related. Glycomics discloses the pleiotropic effect of CcpA, the role of alternative sugar transport, and the production of exopolysaccharides as alternative routes to overcoming butanol stress. Unfortunately, the strain that simultaneously syntheses and tolerates butanol in concentrations that allow its commercialization has not yet been discovered or produced. Omics insight will allow the purposeful increase of butanol tolerance in natural and engineered producers and the effective heterologous expression of synthetic butanol pathways in strains hereditary butanol-resistant up to 3.2 - 4.9% (w/v). Future breakthrough can be achieved by a detailed study of the membrane proteome, of which 21% are proteins with unknown functions.
Collapse
|
12
|
Fang D, Wen Z, Lu M, Li A, Ma Y, Tao Y, Jin M. Metabolic and Process Engineering of Clostridium beijerinckii for Butyl Acetate Production in One Step. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9475-9487. [PMID: 32806108 DOI: 10.1021/acs.jafc.0c00050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
n-Butyl acetate is an important food additive commonly produced via concentrated sulfuric acid catalysis or immobilized lipase catalysis of butanol and acetic acid. Compared with chemical methods, an enzymatic approach is more environmentally friendly; however, it incurs a higher cost due to lipase production. In vivo biosynthesis via metabolic engineering offers an alternative to produce n-butyl acetate. This alternative combines substrate production (butanol and acetyl-coenzyme A (acetyl-CoA)), alcohol acyltransferase expression, and esterification reaction in one reactor. The alcohol acyltransferase gene ATF1 from Saccharomyces cerevisiae was introduced into Clostridium beijerinckii NCIMB 8052, enabling it to directly produce n-butyl acetate from glucose without lipase addition. Extractants were compared and adapted to realize glucose fermentation with in situ n-butyl acetate extraction. Finally, 5.57 g/L of butyl acetate was produced from 38.2 g/L of glucose within 48 h, which is 665-fold higher than that reported previously. This demonstrated the potential of such a metabolic approach to produce n-butyl acetate from biomass.
Collapse
Affiliation(s)
- Dahui Fang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Zhiqiang Wen
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Ang Li
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Yuheng Ma
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Ye Tao
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
13
|
Role of efflux in enhancing butanol tolerance of bacteria. J Biotechnol 2020; 320:17-27. [PMID: 32553531 DOI: 10.1016/j.jbiotec.2020.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
N-butanol, a valued solvent and potential fuel extender, could possibly be produced by fermentation using either native producers, i.e. solventogenic Clostridia, or engineered platform organisms such as Escherichia coli or Pseudomonas species, if the main process obstacle, a low final butanol concentration, could be overcome. A low final concentration of butanol is the result of its high toxicity to production cells. Nevertheless, bacteria have developed several mechanisms to cope with this toxicity and one of them is active butanol efflux. This review presents information about a few well characterized butanol efflux pumps from Gram-negative bacteria (P. putida and E. coli) and summarizes knowledge about putative butanol efflux systems in Gram-positive bacteria.
Collapse
|
14
|
Yang Y, Lang N, Zhang L, Wu H, Jiang W, Gu Y. A novel regulatory pathway consisting of a two-component system and an ABC-type transporter contributes to butanol tolerance in Clostridium acetobutylicum. Appl Microbiol Biotechnol 2020; 104:5011-5023. [DOI: 10.1007/s00253-020-10555-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/23/2020] [Accepted: 03/16/2020] [Indexed: 11/28/2022]
|
15
|
Wen Z, Li Q, Liu J, Jin M, Yang S. Consolidated bioprocessing for butanol production of cellulolytic Clostridia: development and optimization. Microb Biotechnol 2020; 13:410-422. [PMID: 31448546 PMCID: PMC7017829 DOI: 10.1111/1751-7915.13478] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 12/20/2022] Open
Abstract
Butanol is an important bulk chemical, as well as a promising renewable gasoline substitute, that is commonly produced by solventogenic Clostridia. The main cost of cellulosic butanol fermentation is caused by cellulases that are required to saccharify lignocellulose, since solventogenic Clostridia cannot efficiently secrete cellulases. However, cellulolytic Clostridia can natively degrade lignocellulose and produce ethanol, acetate, butyrate and even butanol. Therefore, cellulolytic Clostridia offer an alternative to develop consolidated bioprocessing (CBP), which combines cellulase production, lignocellulose hydrolysis and co-fermentation of hexose/pentose into butanol in one step. This review focuses on CBP advances for butanol production of cellulolytic Clostridia and various synthetic biotechnologies that drive these advances. Moreover, the efforts to optimize the CBP-enabling cellulolytic Clostridia chassis are also discussed. These include the development of genetic tools, pentose metabolic engineering and the improvement of butanol tolerance. Designer cellulolytic Clostridia or consortium provide a promising approach and resource to accelerate future CBP for butanol production.
