1
|
Zuhara S, Zakaria Y, McKay G. Potential of GTL biosolids in a circular economy: investigating blending, pyrolysis, activation, and characterisation. ENVIRONMENTAL TECHNOLOGY 2024; 45:4017-4027. [PMID: 37585599 DOI: 10.1080/09593330.2023.2238929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/12/2023] [Indexed: 08/18/2023]
Abstract
Qatar's population has been rapidly increasing in recent years, and the country's long-term vision, QNV 2030, aims to sustain this growth by transforming the country into a sustainable state. One aspect of this vision is to convert waste into value-added products, which will reduce the environmental and spatial burden associated with waste in Qatar, while contributing to a circular economy. This study describes methods for producing biochar and activated carbon (AC) from gas-to-liquids derived biosolids, cardboard waste and mixed samples using pyrolysis and activation techniques. The characterisation of products revealed that the yield of biochar samples was higher than AC, and that the pH of the biochar samples was more alkaline than the feed samples due to metals after pyrolysis and reduced acid surface functional groups. Proximate analysis of samples showed lowered moisture and enhanced ash in feeds upon pyrolysis and activation due to increased temperature with reduced volatile content. AC application to water treatment is considered a potential benefit due to the increased surface area, pore volume and magnetic properties based on the Brunauer-Emmett-Teller (BET) and X-ray Powder Diffraction (XRD) analysis. The X-ray photoelectron spectroscopy (XPS) analysis also showed increased -CO3/O-C = O and potassium in the ACs as a result of potassium carbonate activation. The study proposes various applications that can support a circular economy, but future studies should investigate actual applications and potential health and environmental effects and evaluate the feasibility and environmental impact of production methods.
Collapse
Affiliation(s)
- Shifa Zuhara
- Division of Sustainable Development, Hamad Bin Khalifa University, Doha, Qatar
| | - Yahya Zakaria
- Qatar Environmental and Energy Research Institute to Core Laboratories, Hamad Bin Khalifa University, Doha, Qatar
| | - Gordon McKay
- Division of Sustainable Development, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
2
|
Park KB, Chae DY, Fini EH, Kim JS. Pyrolysis of biomass harvested from heavy-metal contaminated area: Characteristics of bio-oils and biochars from batch-wise one-stage and continuous two-stage pyrolysis. CHEMOSPHERE 2024; 355:141715. [PMID: 38554861 DOI: 10.1016/j.chemosphere.2024.141715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
This study evaluates pyrolysis products obtained from biomasses (silver grass, pine, and acacia) harvested from heavy-metal-contaminated soil. To do so, we utilized two methods: a batch one-stage pyrolysis, and a continuous two-stage pyrolysis. The study results show that the yields and characteristics of bio-oils and biochars varied depending on the pyrolysis process and the type of biomass. The two-stage pyrolysis having two reactors (auger and fluidized bed reactors) appeared to be very suitable for specific chemicals production such as acetic acid, acetol, catechol, and levoglucosan. The biochar obtained from the fluidized-bed reactor of two-stage pyrolysis had high thermal stability, high crystallinity, high inorganic content, and a small number of functional groups. In contrast, the biochar obtained from the one-stage pyrolysis had low thermal stability, low crystallinity, a high carbon content, and a large number of functional groups. The biochar obtained from the two-stage pyrolysis appeared to be suitable as a material for catalyst support and as an adsorbent. The biochar obtained from one-stage pyrolysis appeared to be a suitable as a soil amendment, as an adsorbent, and as a precursor of activated carbon. All biochars showed a negative carbon footprint. In the end, this study, which was conducted using two different processes, was able to obtain the fact that products of pyrolysis biomass contaminated with heavy metals have different characteristics depending on the process characteristics and that their utilization plans are different accordingly. If the optimal utilization method proposed through this study is found, pyrolysis will be able to gain importance as an effective treatment method for biomass contaminated with heavy metals.
Collapse
Affiliation(s)
- Ki-Bum Park
- Department of Energy and Environmental System Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-Gu, Seoul, 130-743, Republic of Korea
| | - Da-Yeong Chae
- Graduate School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-Gu, Seoul, 02504, Republic of Korea; Department of Smart Cities, University of Seoul, 163 Siripdaero, Dongdaemun-Gu, Seoul, 02504, Republic of Korea
| | - Elham H Fini
- School of Sustainable Engineering and Built Environment, Arizona State University, 660 S. College Ave, Tempe, AZ, 85281, USA
| | - Joo-Sik Kim
- Department of Energy and Environmental System Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-Gu, Seoul, 130-743, Republic of Korea; Graduate School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-Gu, Seoul, 02504, Republic of Korea; Department of Smart Cities, University of Seoul, 163 Siripdaero, Dongdaemun-Gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
3
|
Rivenbark KJ, Lilly K, Wang M, Tamamis P, Phillips TD. Green-engineered clay- and carbon-based composite materials for the adsorption of benzene from air. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2024; 12:111836. [PMID: 38576544 PMCID: PMC10993424 DOI: 10.1016/j.jece.2023.111836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Benzene is a carcinogenic volatile organic compound (VOC) that is ubiquitously detected in enclosed spaces due to emissions from cooking activities, building materials, and cleaning products. To remove benzene and other VOCs from indoor air and protect public health, traditional fabric filters have been modified to contain activated carbons to enhance the filtration efficacy. In this study, composites derived from natural clay minerals and activated carbon were individually green-engineered with chlorophylls and were attached to the surface of filter materials. These systems were assessed for their adsorption of benzene from air using in vitro and in silico methods. Isothermal, thermodynamic, and kinetic experiments indicated that all green-engineered composites had improved binding profiles for benzene, as demonstrated by increased binding affinities (Kf ≥ 900 vs 472) and lower values of Gibbs free energy (ΔG = -16.8 vs -15.2) compared to activated carbon. Adsorption of benzene to all composites was achieved quickly (< 30 min), and the green-engineered composites also showed low levels of desorption (≤ 25%). While free chlorophyll is known to be photosensitive, chlorophylls in the green-engineered composites showed photostability and maintained high binding rates (≥ 70%). Additionally, the in silico simulations demonstrated the significant contribution of chlorophyll for the overall binding of benzene in clay systems and that chlorophyll could contribute to benzene binding in the carbon-based systems. Together, these studies indicated that novel, green-engineered composite materials can be effective filter sorbents to enhance the removal of benzene from air.
Collapse
Affiliation(s)
- Kelly J. Rivenbark
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Kendall Lilly
- Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Meichen Wang
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Phanourios Tamamis
- Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Artie McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Timothy D. Phillips
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
4
|
Medeiros DCCDS, Chelme-Ayala P, Benally C, Al-Anzi BS, Gamal El-Din M. Review on carbon-based adsorbents from organic feedstocks for removal of organic contaminants from oil and gas industry process water: Production, adsorption performance and research gaps. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115739. [PMID: 35932737 DOI: 10.1016/j.jenvman.2022.115739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/01/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Large amounts of process water with considerable concentrations of recalcitrant organic contaminants, such as polycyclic aromatic hydrocarbon (PAHs), phenolic compounds (PCs), and benzene, toluene, ethylbenzene, and xylene (BTEX), are generated by several segments of oil and gas industries. These segments include refineries, hydraulic fracturing (HF), and produced waters from the extraction of shale gas (SGPW), coalbed methane (CBMPW) and oil sands (OSPW). In fact, the concentration of PCs and PAHs in process water from refinery can reach 855 and 742 mg L-1, respectively. SGPW can contain BTEX at concentrations as high as 778 mg L-1. Adsorption can effectively target those organic compounds for the remediation of the process water by applying carbon-based adsorbents generated from organic feedstocks. Such organic feedstocks usually come from organic waste materials that would otherwise be conventionally disposed of. The objective of this review paper is to cover the scientific progress in the studies of carbon-based adsorbents from organic feedstocks that were successfully applied for the removal of organic contaminants PAHs, PCs, and BTEX. The contributions of this review paper include the important aspects of (i) production and characterization of carbon-based adsorbents to enhance the efficiency of organic contaminant adsorption, (ii) adsorption properties and mechanisms associated with the engineered adsorbent and expected for certain pollutants, and (iii) research gaps in the field, which could be a guidance for future studies. In terms of production and characterization of materials, standalone pyrolysis or hybrid procedures (pyrolysis associated with chemical activation methods) are the most applied techniques, yielding high surface area and other surface properties that are crucial to the adsorption of organic contaminants. The adsorption of organic compounds on carbonaceous materials performed well at wide range of pH and temperatures and this is desirable considering the pH of process waters. The mechanisms are frequently pore filling, hydrogen bonding, π-π, hydrophobic and electrostatic interactions, and same precursor material can present more than one adsorption mechanism, which can be beneficial to target more than one organic contaminant. Research gaps include the evaluation of engineered adsorbents in terms of competitive adsorption, application of adsorbents in oil and gas industry process water, adsorbent regeneration and reuse studies, and pilot or full-scale applications.
Collapse
Affiliation(s)
| | - Pamela Chelme-Ayala
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Chelsea Benally
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Bader S Al-Anzi
- Department of Environmental Technology Management, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
5
|
Bianco F, Marcińczyk M, Race M, Papirio S, Esposito G, Oleszczuk P. Low temperature–produced and VFA–coated biochar enhances phenanthrene adsorption and mitigates toxicity in marine sediments. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Modeling of cadmium(II) removal in a fixed bed column utilizing hydrochar-derived activated carbon obtained from discarded mango peels. Sci Rep 2022; 12:8001. [PMID: 35568697 PMCID: PMC9107476 DOI: 10.1038/s41598-022-11574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022] Open
Abstract
Cadmium is found in many underdeveloped countries' aquatic bodies. Therefore, contaminated water should be treated before consumption; henceforth, efficient and customized point-of-use filtration is foreseeable. Traditionally, carbon-based sorbents have been utilized for such treatments, but alternative sources are also being investigated. Hydrochars made from mango peels using a thermal activation process were employed as an adsorbent instead of activated carbon in this investigation. The prepared material was porous with active surface functionalities, and the interaction of cadmium with the surface was possibly ion-exchange in nature. The performance of a material for a candle water filtering system with a 2.5 cm internal diameter and a 30.48 cm column height was determined using the parameters acquired by the Thomas model. The material was found to be highly efficient at 453.5 L/min/Filter water, whereas 31670.6 L/min/Filter can be treated if the break point and exhaustion point are considered, respectively, as the candle replacement time. These findings indicate that activated hydrochar might be a suitable sorbent for removing cadmium ions from contaminated water.