Collapse
Affiliation(s)
- Zhiqiang Wen
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Qi Li
- College of Life SciencesSichuan Normal UniversityLongquan, Chengdu610101China
| | - Jinle Liu
- Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Mingjie Jin
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Sheng Yang
- Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- Huzhou Center of Industrial BiotechnologyShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghai200032China
| |
Collapse
|
16
|
Atmadjaja AN, Holby V, Harding AJ, Krabben P, Smith HK, Jenkinson ER. CRISPR-Cas, a highly effective tool for genome editing in Clostridium saccharoperbutylacetonicum N1-4(HMT). FEMS Microbiol Lett 2020; 366:5381555. [PMID: 30874768 PMCID: PMC6491355 DOI: 10.1093/femsle/fnz059] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/14/2019] [Indexed: 02/01/2023] Open
Abstract
The solventogenic clostridia have long been known for their ability to convert sugars from complex feedstocks into commercially important solvents. Although the acetone-butanol-ethanol process fell out of favour decades ago, renewed interest in sustainability and ‘green’ chemistry has re-established our appetite for reviving technologies such as these, albeit with 21st century improvements. As CRISPR-Cas genome editing tools are being developed and applied to the solventogenic clostridia, their industrial potential is growing. Through integration of new pathways, the beneficial traits and historical track record of clostridial fermentation can be exploited to generate a much wider range of industrially relevant products. Here we show the application of genome editing using the endogenous CRISPR-Cas mechanism of Clostridium saccharoperbutylacetonicum N1-4(HMT), to generate a deletion, SNP and to integrate new DNA into the genome. These technological advancements pave the way for application of clostridial species to the production of an array of products.
Collapse
Affiliation(s)
- Aretha N Atmadjaja
- Green Biologics Ltd, R&D labs, 154AH Brook Drive, Milton Park, Abingdon OX14 4SD, UK.,School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Verity Holby
- Green Biologics Ltd, R&D labs, 154AH Brook Drive, Milton Park, Abingdon OX14 4SD, UK
| | - Amanda J Harding
- Green Biologics Ltd, R&D labs, 154AH Brook Drive, Milton Park, Abingdon OX14 4SD, UK
| | - Preben Krabben
- Green Biologics Ltd, R&D labs, 154AH Brook Drive, Milton Park, Abingdon OX14 4SD, UK
| | - Holly K Smith
- Green Biologics Ltd, R&D labs, 154AH Brook Drive, Milton Park, Abingdon OX14 4SD, UK
| | - Elizabeth R Jenkinson
- Green Biologics Ltd, R&D labs, 154AH Brook Drive, Milton Park, Abingdon OX14 4SD, UK
| |
Collapse
|
17
|
Damis SIR, Murad AMA, Diba Abu Bakar F, Rashid SA, Jaafar NR, Illias RM. Protein engineering of GH11 xylanase from Aspergillus fumigatus RT-1 for catalytic efficiency improvement on kenaf biomass hydrolysis. Enzyme Microb Technol 2019; 131:109383. [DOI: 10.1016/j.enzmictec.2019.109383] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/30/2019] [Accepted: 07/16/2019] [Indexed: 11/15/2022]
|
18
|
Development of Renewable Energy Sources in the Context of Threats Resulting from Low-Altitude Emissions in Rural Areas in Poland: A Review. ENERGIES 2019. [DOI: 10.3390/en12183558] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The process of transformation of the Polish economy, traditionally based on coal, into an economy that uses low-carbon technologies, faces a problem associated with the diversification of energy sources, especially in rural areas. The scale of the use of conventional energy carriers in households located in rural areas in Poland has a very negative impact on the natural environment. The aim of the paper is to indicate possibilities of reducing low-altitude emissions (with emitters not exceeding 40 m in height) in rural areas in Poland, through the development of renewable energy sources. This paper provides an overview of the specific character of rural areas in Poland and the development challenges faced in these areas in the investigated scope. In order to reduce greenhouse gas emissions and improve energy efficiency, it is necessary to dynamize pro-ecological activities in agriculture and in rural areas, including the development of agricultural biogas plants, wind and photovoltaic farms. The use of renewable energy sources can be an important factor in the development and sustainable growth of rural areas in Poland.
Collapse
|
19
|
Liu Y, Wang Z, Zhao J, Zong C, Liu M, Niu Y. Effects of glycerol concentrations on the bioproduction of PGHX by Agrobacterium HX1126. Prep Biochem Biotechnol 2019; 49:584-589. [PMID: 30929563 DOI: 10.1080/10826068.2019.1591989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PGHX is a polymer of β (1-3)-galactose which posses the gel-forming property. As previously reported in the flask culture experiment, the crude PGHX (24.9 g/L, 48.2% in yield) with the maximum gel strength of 957 g/cm2 can be generated. However, PGHX produced in the stirred bioreactor had no gel-forming property when using the same medium. Hence, the effects of different glycerol concentrations on both the yield and the gel-forming property of PGHX were investigated and the reason for gel-forming property losing was explored. We proposed a new strategy for the production of PGHX with enhanced gel formation in the stirred bioreactor by mediating both the concentration of carbon source and the duration of fermentation. As a result, we managed to obtain the crude PGHX (22 g/L, 42.4% in yield) with the maximum gel strength of 438 g/cm2 at 56 h in the bioreactor. This strategy would help the enhancement of PGHX yield in the industrial production.