Collapse
|
7
|
Liang W, Wang G, Peng C, Tan J, Wan J, Sun P, Li Q, Ji X, Zhang Q, Wu Y, Zhang W. Recent advances of carbon-based nano zero valent iron for heavy metals remediation in soil and water: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127993. [PMID: 34920223 DOI: 10.1016/j.jhazmat.2021.127993] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Heavy metal pollution in soil and water has presented a new challenge for the environmental remediation technology. Nano zero valent iron (nZVI) has excellent adsorbent properties for heavy metals, and thus, exhibits great potential in environmental remediation. Used as supporting materials for nZVI, carbon-based materials, such as activated carbon (AC), biochar (BC), carbon nanotubes (CNTs), and graphene (GNs) with aromatic rings formed by carbon atoms as the skeleton, have a large specific surface area and porous structure. This paper provides a comprehensive review on the advancement of carbon-based nano zero valent iron (C-nZVI) particles for heavy metal remediation in soil and water. First, different types of carbon-based materials and their combination with nZVI, as well as the synthesis methods and common characterization techniques of C-nZVI, are reviewed. Second, the mechanisms for the interactions between contaminants and C-nZVI, including adsorption, reduction, and oxidation reactions are detailed. Third, the environmental factors affecting the remediation efficiency, such as pH, coexisting constituents, oxygen, contact time, and temperature, are highlighted. Finally, perspectives on the challenges for utilization of C-nZVI in the actual contaminated soil and water and on the long-term efficacy and safety evaluation of C-nZVI have been proposed for further development.
Collapse
Affiliation(s)
- Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gehui Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jiang Wan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pengfei Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Qiannan Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaowen Ji
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| |
Collapse
|
8
|
A Review on Bamboo as an Adsorbent for Removal of Pollutants for Wastewater Treatment. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1155/2022/7218759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Water and wastewater treatment are very important for obtaining clean and sanitary water as well as protecting the environment from toxic pollutants. Not only enriched with cellulose and carbon but the abundant resources of bamboo also make it suitable to be utilized as an adsorbent. With the right processing technologies and improvements, the potential of bamboo is unlimited. This study review provides knowledge on the use of bamboo-based adsorbents for the removal of contaminants and pollutants in wastewater in the form of activated carbon, biochar, and aerogel. This review highlighted bamboo utilization and its relevance as an adsorbent for wastewater treatment. The technologies for the processing and improvement of bamboo as well as the performance of the bamboo-based adsorbents are also discussed in this study. The adsorption capacity of bamboo has shown improvement with modification and good adsorption capacity achieved with some of the adsorbent being able to be recycled and reused.
Collapse
|
9
|
Processing of fique bagasse waste into modified biochars for adsorption of caffeine and sodium diclofenac. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Kozyatnyk I, Oesterle P, Wurzer C, Mašek O, Jansson S. Removal of contaminants of emerging concern from multicomponent systems using carbon dioxide activated biochar from lignocellulosic feedstocks. BIORESOURCE TECHNOLOGY 2021; 340:125561. [PMID: 34332442 DOI: 10.1016/j.biortech.2021.125561] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Adsorption of six contaminants of emerging concern (CECs) - caffeine, chloramphenicol, carbamazepine, bisphenol A, diclofenac, and triclosan - from a multicomponent solution was studied using activated biochars obtained from three lignocellulosic feedstocks: wheat straw, softwood, and peach stones. Structural parameters related to the porosity and ash content of activated biochar and the hydrophobic properties of the CECs were found to influence the adsorption efficiency. For straw and softwood biochar, activation resulted in a more developed mesoporosity, whereas activation of peach stone biochar increased only the microporosity. The most hydrophilic CECs studied, caffeine and chloramphenicol, displayed the highest adsorption (22.8 and 11.3 mg g-1) onto activated wheat straw biochar which had the highest ash content of the studied adsorbents (20 wt%). Adsorption of bisphenol A and triclosan, both relatively hydrophobic substances, was highest (31.6 and 30.2 mg g-1) onto activated biochar from softwood, which displayed a well-developed mesoporosity and low ash content.
Collapse
Affiliation(s)
- Ivan Kozyatnyk
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Pierre Oesterle
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Christian Wurzer
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, EH9 3FF Edinburgh, UK
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, EH9 3FF Edinburgh, UK
| | - Stina Jansson
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
11
|
Wong JWC, Ogbonnaya UO. Biochar porosity: a nature-based dependent parameter to deliver microorganisms to soils for land restoration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46894-46909. [PMID: 34263396 DOI: 10.1007/s11356-021-14803-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/14/2020] [Indexed: 06/13/2023]
Abstract
Literature shows that biochar can potentially retain nutrients in agricultural soils, avoiding significant nutrient losses. Furthermore, biochar porosity and functional groups have been shown to enhance physico-chemical properties of soil when amended, which in turn has the ability to encourage inhabitation of specific microorganisms as biofertilizers or to enhance soil remediation. It supports scale-dependent parameters and provides both ecosystem services and soil-vegetation solutions relevant to nature-based solutions. However, detailed researches on the mechanisms of soil microbial interactions with biochar porous properties are required, along with the microbial attachment factors, sustenance, and detachment when applied to soils. Recent valuable works have impregnated plant growth-promoting bacteria unto biochar and have observed inconsistent results. Firstly, biochar intrinsic properties alter the fate of impregnation by inhibiting quorum sensing signals, and the macropore requirements for adsorption and/or biofilm formation have not been well considered. Additionally, the nutrient and supplement requirements for each microorganism as well as the adsorption capacity have not been well understood for biochar surfaces. Substantial information is required to understand the mechanisms of microbe adsorption and factors that influence the process, as well as sustenance of the matrix even when deployed in soils. Research directions should focus on determining molecular and chemical mechanisms responsible for the biochar-microbe interaction process and fate of microbe on biochar while expressing plant growth-promoting properties, which needs to be done in laboratory and field trials. Graphical abstract.
Collapse
Affiliation(s)
- Jonathan W C Wong
- Institute of Bioresource and Agriculture and the Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Uchenna O Ogbonnaya
- Institute of Bioresource and Agriculture and the Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| |
Collapse
|
12
|
Characterization Techniques as Supporting Tools for the Interpretation of Biochar Adsorption Efficiency in Water Treatment: A Critical Review. Molecules 2021; 26:molecules26165063. [PMID: 34443648 PMCID: PMC8398246 DOI: 10.3390/molecules26165063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022] Open
Abstract
Over the past decade, biochar (BC) has received significant attention in many environmental applications, including water purification, since it is available as a low-cost by-product of the energetic valorisation of biomass. Biochar has many intrinsic characteristics, including its porous structure, which is similar to that of activated carbon (AC), which is the most widely used sorbent in water treatment. The physicochemical and performance characteristics of BCs are usually non-homogenously investigated, with several studies only evaluating limited parameters, depending on the individual perspective of the author. Within this review, we have taken an innovative approach to critically survey the methodologies that are generally used to characterize BCs and ACs to propose a comprehensive and ready-to-use database of protocols. Discussion about the parameters of chars that are usually correlated with adsorption performance in water purification is proposed, and we will also consider the physicochemical properties of pollutants (i.e., Kow). Uniquely, an adsorption efficiency index BC/AC is presented and discussed, which is accompanied by an economic perspective. According to our survey, non-homogeneous characterization approaches limit the understanding of the correlations between the pollutants to be removed and the physicochemical features of BCs. Moreover, the investigations of BC as an adsorption medium necessitate dedicated parallel studies to compare BC characteristics and performances with those of ACs.
Collapse
|
13
|
Hu S, Xu D, Kong X, Gong J, Yang Y, Ran Y, Mao J. Effect of the structure and micropore of activated and oxidized black carbon on the sorption and desorption of nonylphenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:144191. [PMID: 33352343 DOI: 10.1016/j.scitotenv.2020.144191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Activated, oxidized, and solvent-extracted black carbon samples (BCs) were produced from a shale kerogen at temperatures ranging from 250 to 500 °C by chemical activation regents (KOH, ZnCl2), oxidative regents (H2O2, NaClO), and organic solvents, respectively. Extracted organic matter (EOM) and polycyclic aromatic hydrocarbons (PAHs) were quantified in BCs, and they increased and then decreased with increasing temperature. Sorption and desorption isotherms of nonylphenol (NP) on BCs were compared with those previously reported for phenanthrene (Phen). The desorption hysteresis coefficients of NP were greater than those of Phen, while the adsorption capacities of NP were different from those of Phen. The micropore volume and micropore size were critical factors for the micropore filling mechanism of NP in BCs. The ZnCl2 activation and oxidation treatments were observed to effectively enhance the adsorption of NP and to remove native PAHs from the investigated BCs. But the KOH activation and oxidation treatments were not as efficient as expected. Moreover, the NP desorption hysteresis suggested that a hydrogen bonding and micropore deformation mechanism occurred on the extracted activated BCs. This finding improves our understanding of the sorption and desorption mechanisms of NP from the perspective of the modified BCs and their applications.
Collapse
Affiliation(s)
- Shujie Hu
- State Key Laboratory of Organic Geochemistry, Guangdong- Hong Kong- Macao Joint Laboratory for Environmental Pollution and Control, and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Decheng Xu
- State Key Laboratory of Organic Geochemistry, Guangdong- Hong Kong- Macao Joint Laboratory for Environmental Pollution and Control, and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Xianglan Kong
- State Key Laboratory of Organic Geochemistry, Guangdong- Hong Kong- Macao Joint Laboratory for Environmental Pollution and Control, and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Jian Gong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yu Yang
- State Key Laboratory of Organic Geochemistry, Guangdong- Hong Kong- Macao Joint Laboratory for Environmental Pollution and Control, and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yong Ran
- State Key Laboratory of Organic Geochemistry, Guangdong- Hong Kong- Macao Joint Laboratory for Environmental Pollution and Control, and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Jingdong Mao
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, United States
| |
Collapse
|
14
|
Analysis and Characterization of Metallic Nodules on Biochar from Single-Stage Downdraft Gasification. Processes (Basel) 2021. [DOI: 10.3390/pr9030533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biochar, which is a byproduct of gasification, is used in a wide range of fields such as water filtration, agriculture, and electronics, to name a few. The metals in the biomass were thought to end up either in the ash or distributed throughout the biochar. In this study, the goal was a more thorough characterization of biochar resulting from a single-stage downdraft gasifier. One of the first observations was that some metals actually localize into small (~25 micron diameter) metallic nodules on the biochar surface. Further analysis included ultimate and proximate analysis, Brunauer–Emmert–Teller (BET) analysis, and scanning electron microscopy X-ray spectroscopy (SEM-EDS). Biomass fuel included corn grains, soybeans, and wood pellets, with wood biochar showing the highest fixed carbon content, at 91%, and the highest surface area, at 92.4 m2/g. The SEM analysis showed that certain minerals, including potassium, phosphorus, calcium, iron, nickel, silicon, and copper, formed nodules with over 50% metal mass next to pores in the carbon substrate. Aluminum, chlorine, magnesium, and silicon (in certain cases) were mostly uniformly distributed on the biochar carbon substrate. Corn biochar showed a high concentration in the nodules of 9–21% phosphorus and up to 67% potassium. Soybean biochar showed a similar trend with traces of iron and nickel of 2% and 4.1%, respectively, while wood biochar had a significant amount of potassium, up to 35%, along with 44% calcium, 3% iron, and up to 4.2% nickel concentrations. A morphology analysis was also carried out.
Collapse
|
15
|
Gujre N, Soni A, Rangan L, Tsang DCW, Mitra S. Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115549. [PMID: 33246313 DOI: 10.1016/j.envpol.2020.115549] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/18/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Conservation of soil health and crop productivity is the central theme for sustainable agriculture practices. It is unrealistic to expect that the burgeoning crop production demands will be met by a soil ecosystem that is increasingly unhealthy and constrained. Therefore, the present review is focused on soil amendment techniques, using biochar in combination with arbuscular mycorrhizal fungi (AMF), which is an indispensable biotic component that maintains plant-soil continuum. Globally significant progress has been made in elucidating the physical and chemical properties of biochar; along with its role in carbon sequestration. Similarly, research advances on AMF include its evolutionary background, functions, and vital roles in the soil ecosystem. The present review deliberates on the premise that biochar and AMF have the potential to become cardinal to management of agro-ecosystems. The wider perspectives of various agronomical and environmental backgrounds are discussed. The present state of knowledge, different aspects and limitations of combined biochar and AMF applications (BC + AMF), mechanisms of interaction between biochar and AMF, effects on plant growth, challenges and future opportunities of BC + AMF applications are critically reviewed. Given the severely constrained nature of soil health, the roles of BC + AMF in agriculture, bioremediation and ecology have also been examined. In spite of the potential benefits, the functionality and dynamics of BC + AMF in soil are far from being fully elucidated.
Collapse
Affiliation(s)
- Nihal Gujre
- Agro-ecotechnology Laboratory, Centre for Rural Technology, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Ankit Soni
- Agro-ecotechnology Laboratory, Centre for Rural Technology, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Latha Rangan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Sudip Mitra
- Agro-ecotechnology Laboratory, Centre for Rural Technology, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
16
|
Rashidi NA, Yusup S. Biochar as potential precursors for activated carbon production: parametric analysis and multi-response optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27480-27490. [PMID: 31907816 DOI: 10.1007/s11356-019-07448-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Accelerating greenhouse gas emission particularly carbon dioxide (CO2) in the atmosphere has become a major concern. Adsorption process has been proposed as a promising technology for CO2 adsorption from flue gas, and the carbonaceous adsorbent is a potential candidate for CO2 adsorption at atmospheric pressure and ambient temperature. Biochar derived from palm kernel shell waste was applied as a potential precursor for activated carbon production. This research study employed the response surface methodology coupled with Box-Behnken design to optimize the parameters involved in producing exceptional activated carbon with high yield (Y1) and CO2 adsorptive characteristics (Y2). Specifically, parameters studied include the activation temperature (750-950 °C), holding time (60-120 min), and CO2 flow rate (150-450 mL/min). The activated carbon at the optimum conditions was characterized using various analytical instruments, including elemental analyzer, nitrogen (N2) physisorption analyzer, and field emission scanning electron microscopy. Overall, utilization of biochar as the activated carbon precursor is practical compared with the traditional non-renewable materials, due to its cost efficiencies and it being more environment-friendly ensuring process sustainability. Besides, this research study that incorporates physical activation with CO2 as the activating agent is attractive, because it directly promotes CO2 utilization and capture, in addition to the absence of any chemicals that may result in the secondary pollution problems.
Collapse
Affiliation(s)
- Nor Adilla Rashidi
- Biomass Processing Laboratory, Higher Institutions Centre of Excellence: Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Suzana Yusup
- Biomass Processing Laboratory, Higher Institutions Centre of Excellence: Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia.
| |
Collapse
|
17
|
Adsorption of Patent Blue V from Textile Industry Wastewater Using Sterculia alata Fruit Shell Biochar: Evaluation of Efficiency and Mechanisms. WATER 2020. [DOI: 10.3390/w12072017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biochar prepared from Sterculia alata fruit shell showed a better performance for dye removal than the biomass from Sterculia alata fruit shell. The important process parameters—namely the pH, the amount of biochar, the initial dye concentration and the contact time—were optimized in order to maximize dye removal using biochar of Sterculia alata fruit shell as the bio-sorbent. The results from this study showed that the maximum adsorption of dye on the biochar was obtained at a biochar dosage of 40 g/L, at a contact time of 5 h, and an initial dye concentration of 500 mg/L (pH 2.0; temperature 30 ± 5 °C). The increase in the rate adsorption with temperature and the scanning electron microscopic (SEM) images indicated the possibility of multilayer type adsorption which was confirmed by better fit of the Freundlich adsorption isotherm with the experimental data as compared to the Langmuir isotherm. The values n and R2 in the Freundlich isotherm were found to be 4.55 and 0.97, respectively. The maximum adsorption capacity was found to be 11.36 mg/g. The value of n > 1 indicated physical nature of the adsorption process. The first and second order kinetics were tested, and it was observed that the adsorption process followed the first-order kinetics (R2 = 0.911).
Collapse
|
18
|
Zeng S, Kan E. Chemical Activation of Forage Grass-Derived Biochar for Treatment of Aqueous Antibiotic Sulfamethoxazole. ACS OMEGA 2020; 5:13793-13801. [PMID: 32566845 PMCID: PMC7301585 DOI: 10.1021/acsomega.0c00983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/22/2020] [Indexed: 05/27/2023]
Abstract
Chemically activated forage Bermudagrass-derived biochar (A-BC) was produced, characterized, and utilized for adsorption of sulfamethoxazole (SMX) in water for the first time. After NaOH activation, A-BC showed a higher surface area (1991.59 m2/g) and maximum adsorption capacity for SMX (425 mg SMX/g BC) than those of various biochars and commercial activated carbons. The detailed analysis for adsorption of SMX onto A-BC indicated the efficient sorption of SMX through π-π EDA and hydrophobic and hydrogen bond interactions. Additionally, the adsorption of SMX on A-BC was limited by pore and liquid film diffusions. The SMX adsorption on A-BC was found to be endothermic and spontaneous from thermodynamic studies. Furthermore, the highly efficient regeneration of SMX-saturated A-BC over multiple cycles was achieved by NaOH-driven desorption, indicating that the adsorption of SMX onto A-BC would have high potential for cost-effective solution for elimination of SMX from water.