Collapse
Affiliation(s)
- Yongmei Liu
- a School of Pharmacy , Taizhou Polytechnic College , Taizhou , China
| | - Zhonghua Wang
- a School of Pharmacy , Taizhou Polytechnic College , Taizhou , China
| | - Jing Zhao
- a School of Pharmacy , Taizhou Polytechnic College , Taizhou , China
| | - Chunyan Zong
- a School of Pharmacy , Taizhou Polytechnic College , Taizhou , China
| | - Mingyuan Liu
- a School of Pharmacy , Taizhou Polytechnic College , Taizhou , China
| | - Yaxian Niu
- a School of Pharmacy , Taizhou Polytechnic College , Taizhou , China
| |
Collapse
|
20
|
Ding M, Chen B, Ji X, Zhou J, Wang H, Tian X, Feng X, Yue H, Zhou Y, Wang H, Wu J, Yang P, Jiang Y, Mao X, Xiao G, Zhong C, Xiao W, Li B, Qin L, Cheng J, Yao M, Wang Y, Liu H, Zhang L, Yu L, Chen T, Dong X, Jia X, Zhang S, Liu Y, Chen Y, Chen K, Wu J, Zhu C, Zhuang W, Xu S, Jiao P, Zhang L, Song H, Yang S, Xiong Y, Li Y, Zhang Y, Zhuang Y, Su H, Fu W, Huang Y, Li C, Zhao ZK, Sun Y, Chen GQ, Zhao X, Huang H, Zheng Y, Yang L, Su Z, Ma G, Ying H, Chen J, Tan T, Yuan Y. Biochemical engineering in China. REV CHEM ENG 2019. [DOI: 10.1515/revce-2017-0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Chinese biochemical engineering is committed to supporting the chemical and food industries, to advance science and technology frontiers, and to meet major demands of Chinese society and national economic development. This paper reviews the development of biochemical engineering, strategic deployment of these technologies by the government, industrial demand, research progress, and breakthroughs in key technologies in China. Furthermore, the outlook for future developments in biochemical engineering in China is also discussed.
Collapse
Affiliation(s)
- Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Biqiang Chen
- Beijing University of Chemical Technology , Beijing 100029 , China
| | - Xiaojun Ji
- College of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 211816 , China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University , Nanjing 210009 , China
| | - Jingwen Zhou
- School of Biotechnology, Jiangnan University , Wuxi 214122 , China
| | - Huiyuan Wang
- Shanghai Information Center of Life Sciences (SICLS), Shanghai Institute of Biology Sciences (SIBS), Chinese Academy of Sciences , Shanghai 200031 , China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai 200237 , China
| | - Xudong Feng
- School of Life Science, Beijing Institute of Technology , Beijing 100081 , China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yongjin Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Hailong Wang
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University , Jinan 250100 , China
| | - Jianping Wu
- Institute of Biology Engineering, College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027 , China
| | - Pengpeng Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Yu Jiang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Xuming Mao
- Institute of Pharmaceutical Biotechnology, Zhejiang University , Hangzhou 310058 , China
| | - Gang Xiao
- Beijing University of Chemical Technology , Beijing 100029 , China
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Bingzhi Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Lei Qin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Jingsheng Cheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Hong Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Lin Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Linling Yu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Tao Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Xiaoyan Dong
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Xiaoqiang Jia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yanfeng Liu
- School of Biotechnology, Jiangnan University , Wuxi 214122 , China
| | - Yong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Jinglan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Chenjie Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Wei Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Sheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Pengfei Jiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Lei Zhang
- Tianjin Ltd. of BoyaLife Inc. , Tianjin 300457 , China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Sheng Yang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Yan Xiong
- Shanghai Information Center of Life Sciences (SICLS), Shanghai Institute of Biology Sciences (SIBS), Chinese Academy of Sciences , Shanghai 200031 , China
| | - Yongquan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University , Hangzhou 310058 , China
| | - Youming Zhang
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University , Jinan 250100 , China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai 200237 , China
| | - Haijia Su
- Beijing University of Chemical Technology , Beijing 100029 , China
| | - Weiping Fu
- China National Center of Biotechnology Development , Beijing , China
| | - Yingming Huang
- China National Center of Biotechnology Development , Beijing , China
| | - Chun Li
- School of Life Science, Beijing Institute of Technology , Beijing 100081 , China
| | - Zongbao K. Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Yan Sun
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Guo-Qiang Chen
- Center of Synthetic and Systems Biology, School of Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Xueming Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - He Huang
- College of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 211816 , China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University , Nanjing 210009 , China
| | - Yuguo Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology , Hangzhou 310014 , China
| | - Lirong Yang
- Institute of Biology Engineering, College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027 , China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Jian Chen
- School of Biotechnology, Jiangnan University , Wuxi 214122 , China
| | - Tianwei Tan
- Beijing University of Chemical Technology , Beijing 100029 , China
| | - Yingjin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| |
Collapse
|
21
|
Petrova P, Tsvetanova F, Petrov K. Low cell surface hydrophobicity is one of the key factors for high butanol tolerance of Lactic acid bacteria. Eng Life Sci 2018; 19:133-142. [PMID: 32624995 DOI: 10.1002/elsc.201800141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/05/2018] [Accepted: 11/21/2018] [Indexed: 12/14/2022] Open
Abstract
Highly butanol-tolerant strains have always been attractive because of their potential as microbial hosts for butanol production. However, due to the amphiphilic nature of 1-butanol as a solvent, the relationship between the cell surface hydrophobicity and butanol resistance remained ambiguous to date. In this work, the quantitatively estimated cell surface hydrophobicity of 74 Lactic acid bacteria strains were juxtaposed to their tolerance to various butanol concentrations. The obtained results revealed that the strains' hydrophobicity was inversely proportional to their butanol tolerance. All highly butanol-resistant strains were hydrophilic (cell surface hydrophobicity<1%), whereas the more hydrophobic the strains were, the more sensitive to butanol they were. Furthermore, cultivation at increasing butanol concentrations showed a clear tendency to decrease the level of hydrophobicity in all tested organisms, thus suggesting possible adaptation mechanisms. Purposeful reduction of cell surface hydrophobicity (by removal of S-layer proteins from the cell envelope) also led to an increase of butanol resistance. Since the results covered 23 different Lactic acid bacteria species of seven genera, it could be concluded that regardless of the species, the lower degree of cells' hydrophobicity clearly correlates with the higher level of butanol tolerance.
Collapse
Affiliation(s)
- Penka Petrova
- Institute of Microbiology Bulgarian Academy of Sciences Sofia Bulgaria
| | - Flora Tsvetanova
- Institute of Chemical Engineering Bulgarian Academy of Sciences Sofia Bulgaria
| | - Kaloyan Petrov
- Institute of Chemical Engineering Bulgarian Academy of Sciences Sofia Bulgaria
| |
Collapse
|
22
|
Chen H, Cai D, Chen C, Wang J, Qin P, Tan T. Novel distillation process for effective and stable separation of high-concentration acetone-butanol-ethanol mixture from fermentation-pervaporation integration process. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:286. [PMID: 30377445 PMCID: PMC6195753 DOI: 10.1186/s13068-018-1284-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND One of the major obstacles of acetone-butanol-ethanol (ABE) fermentation from renewable biomass resources is the energy-intensive separation process. To decrease the energy demand of the ABE downstream separation processes, hybrid in situ separation system with conventional distillation is recognized as an effective method. However, in the distillation processes, the high reflux ratio of the ethanol column and the accumulation of ethanol on top of the water and butanol columns led to poor controllability and high operation cost of the distillations. In this study, vacuum distillation process which is based on a decanter-assisted ethanol-butanol-water recycle loop named E-TCD sequence was developed to improve the conventional separation sequence for ABE separation. The permeate of in situ pervaporation system was used as the feed. RESULTS The distillation processes were simulated and optimized by iterative strategies. ABE mixture with acetone, butanol and ethanol concentrations of 115.8 g/L, 191.4 g/L and 17.8 g/L (the other composition was water) that obtained from fermentation-pervaporation integration process was used as the feed. A plant scaled to 1025 kg/h of ABE mixture was performed, and the product purities were 100 wt% of butanol, 99.7 wt% of acetone and 95 wt% of ethanol, respectively. Results showed that only 5.3 MJ/kg (of butanol) was required for ABE separation, which was only 37.54% of the energy cost in conventional distillation processes. CONCLUSIONS Compared with the drawbacks of ethanol accumulation in butanol-water recycle loop and the extremely high recovery rate of ethanol in conventional distillation processes, simulation results obtained in the current work avoided the accumulation of ethanol based on the novel E-TCD sequence.
Collapse
Affiliation(s)
- Huidong Chen
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
- Center for Process Simulation & Optimization, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029 People’s Republic of China
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029 People’s Republic of China
| | - Changjing Chen
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029 People’s Republic of China
| | - Jianhong Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
- Center for Process Simulation & Optimization, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029 People’s Republic of China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029 People’s Republic of China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029 People’s Republic of China
| |
Collapse
|
23
|
Zhang AH, Zhuang XY, Chen KN, Huang SY, Xu CZ, Fang BS. Adaptive evolution of Clostridium butyricum
and scale-Up for high-Concentration 1,3-propanediol production. AIChE J 2018. [DOI: 10.1002/aic.16425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ai-Hui Zhang
- Dept. of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering, Xiamen University; Xiamen Fujian 361005 China
| | - Xiao-Yan Zhuang
- Dept. of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering, Xiamen University; Xiamen Fujian 361005 China
| | - Kai-Nan Chen
- Dept. of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering, Xiamen University; Xiamen Fujian 361005 China
| | - Shi-Yang Huang
- Dept. of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering, Xiamen University; Xiamen Fujian 361005 China
| | - Chao-Zhen Xu
- Dept. of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering, Xiamen University; Xiamen Fujian 361005 China
| | - Bai-Shan Fang
- Dept. of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering, Xiamen University; Xiamen Fujian 361005 China
- The Key Lab for Synthetic Biotechnology of Xiamen City; Xiamen University; Xiamen Fujian 361005 China
- The National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters; Xiamen University; Xiamen Fujian 361005 China
| |
Collapse
|
24
|
Reduction of Nitrates in Waste Water through the Valorization of Rice Straw: LIFE LIBERNITRATE Project. SUSTAINABILITY 2018. [DOI: 10.3390/su10093007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An improved and more sustainable waste management system is required for successful development of technologies based on renewable sources. Rice straw is submitted to controlled combustion reactions and the produced ashes are chemically treated to produce silica. After a chemical activation step, the activated silica shows potential as an adsorbent agent and will be used to remove the excess of nitrates in groundwater and wells in the area of Alginet (Valencia, Spain), selected as a vulnerable zone within the Nitrates Directive. The demonstration activity aims to have a local impact on municipalities of 200 inhabitants or fewer, decreasing from current nitrate concentrations close to 50 mg/L, to a target of 25 mg/L. In a successive step, the methodology will be transferred to other municipalities with similar nitrate problems (Piemonte, Italy) and replicated to remove different pollutants such as manure (the Netherlands) and waste waters from the textile industry (Italy).