Collapse
Affiliation(s)
- Shengquan Zeng
- Department
of Biological and Agricultural Engineering & Texas A&M AgriLife
Research Center, Texas A&M University, College Station, Texas 76401, United States
| | - Eunsung Kan
- Department
of Biological and Agricultural Engineering & Texas A&M AgriLife
Research Center, Texas A&M University, College Station, Texas 76401, United States
- Department
of Wildlife, Sustainability, and Ecosystem Sciences, Tarleton State University, Stephenville, Texas 76401, United States
| |
Collapse
|
19
|
Islam T, Peng C, Ali I, Li J, Khan ZM, Sultan M, Naz I. Synthesis of Rice Husk-Derived Magnetic Biochar Through Liquefaction to Adsorb Anionic and Cationic Dyes from Aqueous Solutions. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04537-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Wei Z, Zhang Y, Wang W, Dong S, Jiang T, Wei D. Synthesis of Cost-Effective Pomelo Peel Dimethoxydiphenylsilane-Derived Materials for Pyrene Adsorption: From Surface Properties to Adsorption Mechanisms. ACS OMEGA 2020; 5:9465-9476. [PMID: 32363299 PMCID: PMC7191855 DOI: 10.1021/acsomega.0c00689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/09/2020] [Indexed: 05/14/2023]
Abstract
This study investigated the adsorption behaviors of pyrene (PYR) on a pomelo peel adsorbent (PPA), biochar (PPB), and H3PO4-modified (HPP), NaOH-activated (NPP), and dimethoxydiphenylsilane-treated (DPDMS-NPP) pomelo peel materials. SEM, FTIR, and elemental analyses of DPDMS-NPP's surface structure showed that the material was characterized by a well-developed porous structure, a large specific surface area (698.52 m2 g-1), and an abundance of phenyl functional groups. These properties enhance the PYR adsorption performance of DPDMS-NPP. Experimental results indicated that the adsorption capacity of DPDMS-NPP was significantly affected by the amount of material used and the initial concentration of PYR. Kinetic assessments suggested that PYR adsorption on PPA, NPP, and DPDMS-NPP could be accurately described by the pseudo second-order model. The adsorption process was controlled by several mechanisms, including electron donor-acceptor (EDA), electrostatic, and π-π interactions as well as film and intraparticle diffusion. The adsorption isotherm studies showed that PYR adsorption on DPDMS-NPP and PPA was well described by the Langmuir model and the maximum Langmuir adsorption capacity of DPDMS-NPP was 531.9 μg g-1. Overall, the results presented herein suggested that the use of DPDMS-NPP adsorbents constitutes an economic and environmentally friendly approach for the mitigation of PYR contamination risks.
Collapse
Affiliation(s)
- Zhengwen Wei
- Key Laboratory of Subsurface Hydrology and Ecological Effects in
Arid Region of the Ministry of Education, Chang’an University, No. 126 Yanta Road, Xi’an 710054, Shaanxi, China
- School of Water and Environment, Chang’an University, Xi’an 710054, P.R. China
| | - Yaoyao Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in
Arid Region of the Ministry of Education, Chang’an University, No. 126 Yanta Road, Xi’an 710054, Shaanxi, China
- School of Water and Environment, Chang’an University, Xi’an 710054, P.R. China
| | - Wei Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in
Arid Region of the Ministry of Education, Chang’an University, No. 126 Yanta Road, Xi’an 710054, Shaanxi, China
- School of Water and Environment, Chang’an University, Xi’an 710054, P.R. China
- . Phone: +86-29-82339052. Fax: +86-29-82335485
| | - Suiming Dong
- Key Laboratory of Subsurface Hydrology and Ecological Effects in
Arid Region of the Ministry of Education, Chang’an University, No. 126 Yanta Road, Xi’an 710054, Shaanxi, China
- School of Water and Environment, Chang’an University, Xi’an 710054, P.R. China
| | - Tingbo Jiang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in
Arid Region of the Ministry of Education, Chang’an University, No. 126 Yanta Road, Xi’an 710054, Shaanxi, China
- School of Water and Environment, Chang’an University, Xi’an 710054, P.R. China
| | - Donghui Wei
- Key Laboratory of Subsurface Hydrology and Ecological Effects in
Arid Region of the Ministry of Education, Chang’an University, No. 126 Yanta Road, Xi’an 710054, Shaanxi, China
- School of Water and Environment, Chang’an University, Xi’an 710054, P.R. China
| |
Collapse
|
21
|
Hubbard PJ, Benzie JW, Bakhmutov VI, Blümel J. Ferrocene Adsorbed on Silica and Activated Carbon Surfaces: A Solid-State NMR Study of Molecular Dynamics and Surface Interactions. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick J. Hubbard
- Department of Chemistry, Texas A&M University, College Station, Texas 77845-3012, United States
| | - Jordon W. Benzie
- Department of Chemistry, Texas A&M University, College Station, Texas 77845-3012, United States
| | - Vladimir I. Bakhmutov
- Department of Chemistry, Texas A&M University, College Station, Texas 77845-3012, United States
| | - Janet Blümel
- Department of Chemistry, Texas A&M University, College Station, Texas 77845-3012, United States
| |
Collapse
|
22
|
Zhang Y, Song X, Zhang P, Gao H, Ou C, Kong X. Production of activated carbons from four wastes via one-step activation and their applications in Pb 2+ adsorption: Insight of ash content. CHEMOSPHERE 2020; 245:125587. [PMID: 31864062 DOI: 10.1016/j.chemosphere.2019.125587] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/03/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Natural biomass is a renewable source for precursors of porous carbon. Four agriculture wastes of corn cob (CC), wheat bran (WB), rice husk (RH), and soybean shell (SS) were applied to produce activated carbons (ACs) via one-step activation by sodium hydroxide. The effects of ash contents and NaOH dosage ratio (1-5) on surface area for ACs were investigated. Owing to ash etching, the high ash precursor (like RH) exhibited less alkali consumption and larger surface area than low ash one (like CC). All four ACs expressed developed pore structure and outstanding surface area of ∼2500 m2g-1. During adsorption of lead ions in simulated wastewater, RH-based AC revealed superior capture capacity of 492 ± 15 mgg-1. One-step activation had the potential to deliver savings around 1/3 of energy consumption, enabling the cost performance of high ash RH-based AC reaching 194 ± 12 g Pb2+$-1, 76% larger than low ash CC-based AC. High ash biomass is a promising candidate to obtain eco-friendly carbon products.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory for Mineral Materials and Application of Hunan Province, School of Mineral Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Xiaolan Song
- Key Laboratory for Mineral Materials and Application of Hunan Province, School of Mineral Processing and Bioengineering, Central South University, Changsha, 410083, China.
| | - Pu Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, United States
| | - Hongpeng Gao
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, United States
| | - Cuiyun Ou
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, 510275, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China
| | - Xiaodong Kong
- Key Laboratory for Mineral Materials and Application of Hunan Province, School of Mineral Processing and Bioengineering, Central South University, Changsha, 410083, China
| |
Collapse
|
23
|
Tong M, He L, Rong H, Li M, Kim H. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe 3O 4-biochar amendment. WATER RESEARCH 2020; 169:115284. [PMID: 31739235 DOI: 10.1016/j.watres.2019.115284] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 05/22/2023]
Abstract
As an environmentally friendly material, biochar has been widely used to remediate soil/water contaminants such as heavy metals and organic pollutants. The addition of biochar or modified biochar to porous media might affect the retention of plastic particles and thus influence their fate in natural environment. In this study, both biochar and magnetic biochar (Fe3O4-biochar) were synthesized via a facile precipitation method at room temperature. To determine the significance of biochar and Fe3O4-biochar amendment on the transport and deposition behaviors of plastic particles, the breakthrough curves and retained profiles of three different sized plastic particles (0.02 μm nano-plastic particles, and 0.2 μm and 2 μm micro-plastic particles) in quartz sand were compared with those obtained in quartz sand either with biochar or Fe3O4-biochar amendment in both 5 mM and 25 mM NaCl solutions. The results show that for all three different sized plastic particles under both examined solution conditions, the addition of biochar and Fe3O4-biochar in quartz sand decreases the transport and increases the retention of plastic particles in porous media. Fe3O4-biochar more effectively inhibits the transport of plastic particles than biochar. We found that the addition of biochar/Fe3O4-biochar could change the suspension property and increase the adsorption capacity of porous media (due to the increase of porous media surface roughness and negatively decrease the zeta potentials of porous media), contributing to the enhanced deposition of plastic particles. Moreover, we found that negligible amount of biochar and Fe3O4-biochar (<1%) were released from the columns following the plastic particle transport when the columns were eluted with very low ionic strength solution at high flow rate (to simulate a sudden rainstorm). Similarly, small amount of plastic particles were detached from the porous media under this extreme condition (16.5% for quartz sand, 14.6% for quartz sand with biochar amendment, and 7.5% for quartz sand with Fe3O4-biochar amendment). We found that over 74% of the Fe3O4-biochar can be recovered from the porous media after the retention of plastic particles by using a magnet and 87% plastic particles could be desorbed from Fe3O4-biochar by dispersing the Fe3O4-biochar into 10 mM NaOH solution. In addition, we found that the amendment of unsaturated porous media with biochar/Fe3O4-biochar also decreased the transport of plastic particles. When biochar/Fe3O4-biochar were added into porous media as one layer of permeable barrier near to column inlet, the decreased transport of plastic particles could be also obtained. The results of this study indicate that magnetic biochar can be potentially applied to immobilize plastic particles in terrestrial ecosystems such as in soil or groundwater.
Collapse
Affiliation(s)
- Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Haifeng Rong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meng Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering, Chonbuk National University, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 561-756, Republic of Korea
| |
Collapse
|
24
|
Dai Y, Li J, Shan D. Adsorption of tetracycline in aqueous solution by biochar derived from waste Auricularia auricula dregs. CHEMOSPHERE 2020; 238:124432. [PMID: 31421464 DOI: 10.1016/j.chemosphere.2019.124432] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 05/27/2023]
Abstract
This study investigated the adsorption of tetracycline (TC) on biochar (BC) derived from waste Auricularia auricula dregs obtained at different pyrolysis temperatures. The characterization of BC and batch experiment results showed that BC prepared at a higher temperature was more suitable for removing TC, where the maximum adsorption capacities of BC samples prepared at 300 °C, 500 °C, and 700 °C were 7.22 mg/g, 9.90 mg/g, and 11.90 mg/g, respectively. A pseudo-first order kinetics model and Freundlich, Temkin, and Dubinin-Radushkevich isotherm models fitted well to the adsorption data. Liquid film diffusion was the rate-controlling step. In addition, π-π electron donor-acceptor interactions may have played a dominant role in the adsorption mechanism between the enone structure of TC and aromatic C of BC. These results may facilitate further investigations of the adsorption mechanism and optimization of the process.