Collapse
|
25
|
Liu C, Li Q, Niu C, Tian Y, Zhao Y, Yin X. The use of atmospheric and room temperature plasma mutagenesis to create a brewing yeast with reduced acetaldehyde production. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education Jiangnan University Wuxi 214122 JiangSu Province People's Republic of China
- Laboratory of Brewing Science and Engineering Jiangnan University Wuxi 214122 JiangSu Province People's Republic of China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education Jiangnan University Wuxi 214122 JiangSu Province People's Republic of China
- Laboratory of Brewing Science and Engineering Jiangnan University Wuxi 214122 JiangSu Province People's Republic of China
| | - Chengtuo Niu
- Laboratory of Brewing Science and Engineering Jiangnan University Wuxi 214122 JiangSu Province People's Republic of China
| | - Yaping Tian
- Key Laboratory of Industrial Biotechnology, Ministry of Education Jiangnan University Wuxi 214122 JiangSu Province People's Republic of China
| | - Yijin Zhao
- Laboratory of Brewing Science and Engineering Jiangnan University Wuxi 214122 JiangSu Province People's Republic of China
| | - Xiangsheng Yin
- Rahr Corporation, 800 First Ave West Shakopee MN 55379 USA
| |
Collapse
|
26
|
Patakova P, Kolek J, Sedlar K, Koscova P, Branska B, Kupkova K, Paulova L, Provaznik I. Comparative analysis of high butanol tolerance and production in clostridia. Biotechnol Adv 2018; 36:721-738. [DOI: 10.1016/j.biotechadv.2017.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022]
|
27
|
Branska B, Pechacova Z, Kolek J, Vasylkivska M, Patakova P. Flow cytometry analysis of Clostridium beijerinckii NRRL B-598 populations exhibiting different phenotypes induced by changes in cultivation conditions. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:99. [PMID: 29632557 PMCID: PMC5887253 DOI: 10.1186/s13068-018-1096-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/26/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Biobutanol production by clostridia via the acetone-butanol-ethanol (ABE) pathway is a promising future technology in bioenergetics , but identifying key regulatory mechanisms for this pathway is essential in order to construct industrially relevant strains with high tolerance and productivity. We have applied flow cytometric analysis to C. beijerinckii NRRL B-598 and carried out comparative screening of physiological changes in terms of viability under different cultivation conditions to determine its dependence on particular stages of the life cycle and the concentration of butanol. RESULTS Dual staining by propidium iodide (PI) and carboxyfluorescein diacetate (CFDA) provided separation of cells into four subpopulations with different abilities to take up PI and cleave CFDA, reflecting different physiological states. The development of a staining pattern during ABE fermentation showed an apparent decline in viability, starting at the pH shift and onset of solventogenesis, although an appreciable proportion of cells continued to proliferate. This was observed for sporulating as well as non-sporulating phenotypes at low solvent concentrations, suggesting that the increase in percentage of inactive cells was not a result of solvent toxicity or a transition from vegetative to sporulating stages. Additionally, the sporulating phenotype was challenged with butanol and cultivation with a lower starting pH was performed; in both these experiments similar trends were obtained-viability declined after the pH breakpoint, independent of the actual butanol concentration in the medium. Production characteristics of both sporulating and non-sporulating phenotypes were comparable, showing that in C. beijerinckii NRRL B-598, solventogenesis was not conditional on sporulation. CONCLUSION We have shown that the decline in C. beijerinckii NRRL B-598 culture viability during ABE fermentation was not only the result of accumulated toxic metabolites, but might also be associated with a special survival strategy triggered by pH change.
Collapse
Affiliation(s)
- Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Zora Pechacova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Jan Kolek
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Maryna Vasylkivska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| |
Collapse
|
28
|
Chin WC, Lin KH, Liu CC, Tsuge K, Huang CC. Improved n-butanol production via co-expression of membrane-targeted tilapia metallothionein and the clostridial metabolic pathway in Escherichia coli. BMC Biotechnol 2017; 17:36. [PMID: 28399854 PMCID: PMC5387206 DOI: 10.1186/s12896-017-0356-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/22/2017] [Indexed: 11/10/2022] Open
Abstract
Background N-Butanol has favorable characteristics for use as either an alternative fuel or platform chemical. Bio-based n-butanol production using microbes is an emerging technology that requires further development. Although bio-industrial microbes such as Escherichia coli have been engineered to produce n-butanol, reactive oxygen species (ROS)-mediated toxicity may limit productivity. Previously, we show that outer-membrane-targeted tilapia metallothionein (OmpC-TMT) is more effective as an ROS scavenger than human and mouse metallothioneins to reduce oxidative stress in the host cell. Results The host strain (BUT1-DE) containing the clostridial n-butanol pathway displayed a decreased growth rate and limited n-butanol productivity, likely due to ROS accumulation. The clostridial n-butanol pathway was co-engineered with inducible OmpC-TMT in E. coli (BUT3-DE) for simultaneous ROS removal, and its effect on n-butanol productivity was examined. The ROS scavenging ability of cells overexpressing OmpC-TMT was examined and showed an approximately twofold increase in capacity. The modified strain improved n-butanol productivity to 320 mg/L, whereas the control strain produced only 95.1 mg/L. Transcriptomic analysis revealed three major KEGG pathways that were significantly differentially expressed in the BUT3-DE strain compared with their expression in the BUT1-DE strain, including genes involved in oxidative phosphorylation, fructose and mannose metabolism and glycolysis/gluconeogenesis. Conclusions These results indicate that OmpC-TMT can increase n-butanol production by scavenging ROS. The transcriptomic analysis suggested that n-butanol causes quinone malfunction, resulting in oxidative-phosphorylation-related nuo operon downregulation, which would diminish the ability to convert NADH to NAD+ and generate proton motive force. However, fructose and mannose metabolism-related genes (fucA, srlE and srlA) were upregulated, and glycolysis/gluconeogenesis-related genes (pfkB, pgm) were downregulated, which further assisted in regulating NADH/NAD+ redox and preventing additional ATP depletion. These results indicated that more NADH and ATP were required in the n-butanol synthetic pathway. Our study demonstrates a potential approach to increase the robustness of microorganisms and the production of toxic chemicals through the ability to reduce oxidative stress. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0356-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei-Chih Chin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Kuo-Hsing Lin
- Center of Cold Chain Logistics Certification, College of Management, National Kaohsiung First University of Science and Technology, Kaohsiung, Taiwan
| | - Chun-Chi Liu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402, Taiwan
| | - Kenji Tsuge
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
29
|
Hidalgo M, Puerta-Fernández E. Metabolite labelling as a tool to define hierarchies in Clostridium acetobutylicum sugar usage and its relevance for biofuel production. Microb Biotechnol 2017; 10:525-527. [PMID: 28220690 PMCID: PMC5404190 DOI: 10.1111/1751-7915.12696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 11/29/2022] Open
Abstract
This is a highlight on article ‘Metabolite labelling reveals hierarchies in Clostridium acetobutylicum that selectively channel carbons from sugar mixtures towards biofuel precursors’ by Ludmilla Aristilde.
Collapse
Affiliation(s)
- María Hidalgo
- Departamento de Genética, Universidad de Sevilla, Avda. Reina Mercedes, 6, 41012, Sevilla, Spain
| | - Elena Puerta-Fernández
- Departamento de Genética, Universidad de Sevilla, Avda. Reina Mercedes, 6, 41012, Sevilla, Spain
| |
Collapse
|
30
|
Liu S, Qureshi N, Hughes SR. Progress and perspectives on improving butanol tolerance. World J Microbiol Biotechnol 2017; 33:51. [PMID: 28190182 DOI: 10.1007/s11274-017-2220-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/28/2017] [Indexed: 10/20/2022]
Abstract
Fermentative production of butanol for use as a biofuel or chemical feedstock is regarded as a promising renewable technology that reduces greenhouse gas emissions and has the potential to become a substitute for non-sustainable chemical production route. However, butanol toxicity to the producing microbes remains a barrier to achieving sufficiently high titers for cost-effective butanol fermentation and recovery. Investigations of the external stress of high butanol concentration on butanol-producing microbial strains will aid in developing improved microbes with increased tolerance to butanol. With currently available molecular tool boxes, researchers have aimed to address and understand how butanol affects different microbes. This review will cover the individual organism's inherent responses to surrounding butanol levels, and the collective efforts by researchers to improve production and tolerance. The specific microorganisms discussed here include the native butanol producer Clostridium species, the fermentation industrial model Saccharomyces cerevisiae and the photosynthetic cyanobacteria, the genetic engineering workhorse Escherichia coli, and also the butanol-tolerant lactic acid bacteria that utilize diverse substrates. The discussion will help to understand the physiology of butanol resistance and to identify specific butanol tolerance genes that will lead to informed genetic engineering strategies for new strain development.
Collapse
Affiliation(s)
- Siqing Liu
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 N. University St., Peoria, IL, 61604, USA.
| | - Nasib Qureshi
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 N. University St., Peoria, IL, 61604, USA
| | - Stephen R Hughes
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 N. University St., Peoria, IL, 61604, USA
| |
Collapse
|
31
|
Zhang S, Huang X, Qu C, Suo Y, Liao Z, Wang J. Extractive fermentation for enhanced isopropanol and n -butanol production with mixtures of water insoluble aliphatic acids and oleyl alcohol. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Cai D, Dong Z, Wang Y, Chen C, Li P, Qin P, Wang Z, Tan T. Biorefinery of corn cob for microbial lipid and bio-ethanol production: An environmental friendly process. BIORESOURCE TECHNOLOGY 2016; 211:677-684. [PMID: 27060242 DOI: 10.1016/j.biortech.2016.03.159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
Microbial lipid and bio-ethanol were co-generated by an integrated process using corn cob bagasse as raw material. After pretreatment, the acid hydrolysate was used as substrate for microbial lipid fermentation, while the solid residue was further enzymatic hydrolysis for bio-ethanol production. The effect of acid loading and pretreatment time on microbial lipid and ethanol production were evaluated. Under the optimized condition for ethanol production, ∼131.3g of ethanol and ∼11.5g of microbial lipid were co-generated from 1kg raw material. On this condition, ∼71.6% of the overall fermentable sugars in corn cob bagasse could be converted into valuable products. At the same time, at least 33% of the initial COD in the acid hydrolysate was depredated.