Collapse
Affiliation(s)
- Yingjie Dai
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Jingjing Li
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Dexin Shan
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, No.319 Honghe Road, Yongchuan District, Chongqing, 402168, China.
| |
Collapse
|
25
|
Preparation of KOH and H3PO4 Modified Biochar and Its Application in Methylene Blue Removal from Aqueous Solution. Processes (Basel) 2019. [DOI: 10.3390/pr7120891] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Improperly treated or directly discharged into the environment, wastewater containing dyes can destroy the quality of water bodies and pollute the ecological environment. The removal of dye wastewater is urgent and essential. In this study, corn stalk was pyrolyzed to pristine biochar (CSBC) in a limited oxygen atmosphere and modified using KOH and H3PO4 (KOH-CSBC, H3PO4-CSBC, respectively). The biochars were characterized by surface area and pore size, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), as well as their behavior in adsorbing methylene blue (MB). Results indicated that the pore structure of CSBC became more developed after modification by KOH. Meanwhile, H3PO4-CSBC contained more functional groups after activation treatment. The pseudo-second-order kinetic and the Langmuir adsorption isotherm represented the adsorption process well. The maximum MB adsorption capacity of CSBC, KOH-CSBC, and H3PO4-CSBC was 43.14 mg g−1, 406.43 mg g−1 and 230.39 mg g−1, respectively. Chemical modification significantly enhanced the adsorption of MB onto biochar, especially for KOH-CSBC. The adsorption mechanism between MB and biochar involved physical interaction, electrostatic interaction, hydrogen bonding and π–π interaction. Hence, modified CSBC (especially KOH-CSBC) has the potential for use as an adsorbent to remove dye from textile wastewater.
Collapse
|
26
|
Plácido J, Bustamante-López S, Meissner KE, Kelly DE, Kelly SL. NanoRefinery of carbonaceous nanomaterials: Complementing dairy manure gasification and their applications in cellular imaging and heavy metal sensing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:10-20. [PMID: 31260895 DOI: 10.1016/j.scitotenv.2019.06.390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/03/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
This article describes an efficient method, combining chemical oxidation and acetone extraction, to produce carbonaceous nanomaterials from dairy manure biochar. The optical and mechanical properties are similar to methods previously reported carbonaceous nanomaterials from biomass. Our novel process cuts the processing time in half and drastically reduces the energy input required. The acetone extraction produced 10 fractions with dairy manure biochar-derived carbonaceous nanomaterials (DMB-CNs). The fraction with the carbonaceous nanomaterials, DMB-CN-E1, with highest fluorescence was selected for in-depth characterisation and for initial testing across a range of applications. DMB-CN-E1 was characterised using atomic force microscope, electrophoresis, and spectrophotometric methods. DMB-CN-E1 exhibited a lateral dimension between 11 and 28 nm, a negative charge, and excitation/emission maxima at 337/410 nm, respectively. The bioimaging potential of DMB-CN-E1 evidenced different locations and different interactions with the cellular models evaluated. DMB-CN-E1 was quenched by several heavy metal ions showing a future application of these materials in heavy metal ion detection and/or removal. The demonstrated capabilities in bioimaging and environmental sensing create the opportunity for generating added-value nanomaterials (NanoRefinery) from dairy manure biochar gasification and, thus, increasing the economic viability of gasification plants.
Collapse
Affiliation(s)
- J Plácido
- Institute of Life Science (ILS 1), Swansea University Medical School, Swansea University, Swansea SA2 8PP, Wales, UK.
| | - S Bustamante-López
- Institute of Life Science (ILS 1), Swansea University Medical School, Swansea University, Swansea SA2 8PP, Wales, UK; Department of Physics, Centre for NanoHealth, Swansea University, Swansea SA2 8PP, Wales, UK
| | - K E Meissner
- Department of Physics, Centre for NanoHealth, Swansea University, Swansea SA2 8PP, Wales, UK
| | - D E Kelly
- Institute of Life Science (ILS 1), Swansea University Medical School, Swansea University, Swansea SA2 8PP, Wales, UK
| | - S L Kelly
- Institute of Life Science (ILS 1), Swansea University Medical School, Swansea University, Swansea SA2 8PP, Wales, UK.
| |
Collapse
|
27
|
Iberahim N, Sethupathi S, Goh CL, Bashir MJK, Ahmad W. Optimization of activated palm oil sludge biochar preparation for sulphur dioxide adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109302. [PMID: 31377539 DOI: 10.1016/j.jenvman.2019.109302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/17/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Palm oil sludge (POS) is an organic waste generated from the palm oil industry. POS causes environmental pollution if it is improperly disposed. In this study, the potential of activated POS biochar, as an adsorbent for the removal of SO2 gas was tested. POS biochar was physically activated using CO2 gas. The effects of activation preparation variables i.e. activation temperature (300-700 °C), activation time (30-150 min) and CO2 flow rate (100-500 ml/min) were investigated using design expert version 8.0.7.1 software. Central Composite Design (CCD) was used to develop a quadratic model to correlate the operating variables with the activated biochar adsorption capacity. Analysis of variance (ANOVA) was performed to identify the significant factors on the experimental design response. The optimum preparation conditions of activated POS biochar were found to be at activation temperature of 442 °C, activation time of 63 min and CO2 flow rate of 397 ml/min. The maximum adsorption capacity at the optimum conditions was recorded as 16.65 mg/g. The adsorption capacity increased significantly after the activation process. Characteristics of the activated POS biochar proposed that SO2 was physically adsorbed. Furthermore, it was found that the adsorption capacity can be further enhanced by increasing the reaction temperature to 100 °C or with 15% of relative humidity in the inlet gas. The prepared adsorbents can be regenerated by thermal treatment.
Collapse
Affiliation(s)
- Nursashabila Iberahim
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Sumathi Sethupathi
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia.
| | - Ching Lam Goh
- Faculty of Engineering, Kolej Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300, Setapak, Kuala Lumpur, Malaysia
| | - Mohammed J K Bashir
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Waseem Ahmad
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| |
Collapse
|
28
|
Sajjadi B, Chen WY, Egiebor NO. A comprehensive review on physical activation of biochar for energy and environmental applications. REV CHEM ENG 2019. [DOI: 10.1515/revce-2017-0113] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Biochar is a solid by-product of thermochemical conversion of biomass to bio-oil and syngas. It has a carbonaceous skeleton, a small amount of heteroatom functional groups, mineral matter, and water. Biochar’s unique physicochemical structures lead to many valuable properties of important technological applications, including its sorption capacity. Indeed, biochar’s wide range of applications include carbon sequestration, reduction in greenhouse gas emissions, waste management, renewable energy generation, soil amendment, and environmental remediation. Aside from these applications, new scientific insights and technological concepts have continued to emerge in the last decade. Consequently, a systematic update of current knowledge regarding the complex nature of biochar, the scientific and technological impacts, and operational costs of different activation strategies are highly desirable for transforming biochar applications into industrial scales. This communication presents a comprehensive review of physical activation/modification strategies and their effects on the physicochemical properties of biochar and its applications in environment-related fields. Physical activation applied to the activation of biochar is discussed under three different categories: I) gaseous modification by steam, carbon dioxide, air, or ozone; II) thermal modification by conventional heating and microwave irradiation; and III) recently developed modification methods using ultrasound waves, plasma, and electrochemical methods. The activation results are discussed in terms of different physicochemical properties of biochar, such as surface area; micropore, mesopore, and total pore volume; surface functionality; burn-off; ash content; organic compound content; polarity; and aromaticity index. Due to the rapid increase in the application of biochar as adsorbents, the synergistic and antagonistic effects of activation processes on the desired application are also covered.
Collapse
|
29
|
Wang S, Zhao M, Zhou M, Li YC, Wang J, Gao B, Sato S, Feng K, Yin W, Igalavithana AD, Oleszczuk P, Wang X, Ok YS. Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:820-834. [PMID: 30981127 DOI: 10.1016/j.jhazmat.2019.03.080] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/22/2019] [Accepted: 03/18/2019] [Indexed: 05/22/2023]
Abstract
The promising characteristics of nanoscale zero-valent iron (nZVI) have not been fully exploited owing to intrinsic limitations. Carbon-enriched biochar (BC) has been widely used to overcome the limitations of nZVI and improve its reaction with environmental pollutants. This work reviews the preparation of nZVI/BC nanocomposites; the effects of BC as a supporting matrix on the nZVI crystallite size, dispersion, and oxidation and electron transfer capacity; and its interaction mechanisms with contaminants. The literature review suggests that the properties and preparation conditions of BC (e.g., pore structure, functional groups, feedstock composition, and pyrogenic temperature) play important roles in the manipulation of nZVI properties. This review discusses the interactions of nZVI/BC composites with heavy metals, nitrates, and organic compounds in soil and water. Overall, BC contributes to the removal of contaminants because it can attenuate contaminants on the surface of nZVI/BC; it also enhances electron transfer from nZVI to target contaminants owing to its good electrical conductivity and improves the crystallite size and dispersion of nZVI. This review is intended to provide insights into methods of optimizing nZVI/BC synthesis and maximizing the efficiency of nZVI in environmental cleanup.
Collapse
Affiliation(s)
- Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Mingyue Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Min Zhou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yuncong C Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Soil and Water Sciences Department, Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL, 33031, USA
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Shinjiro Sato
- Department of Science & Engineering for Sustainable Innovation, SOKA University, Hachiojishi, Tokyo, 192-8577, Japan
| | - Ke Feng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Weiqin Yin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Avanthi Deshani Igalavithana
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Patryk Oleszczuk
- Department of Environmental Chemistry, Faculty of Chemistry, Maria Sklodowska-Curie University, Maria Curie-Sklodowska Square 3, 20-031 Lublin, Poland
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China.
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
30
|
Hu S, Zhang D, Yang Y, Ran Y, Mao J, Chu W, Cao X. Effects of the Chemical Structure, Surface, and Micropore Properties of Activated and Oxidized Black Carbon on the Sorption and Desorption of Phenanthrene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7683-7693. [PMID: 31244067 DOI: 10.1021/acs.est.9b01788] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effects of the chemical structure, surface properties, and micropore of modified black carbon samples (BCs) on the sorption mechanism of hydrophobic organic contaminants (HOCs) are discussed. Activated and oxidized BCs were produced from a shale kerogen at 250-500 °C by chemical activation regents (KOH and ZnCl2) and then by oxidative regents (H2O2 and NaClO). The surface properties (water contact angel, Boehm titration, and cation exchange capacity, CEC), structural properties (advanced solid-state 13C NMR), micropore properties (CO2 adsorption), mesopore properties (N2 adsorption), and sorption and desorption properties of phenanthrene were obtained. The results showed that ZnCl2-activated BCs had higher basic surface groups, CEC values, aromatic carbon contents, micropore volumes, and adsorption volumes but exhibited lower acidic surface groups than the KOH-activated BCs did. Micropore modeling and sorption irreversibility indicated that the micropore filling was the main sorption mechanism of phenanthrene. In addition, ZnCl2 activated and NaClO oxidized BCs showed a nice regression equation between adsorption volumes and micropore volumes (CO2- V0) as follows: Q0' = 0.495 V0 + 6.28( R2 = 0.98, p < 0.001). Moreover, the contents of nonprotonated aromatic carbon, micropore volumes, and micropore sizes are the critical factors to micropore filling mechanism of phenanthrene on BCs. The size of fused aromatic rings was estimated from the recoupled 1H-13C dipolar dephasing, and the BC structural models at temperatures ranging from 300 to 500 were proposed. This finding improves our understanding of the sorption mechanism of HOCs from the perspectives of chemical structure and micropore properties.
Collapse
Affiliation(s)
- Shujie Hu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
- University of Chinese Academy of Science , Beijing 100049 , China
| | - Dainan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Yu Yang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Yong Ran
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Jingdong Mao
- Department of Chemistry and Biochemistry , Old Dominion University , Norfolk , Virginia 23529 , United States
| | - Wenying Chu
- Department of Chemistry and Biochemistry , Old Dominion University , Norfolk , Virginia 23529 , United States
| | - Xiaoyan Cao
- Department of Chemistry , Brandeis University , Waltham , Massachusetts 02453 , United States
| |
Collapse
|
31
|
Application of Biochar Derived from Different Types of Biomass and Treatment Methods as a Fuel Source for Direct Carbon Fuel Cells. ENERGIES 2019. [DOI: 10.3390/en12132477] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The direct carbon fuel cell (DCFC) is an emerging technology for energy production. The application of biomass in DCFCs will be a major transition from the use of coal to generate energy. However, the relationship between biomass or biochar composition and the electrochemical performance of a DCFC is yet to be studied. The performance of a DCFC using fuel sources derived from woody and non-woody biomass were compared in this study. The effect of pyrolysis temperature ranges from 550 °C to 850 °C on the preparation of biochar from rubber wood (RW) and rice husk (RH) were evaluated for power generation from DCFCs. In addition, the effect of applying chemical pre-treatment and post-treatment on biochar were further investigated for DCFC performance. In general, the power density derived from rubber wood biochar is significantly higher (2.21 mW cm−2) compared to rice husk biochar (0.07 mW cm−2). This might be due to the presence of an oxygen functional group, higher fixed carbon content, and lower ash content in rubber wood biochar. The acid and alkaline pre-treatment and post-treatment have altered the composition with a lower ash content in rubber wood biochar. The structural and compositional alterations in alkaline pre-treatment bring a positive effect in enhancing the power density from DCFCs. This study concludes that woody biochar is more suitable for DCFC application, and alkaline pre-treatment in the preparation of biochar enhances the electrochemical activity of DCFC. Further investigation on the optimization of DCFC operating conditions could be performed.
Collapse
|
32
|
Godlewska P, Siatecka A, Kończak M, Oleszczuk P. Adsorption capacity of phenanthrene and pyrene to engineered carbon-based adsorbents produced from sewage sludge or sewage sludge-biomass mixture in various gaseous conditions. BIORESOURCE TECHNOLOGY 2019; 280:421-429. [PMID: 30784992 DOI: 10.1016/j.biortech.2019.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Adsorption of phenanthrene (PHE) and pyrene (PYR) by engineered carbon-based adsorbents produced from sewage sludge in an atmosphere of nitrogen (N2) or carbon dioxide (CO2) at temperatures of 500, 600, and 700 °C was investigated. The addition of willow to the SSL decreased the biochar adsorption capacity. However, there was an increase in the adsorption capacity after changing N2 to CO2. The addition of willow to SSL and the type of carrier gas affected the mechanism of adsorption. The adsorption of PHE and PYR on the SSL-derived adsorbents produced in N2 occurred through pore filling. The adsorption on the SSL-derived adsorbents with willow followed the mechanism of π-π electron-donor-acceptor (EDA) interactions and hydrophobic interactions. A similar mechanism was observed with regard to the biochars produced from SSL in atmosphere of CO2. For the SSL-derived adsorbents with willow in CO2, the adsorption mechanism was observed to vary between PHE and PYR.
Collapse
Affiliation(s)
- Paulina Godlewska
- Department of Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Square 3, 20-031 Lublin, Poland
| | - Anna Siatecka
- Department of Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Square 3, 20-031 Lublin, Poland
| | - Magdalena Kończak
- Department of Hydrology and Climatology, Faculty of Earth Sciences and Spatial Management, Maria Curie-Skłodowska University in Lublin, 2cd Kraśnicka Ave., 20-718 Lublin, Poland
| | - Patryk Oleszczuk
- Department of Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Square 3, 20-031 Lublin, Poland.
| |
Collapse
|
33
|
Yuan P, Wang J, Pan Y, Shen B, Wu C. Review of biochar for the management of contaminated soil: Preparation, application and prospect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:473-490. [PMID: 31096377 DOI: 10.1016/j.scitotenv.2018.12.400] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/13/2018] [Accepted: 12/26/2018] [Indexed: 05/20/2023]
Abstract
As a multi-beneficial amendment, biochar is reasonable and reliable to be employed as an amendment to implement soil remediation. An overview on the manufacture, applications for contaminated soil restoration and revegetation, as well as recommended aspects for future work has been accomplished. One of the objectives of this work presented herein was to determine the effect of feedstock and preparation conditions such as pyrolysis temperature, retention time, gas flow rate, additives on the biochar characteristics and application potentials. Besides, relevant modification or activation technologies have been discussed for the improvement of the biochar functions. The application of biochar could adjust the soil structure (surface area, pore size and distribution etc.), improve the soil physicochemical properties (pH, cation exchange capacity, water retention capacity etc.) and enhance the uptake of soil nutrients for plant growth; In addition, it also can be used to adsorb various contaminants (heavy metals, organic matters), modify the habit and function of microorganism and mitigate climate problem by changing the bioavailability of elements (C, N, K etc.) in soil. These results also provided the possibility to expend the application of biochar to modify the degraded soils in the saline-alkali soil and industrial regions, further increase the usable area of cultivated land. The future research directions could be suggested as long-term field trials, the evaluation of environmental risk and the optimization of biochar production. Moreover, the relevant mechanisms should be adequately considered for maximizing the all-around efficiency of biochar amendments.
Collapse
Affiliation(s)
- Peng Yuan
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jianqiao Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Yijun Pan
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Boxiong Shen
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Chunfei Wu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Northern Ireland BT7 1NN, United Kingdom
| |
Collapse
|
34
|
Biochar as a Multifunctional Component of the Environment—A Review. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9061139] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The growing demand for electricity, caused by dynamic economic growth, leads to a decrease in the available non-renewable energy resources constituting the foundation of global power generation. A search for alternative sources of energy that can support conventional energy technologies utilizing fossil fuels is not only of key significance for the power industry but is also important from the point of view of environmental conservation and sustainable development. Plant biomass, with its specific chemical structure and high calorific value, is a promising renewable source of energy which can be utilized in numerous conversion processes, enabling the production of solid, liquid, and gaseous fuels. Methods of thermal biomass conversion include pyrolysis, i.e., a process allowing one to obtain a multifunctional product known as biochar. The article presents a review of information related to the broad uses of carbonization products. It also discusses the legal aspects and quality standards applicable to these materials. The paper draws attention to the lack of uniform legal and quality conditions, which would allow for a much better use of biochar. The review also aims to highlight the high potential for a use of biochar in different environments. The presented text attempts to emphasize the importance of biochar as an alternative to classic products used for energy, environmental and agricultural purposes.
Collapse
|
35
|
Kim S, Park CM, Jang A, Jang M, Hernández-Maldonado AJ, Yu M, Heo J, Yoon Y. Removal of selected pharmaceuticals in an ultrafiltration-activated biochar hybrid system. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Jang HM, Yoo S, Choi YK, Park S, Kan E. Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar. BIORESOURCE TECHNOLOGY 2018. [PMID: 29536870 DOI: 10.1016/j.biortech.2018.03.013] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The objective of this study was to evaluate the adsorption of tetracycline (TC) on the Pinus taeda-derived activated biochar (BC). After NaOH activation, the well-developed porous surface structure was observed with a significantly increase in surface area (959.9 m2/g). The kinetic and isotherm studies indicated that hydrogen bonding and π-π interaction on the heterogeneous surface would be the possible mechanisms, while intra-particle diffusion was considered as the major limitation for the adsorption of TC on the activated BC. The maximum adsorption capacity of the activated BC (274.8 mg TC/g BC) was higher than those of various activated BCs from the previous studies while it was similar to those of commercial activated carbons. It indicated that the activated BC had the high potential for TC removal in water.