Collapse
Affiliation(s)
- Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhongshi Dong
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yong Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Changjing Chen
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ping Li
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Zheng Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
33
|
Branduardi P, Porro D. n-butanol: challenges and solutions for shifting natural metabolic pathways into a viable microbial production. FEMS Microbiol Lett 2016; 363:fnw070. [DOI: 10.1093/femsle/fnw070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2016] [Indexed: 12/13/2022] Open
|
34
|
|
35
|
Xia ML, Wang L, Yang ZX, Chen HZ. Periodic-peristole agitation for process enhancement of butanol fermentation. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:225. [PMID: 26702300 PMCID: PMC4689062 DOI: 10.1186/s13068-015-0409-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/04/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Mass transfer plays an important role in determining the efficiency of the biofuel conversion. However, adverse effect of shear stress from traditional agitation inhibits the cell growth and production of biofuels. How to enhance the mass transfer with less adverse effect is considered as one of the important bioengineering issues. RESULTS In this study, a novel agitation type, named periodic-peristole was applied to butanol fermentation with Clostridium acetobutylicum ATCC 824. Meanwhile, the enhancement mechanism was studied. Initially, the fermentation performance of periodic-peristole agitation was compared with the traditional Rushton impeller and stationary cultivation. Result showed that the biomass, butanol and total solvent in periodic-peristole group (PPG) was enhanced to 1.92-, 2.06-, and 2.4-fold of those in the traditional Rushton impeller group (TIG), as well as 1.64-, 1.19- and 1.41-fold of those in the stationary group (SG). Subsequently, to get in-depth insight into enhancement mechanism, hydromechanics analysis and metabolic flux analysis (MFA) were carried out. The periodic-peristole agitation exhibits significant difference on velocity distribution, shear force, and mixing efficiency from the traditional Rushton impeller agitation. And the shear force in PPG is only 74 % of that in TIG. According to MFA result, fructose 6-phosphate, pyruvate, acetyl-CoA, oxaloacetate and α-ketoglutarate were determined the key nodes of cells in response to hydrodynamic mechanical stress. Based on such key information, rational enhancement strategies were proposed and butanol production was further improved. CONCLUSION The agitation associated with three issues which resulted in significant changes in cell metabolic behaviors: first, a rebalanced redox status; second, the energy (ATP) acquirement and consumption; third, the tolerance mechanism of the cell for survival of solvent. Periodic-peristole agitation provides an answer to address a long-standing problem of biofuel engineering. Key information derived from current study deepens the understanding of agitation, which can guide the designment of new bioreactors and development of enhancement strategies for biofuel refinery.
Collapse
Affiliation(s)
- Meng-lei Xia
- />State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Beiertiao, Zhongguancun, Haidian District, Beijing, 100190 China
- />University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing, 100039 China
| | - Lan Wang
- />State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Beiertiao, Zhongguancun, Haidian District, Beijing, 100190 China
| | - Zhi-xia Yang
- />College of Mathematics and System Science, Xinjiang University, No. 14 Shengli Road, Urumchi, 830046 China
| | - Hong-zhang Chen
- />State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Beiertiao, Zhongguancun, Haidian District, Beijing, 100190 China
| |
Collapse
|
36
|
Cray JA, Stevenson A, Ball P, Bankar SB, Eleutherio ECA, Ezeji TC, Singhal RS, Thevelein JM, Timson DJ, Hallsworth JE. Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms. Curr Opin Biotechnol 2015; 33:228-59. [PMID: 25841213 DOI: 10.1016/j.copbio.2015.02.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
Abstract
Fermentation products can chaotropically disorder macromolecular systems and induce oxidative stress, thus inhibiting biofuel production. Recently, the chaotropic activities of ethanol, butanol and vanillin have been quantified (5.93, 37.4, 174kJ kg(-1)m(-1) respectively). Use of low temperatures and/or stabilizing (kosmotropic) substances, and other approaches, can reduce, neutralize or circumvent product-chaotropicity. However, there may be limits to the alcohol concentrations that cells can tolerate; e.g. for ethanol tolerance in the most robust Saccharomyces cerevisiae strains, these are close to both the solubility limit (<25%, w/v ethanol) and the water-activity limit of the most xerotolerant strains (0.880). Nevertheless, knowledge-based strategies to mitigate or neutralize chaotropicity could lead to major improvements in rates of product formation and yields, and also therefore in the economics of biofuel production.
Collapse
Affiliation(s)
- Jonathan A Cray
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Philip Ball
- 18 Hillcourt Road, East Dulwich, London SE22 0PE, UK
| | - Sandip B Bankar
- Department of Chemical Engineering, College of Engineering, Bharati Vidyapeeth University, Pune-Satara Road, Pune 411043, India
| | - Elis C A Eleutherio
- Universidade Federal do Rio de Janeiro, Instituto de Quimica, Programa de Pós-graduação Bioquimica, Rio de Janeiro, RJ, Brazil
| | - Thaddeus C Ezeji
- Department of Animal Sciences and Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, 305 Gerlaugh Hall, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Rekha S Singhal
- Department of Food Engineering and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra 400019, India
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven and Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, Leuven-Heverlee B-3001, Belgium
| | - David J Timson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
37
|
Dong H, Zhao C, Zhang T, Lin Z, Li Y, Zhang Y. Engineering Escherichia coli Cell Factories for n-Butanol Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 155:141-63. [PMID: 25662903 DOI: 10.1007/10_2015_306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The production of n-butanol, as a widely applied solvent and potential fuel, is attracting much attention. The fermentative production of butanol coupled with the production of acetone and ethanol by Clostridium (ABE fermentation) was once one of the oldest biotechnological processes, ranking second in scale behind ethanol fermentation. However, there remain problems with butanol production by Clostridium, especially the difficulty in genetically manipulating clostridial strains. In recent years, many efforts have been made to produce butanol using non-native strains. Until now, the most advanced effort was the engineering of the user-friendly and widely studied Escherichia coli for butanol production. This paper reviews the current progress and problems relating to butanol production by engineered E. coli in terms of prediction using mathematical models, pathway construction, novel enzyme replacement, butanol toxicity, and tolerance engineering strategies.
Collapse
Affiliation(s)
- Hongjun Dong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunhua Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianrui Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhao Lin
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
38
|
Improved n-butanol production by a non-acetone producing Clostridium pasteurianum DSMZ 525 in mixed substrate fermentation. Appl Microbiol Biotechnol 2014; 98:4267-76. [PMID: 24584460 PMCID: PMC3986902 DOI: 10.1007/s00253-014-5588-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/30/2014] [Accepted: 02/02/2014] [Indexed: 02/07/2023]
Abstract
The kinetics of growth, acid and solvent production in batch culture of Clostridium pasteurianum DSMZ 525 were examined in mixed or mono-substrate fermentations. In pH-uncontrolled batch cultures, the addition of butyric acid or glucose significantly enhanced n-butanol production and the ratio of butanol/1,3-propanediol. In pH-controlled batch culture at pH = 6, butyric acid addition had a negative effect on growth and did not lead to a higher n-butanol productivity. On the other hand, mixed substrate fermentation using glucose and glycerol enhanced the growth and acid production significantly. Glucose limitation in the mixed substrate fermentation led to the reduction or inhibition of the glycerol consumption by the growing bacteria. Therefore, for the optimal growth and n-butanol production by C. pasteurianum, a limitation of either substrate should be avoided. Under optimized batch conditions, n-butanol concentration and maximum productivity achieved were 21 g/L, and 0.96 g/L × h, respectively. In comparison, mixed substrate fermentation using biomass hydrolysate and glycerol gave a n-butanol concentration of 17 g/L with a maximum productivity of 1.1 g/L × h. In terms of productivity and final n-butanol concentration, the results demonstrated that C. pasteurianum DSMZ 525 is well suitable for n-butanol production from mixed substrates of biomass hydrolysate and glycerol and represents an alternative promising production strain.
Collapse
|
39
|
Prospective and development of butanol as an advanced biofuel. Biotechnol Adv 2013; 31:1575-84. [DOI: 10.1016/j.biotechadv.2013.08.004] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/31/2013] [Accepted: 08/05/2013] [Indexed: 01/26/2023]
|
40
|
Luan G, Cai Z, Gong F, Dong H, Lin Z, Zhang Y, Li Y. Developing controllable hypermutable Clostridium cells through manipulating its methyl-directed mismatch repair system. Protein Cell 2013; 4:854-62. [PMID: 24214875 PMCID: PMC4875452 DOI: 10.1007/s13238-013-3079-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 09/25/2013] [Indexed: 01/06/2023] Open
Abstract
Development of controllable hypermutable cells can greatly benefit understanding and harnessing microbial evolution. However, there have not been any similar systems developed for Clostridium, an important bacterial genus. Here we report a novel two-step strategy for developing controllable hypermutable cells of Clostridium acetobutylicum, an important and representative industrial strain. Firstly, the mutS/L operon essential for methyldirected mismatch repair (MMR) activity was inactivated from the genome of C. acetobutylicum to generate hypermutable cells with over 250-fold increased mutation rates. Secondly, a proofreading control system carrying an inducibly expressed mutS/L operon was constructed. The hypermutable cells and the proofreading control system were integrated to form a controllable hypermutable system SMBMutC, of which the mutation rates can be regulated by the concentration of anhydrotetracycline (aTc). Duplication of the miniPthl-tetR module of the proofreading control system further significantly expanded the regulatory space of the mutation rates, demonstrating hypermutable Clostridium cells with controllable mutation rates are generated. The developed C. acetobutylicum strain SMBMutC2 showed higher survival capacities than the control strain facing butanol-stress, indicating greatly increased evolvability and adaptability of the controllable hypermutable cells under environmental challenges.
Collapse
Affiliation(s)
- Guodong Luan
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhen Cai
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Fuyu Gong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hongjun Dong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhao Lin
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
41
|
Branduardi P, de Ferra F, Longo V, Porro D. Microbialn-butanol production from Clostridia to non-Clostridial hosts. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200146] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Paola Branduardi
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza Milano Italy
| | - Francesca de Ferra
- Research Center for Non-Conventional Energy-Istituto Eni Donegani; Environmental Technologies; Via Maritano San Donato Milanese (MI) Italy
| | - Valeria Longo
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza Milano Italy
| | - Danilo Porro
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza Milano Italy
| |
Collapse
|
42
|
Schiel-Bengelsdorf B, Montoya J, Linder S, Dürre P. Butanol fermentation. ENVIRONMENTAL TECHNOLOGY 2013; 34:1691-1710. [PMID: 24350428 DOI: 10.1080/09593330.2013.827746] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review provides an overview on bacterial butanol production and recent developments concerning strain improvement, newly built butanol production plants, and the importance of alternative substrates, especially lignocellulosic hydrolysates. The butanol fermentation using solventogenic clostridial strains, particularly Clostridium acetobutylicum, is a very old industrial process (acetone-butanol-ethanol-ABE fermentation). The genome of this organism has been sequenced and analysed, leading to important improvements in rational strain construction. As the traditional ABE fermentation process is economically unfavourable, novel butanol production strains are being developed. In this review, some newly engineered solvent-producing Clostridium strains are described and strains of which sequences are available are compared with C. acetobutylicum. Furthermore, the past and present of commercial butanol fermentation are presented, including active plants and companies. Finally, the use of biomass as substrate for butanol production is discussed. Some advances concerning processing of biomass in a biorefinery are highlighted, which would allow lowering the price of the butanol fermentation process at industrial scale.
Collapse
Affiliation(s)
- Bettina Schiel-Bengelsdorf
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - José Montoya
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Sonja Linder
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| |
Collapse
|