Collapse
Affiliation(s)
- Hyun Min Jang
- Texas A&M AgriLife Research Center, 1229 North US Highway 281, Stephenville, TX 76401, USA
| | - Seunghyun Yoo
- North Carolina State University, Department of Forest Biomaterials, 2820 Faucette Blvd, Raleigh, NC 27607, USA
| | - Yong-Keun Choi
- Texas A&M AgriLife Research Center, 1229 North US Highway 281, Stephenville, TX 76401, USA; Office of Sponsored Projects, Tarleton State University, 1333 W. Washington, Stephenville, TX 76401, USA
| | - Sunkyu Park
- North Carolina State University, Department of Forest Biomaterials, 2820 Faucette Blvd, Raleigh, NC 27607, USA
| | - Eunsung Kan
- Texas A&M AgriLife Research Center, 1229 North US Highway 281, Stephenville, TX 76401, USA; Office of Sponsored Projects, Tarleton State University, 1333 W. Washington, Stephenville, TX 76401, USA.
| |
Collapse
|
37
|
Banik C, Lawrinenko M, Bakshi S, Laird DA. Impact of Pyrolysis Temperature and Feedstock on Surface Charge and Functional Group Chemistry of Biochars. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:452-461. [PMID: 29864182 DOI: 10.2134/jeq2017.11.0432] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The capacity of biochars to adsorb ionic contaminants is strongly influenced by biochar surface chemistry. We studied the effects of biomass feedstock type, pyrolysis temperature, reaction media pH, and AlCl pre-pyrolysis feedstock treatments on biochar anion exchange capacity (AEC), cation exchange capacity (CEC), point of zero net charge (PZNC), and point of zero salt effect (PZSE). We used the relationship between PZNC and PZSE to probe biochar surfaces for the presence of unstable (hydrolyzable) surface charge functional groups. The results indicate that biochars produced at ≤500°C have high CECs and low AEC, PZSE, and PZNC values due to the dominance of negative surface charge arising from carboxylate and phenolate functional groups. Biochars produced at ≥700°C have low CEC and high AEC, PZSE, and PZNC values, consistent with a dominance of positive surface charge arising from nonhydrolyzable bridging oxonium (oxygen heterocycles) groups. However, biochars produced at moderate temperatures (500-700°C) have high PZSE and low PZNC values, indicating the presence of nonbridging oxonium groups, which are rapidly degraded under alkaline conditions by OH attack on the oxonium α-C. Biochars treated with AlCl have high AEC, PZSE, and PZNC values due to variably charged aluminol groups on biochar surfaces. The results provide support for the presence of both hydrolyzable and nonhydrolyzable oxonium groups on biochar surfaces. They also demonstrate that biochars produced at high pyrolysis temperatures (>700°C) or those receiving pre-pyrolysis treatments with AlCl are optimized for anionic contaminant adsorption, whereas biochars produced at low pyrolysis temperatures (400°C) are optimized for cationic contaminant adsorption.
Collapse
|
38
|
Jin J, Sun K, Liu W, Li S, Peng X, Yang Y, Han L, Du Z, Wang X. Isolation and characterization of biochar-derived organic matter fractions and their phenanthrene sorption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:745-753. [PMID: 29455087 DOI: 10.1016/j.envpol.2018.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/26/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Chemical composition and pollutant sorption of biochar-derived organic matter fractions (BDOMs) are critical for understanding the long-term environmental significance of biochar. Phenanthrene (PHE) sorption by the humic acid-like (HAL) fractions isolated from plant straw- (PLABs) and animal manure-based (ANIBs) biochars, and the residue materials (RES) after HAL extraction was investigated. The HAL fraction comprised approximately 50% of organic carbon (OC) of the original biochars. Results of XPS and 13C NMR demonstrated that the biochar-derived HAL fractions mainly consisted of aromatic clusters substituted by carboxylic groups. The CO2 cumulative surface area of BDOMs excluding PLAB-derived RES fractions was obviously lower than that of corresponding biochars. The sorption nonlinearity of PHE by the fresh biochars was significantly stronger than that of the BDOM fractions, implying that the BDOM fractions were more chemically homogeneous. The BDOMs generally exhibited comparable or higher OC-normalized distribution coefficients (Koc) of PHE than the original biochars. The PHE logKoc values of the fresh biochars correlated negatively with the micropore volumes due to steric hindrance effect. In contrast, a positive relationship between the sorption coefficients (Kd) of BDOMs and the micropore volumes was observed in this study, suggesting that pore filling could dominate PHE sorption by the BDOMs. The positive correlation between the PHE logKoc values of the HAL fractions and the aromatic C contents indicates that PHE sorption by the HAL fractions was regulated by aromatic domains. The findings of this study improve our knowledge of the evolution of biochar properties after application and its potential environmental impacts.
Collapse
Affiliation(s)
- Jie Jin
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Wei Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Shiwei Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Xianqiang Peng
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yan Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Lanfang Han
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Ziwen Du
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
39
|
Guo W, Wang S, Wang Y, Lu S, Gao Y. Sorptive removal of phenanthrene from aqueous solutions using magnetic and non-magnetic rice husk-derived biochars. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172382. [PMID: 29892423 PMCID: PMC5990792 DOI: 10.1098/rsos.172382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/20/2018] [Indexed: 05/22/2023]
Abstract
A magnetically modified rice husk biochar (MBC) was successfully prepared by a hydrothermal method from original biochar (BC) and subsequently used to remove phenanthrene (PHE) from aqueous solutions. The porosity, specific surface area and hydrophobicity of BC were significantly improved (approx. two times) after magnetic modification. The adsorption data fitted well to pseudo-second-order kinetic and Langmuir models. Compared with BC, MBC had a faster adsorption rate and higher adsorption capacity of PHE. The adsorption equilibrium for PHE on MBC was achieved within 1.0 h. The maximum adsorption capacity of PHE on MBC was 97.6 mg g-1 based on the analysis of the Sips model, which was significantly higher than that of other sources of BCs. The adsorption mechanism of the two BCs was mainly attributed to the action of surface functional groups and π-π-conjugated reactions. The adsorption of PHE on MBC mainly occurred in the functional groups of C-O and Fe3O4, but that on BC was mainly in the functional groups of -OH, N-H, C=C and C-O.
Collapse
Affiliation(s)
- Wei Guo
- School of Environmental Science and Engineering, North China Electric Power University, Beinong Road 2, Beijing 102206, People's Republic of China
- Authors for correspondence: Wei Guo e-mail:
| | - Shujuan Wang
- School of Environmental Science and Engineering, North China Electric Power University, Beinong Road 2, Beijing 102206, People's Republic of China
| | - Yunkai Wang
- School of Environmental Science and Engineering, North China Electric Power University, Beinong Road 2, Beijing 102206, People's Republic of China
| | - Shaoyong Lu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
- Authors for correspondence: Shaoyong Lu e-mail:
| | - Yue Gao
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussel 1050, Belgium
| |
Collapse
|
40
|
Nyoka NWK, Kanyile SN, Bredenhand E, Prinsloo GJ, Voua Otomo P. Biochar alleviates the toxicity of imidacloprid and silver nanoparticles (AgNPs) to Enchytraeus albidus (Oligochaeta). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10937-10945. [PMID: 29397515 DOI: 10.1007/s11356-018-1383-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/24/2018] [Indexed: 05/24/2023]
Abstract
The present study investigated the use of biochar for the alleviation of the toxic effects of a nanosilver colloidal dispersion and a chloronicotinyl insecticide. The survival and reproduction of the potworm Enchytraeus albidus were assessed after exposure to imidacloprid and silver nanoparticles (AgNPs). E. albidus was exposed to 0, 25, 50, 100, 200, and 400 mg imidacloprid/kg and 0, 5, 25, 125, and 625 mg Ag/kg for 21 days in 10% biochar amended and non-biochar amended OECD artificial soil. In both exposure substrates, the effects of imidacloprid on survival were significant in the two highest treatments (p < 0.01). No biochar effect was observed as survival was statistically similar in both soils after exposure to imidacloprid. In the case of AgNPs, significant mortality was only observed in the highest AgNP treatments in both the amended and non-amended soils (p < 0.05). Nevertheless, statistically greater survival occurred in the biochar-amended treatment (p < 0.05). Reproduction results showed a more pronounced biochar effect with an EC50 = 22.27 mg imidacloprid/kg in the non-amended soil and a higher EC50 = 46.23 mg imidacloprid/kg in the biochar-amended soil. This indicated a 2-fold decrease in imidacloprid toxicity due to biochar amendment. A similar observation was made in the case of AgNPs where a reproduction EC50 = 166.70 mg Ag/kg soil in the non-amended soil increased to an EC50 > 625 mg Ag/kg soil (the highest AgNP treatment) in the amended soil. This indicated at least a 3.7-fold decrease in AgNPs toxicity due to biochar amendment. Although more studies may be needed to optimize the easing effects of biochar on the toxicity of these chemicals, the present results show that biochar could be useful for the alleviation of the toxic effects of imidacloprid and silver nanoparticles in the soil.
Collapse
Affiliation(s)
- Ngitheni Winnie-Kate Nyoka
- Department of Zoology and Entomology, University of the Free State, Private Bag x13, Phuthaditjhaba, 9866, Republic of South Africa
| | - Sthandiwe Nomthandazo Kanyile
- Department of Zoology and Entomology, University of the Free State, Private Bag x13, Phuthaditjhaba, 9866, Republic of South Africa
| | - Emile Bredenhand
- Department of Zoology and Entomology, University of the Free State, Private Bag x13, Phuthaditjhaba, 9866, Republic of South Africa
| | - Godfried Jacob Prinsloo
- Department of Crop Protection, Agriculture Research Council-Small Grain Institute, Private Bag x29, Bethlehem, 9700, Republic of South Africa
| | - Patricks Voua Otomo
- Department of Zoology and Entomology, University of the Free State, Private Bag x13, Phuthaditjhaba, 9866, Republic of South Africa.
| |
Collapse
|
41
|
Kang S, Jung J, Choe JK, Ok YS, Choi Y. Effect of biochar particle size on hydrophobic organic compound sorption kinetics: Applicability of using representative size. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:410-418. [PMID: 29156262 DOI: 10.1016/j.scitotenv.2017.11.129] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/27/2017] [Accepted: 11/12/2017] [Indexed: 05/22/2023]
Abstract
Particle size of biochar may strongly affect the kinetics of hydrophobic organic compound (HOC) sorption. However, challenges exist in characterizing the effect of biochar particle size on the sorption kinetics because of the wide size range of biochar. The present study suggests a novel method to determine a representative value that can be used to show the dependence of HOC sorption kinetics to biochar particle size on the basis of an intra-particle diffusion model. Biochars derived from three different feedstocks are ground and sieved to obtain three daughter products each having different size distributions. Phenanthrene sorption kinetics to the biochars are well described by the intra-particle diffusion model with significantly greater sorption rates observed for finer grained biochars. The time to reach 95% of equilibrium for phenanthrene sorption to biochar is reduced from 4.6-17.9days for the original biochars to <1-4.6days for the powdered biochars with <125μm in size. A moderate linear correlation is found between the inverse square of the representative biochar particle radius obtained using particle size distribution analysis and the apparent phenanthrene sorption rates determined by the sorption kinetics experiments and normalized to account for the variation of the sorption rate-determining factors other than the biochar particle radius. The results suggest that the representative biochar particle radius reasonably describes the dependence of HOC sorption rates on biochar particle size.
Collapse
Affiliation(s)
- Seju Kang
- Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihyeun Jung
- Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Kwon Choe
- Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Republic of Korea; Institute of Construction and Environmental Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong Sik Ok
- O-Jeong Eco-Resilience Institute (OJERI), Korea University, Seoul 02841, Republic of Korea; Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yongju Choi
- Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Republic of Korea; Institute of Construction and Environmental Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
42
|
Sophia Ayyappan C, Bhalambaal VM, Kumar S. Effect of biochar on bio-electrochemical dye degradation and energy production. BIORESOURCE TECHNOLOGY 2018; 251:165-170. [PMID: 29274856 DOI: 10.1016/j.biortech.2017.12.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
The effect of coconut shell biochar on dye degradation in a microbial fuel cell (MFC) was investigated in the present study. Two different doses of biochar (0.5 g and 1 g) and one control without bio-char were studied. The highest COD removal efficiency was about 77.7% (0.5 g biochar), maximum current (1.07 mA) and voltage (722 mV) were obtained with 1 g biochar. Biofilm optical microscopy characterization revealed the micro colonies intricate plate-like structures. High adsorbent dosage might provide a high surface area for biofilm to generate electricity. BET results of coconut shell biochar showed the maximum surface area of 0.9669 m2/g and macroporosity (0.0032 cm3/g). The overall results highlighted the possibility of using biochar as an additive in MFC for efficient dye degradation.
Collapse
Affiliation(s)
- Carmalin Sophia Ayyappan
- CSIR-National Environmental Engineering Research Institute, CSIR Complex, Taramani, Chennai 600 113, India
| | - V M Bhalambaal
- CSIR-National Environmental Engineering Research Institute, CSIR Complex, Taramani, Chennai 600 113, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440 020, India.
| |
Collapse
|
43
|
Abdelhadi SO, Dosoretz CG, Rytwo G, Gerchman Y, Azaizeh H. Production of biochar from olive mill solid waste for heavy metal removal. BIORESOURCE TECHNOLOGY 2017; 244:759-767. [PMID: 28822949 DOI: 10.1016/j.biortech.2017.08.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
Commercial activated carbon (CAC) and biochar are useful adsorbents for removing heavy metals (HM) from water, but their production is costly. Biochar production from olive solid waste from two olive cultivars (Picual and Souri) and two oil production process (two- or three-phase) and two temperatures (350 and 450°C) was tested. The biochar yield was 24-35% of the biomass, with a surface area of 1.65-8.12m2g-1, as compared to 1100m2g-1 for CAC. Picual residue from the two-phase milling technique, pyrolysed at 350°C, had the best cumulative removal capacity for Cu+2, Pb+2, Cd+2, Ni+2 and Zn+2 with more than 85% compared to other biochar types and CAC. These results suggest that surface area cannot be used as a sole predictor of HM removal capacity. FTIR analysis revealed the presence of different functional groups in the different biochar types, which may be related to the differences in absorbing capacities.
Collapse
Affiliation(s)
- Samya O Abdelhadi
- Institute of Applied Research (Affiliated with University of Haifa), The Galilee Society, P.O. Box 437, Shefa-Amr 20200, Israel; Faculty of Civil and Environmental Engineering, Technion Institute, Haifa 32000, Israel
| | - Carlos G Dosoretz
- Faculty of Civil and Environmental Engineering, Technion Institute, Haifa 32000, Israel
| | - Giora Rytwo
- Tel Hai College, Department of Environmental Science, Upper Galilee, 12208, Israel; MIGAL, Galilee Research Institute, Upper Galilee, Israel
| | | | - Hassan Azaizeh
- Institute of Applied Research (Affiliated with University of Haifa), The Galilee Society, P.O. Box 437, Shefa-Amr 20200, Israel; Tel Hai College, Department of Environmental Science, Upper Galilee, 12208, Israel.
| |
Collapse
|
44
|
Padhye LP. Influence of surface chemistry of carbon materials on their interactions with inorganic nitrogen contaminants in soil and water. CHEMOSPHERE 2017. [PMID: 28622649 DOI: 10.1016/j.chemosphere.2017.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Inorganic nitrogen contaminants (INC) (NH4+, NO3-, NO2-, NH3, NO, NO2, and N2O) pose a growing risk to the environment, and their remediation methods are highly sought after. Application of carbon materials (CM), such as biochar and activated carbon, to remediate INC from agricultural fields and wastewater treatment plants has gained a significant interest since past few years. Understanding the role of surface chemistry of CM in adsorption of various INC is highly critical to increase adsorption efficiency as well as to assess the long term impact of using these highly recalcitrant CM for remediation of INC. Critical reviews of adsorption studies related to INC have revealed that carbon surface chemistry (surface functional groups, pH, Eh, elemental composition, and mineral content) has significant influence on adsorption of INC. Compared to basic functional groups, oxygen containing surface functional groups have been found to be more influential for adsorption of INC. However, basic sites on carbon materials still play an important role in chemisorption of anionic INC. Apart from surface functional groups, pH, Eh and pHzpc of CM and elemental and mineral composition of its surface are important properties capable of altering INC interactions with CM. This review summarizes our current understanding of INC interactions with CM's surface through the known chemisorption mechanisms: electrostatic interaction, hydrogen bonding, electron donor-acceptor mechanism, hydrophobic and hydrophilic interaction, chemisorption aided by minerals, and interactions influenced by pH and elemental composition. Change in surface chemistry of CM in soil during aging is also discussed.
Collapse
Affiliation(s)
- Lokesh P Padhye
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
45
|
Removal of Copper (II) by Biochar Mediated by Dissolved Organic Matter. Sci Rep 2017; 7:7091. [PMID: 28769091 PMCID: PMC5541037 DOI: 10.1038/s41598-017-07507-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/29/2017] [Indexed: 11/08/2022] Open
Abstract
The effects of humic acid (HA) and fulvic acid (FA) on Cu2+ adsorption on biochar were investigated, with mechanisms confirmed by excitation-emission matrix spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy. HA loading enhanced Cu2+ adsorption on biochar, with the maximum enhancement of 55.0% occurring at an HA loading of 100 mg-C/L. The adsorbed HA introduced many additional functional groups to biochar, thus enhancing Cu2+ adsorption, which decreased at HA concentrations >100 mg-C/L due to self-association of HA at high loading concentrations. In contrast, FA loading caused no enhancement on Cu2+ adsorption on biochar. FA was adsorbed through H-bonding with the functional groups of biochar, which set up a competition with Cu2+ for adsorption on biochar. The functional groups occupied by adsorbed FA were offset by the newly introduced functional groups of FA, thus there was no net increase in the amount of Cu2+ adsorption upon FA loading. These findings imply that, because of the enhanced adsorption of HA-loaded biochar, the amount of Cu2+ immobilized would increase by 28.2% for mature compost and 31.9% for fresh compost if there exist interaction between biochar and HA compared with the amounts immobilized by non-interactive HA and biochar.
Collapse
|
46
|
The use of activated biochar for development of a sensitive electrochemical sensor for determination of methyl parathion. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.06.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
de Caprariis B, De Filippis P, Hernandez AD, Petrucci E, Petrullo A, Scarsella M, Turchi M. Pyrolysis wastewater treatment by adsorption on biochars produced by poplar biomass. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 197:231-238. [PMID: 28391096 DOI: 10.1016/j.jenvman.2017.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/23/2017] [Accepted: 04/02/2017] [Indexed: 05/23/2023]
Abstract
Pyrolysis is a widely studied thermochemical process, however the disposal of the produced byproducts is an unexplored field. In particular, the acqueous phase, characterized by a high organic load (TOC), must be necessarily treated. Aims of this work is to study the potentiality of biochar as adsorbent material for the treatment of this wastewater. For this aim, pyrolysis wastewater and biochar produced in the same plant were used. Two biochars produced at different temperatures (550 and 750 °C) and an activated biochar produced by chemical activation with NaOH of the raw biomass were tested. The study shows that higher temperature in the biochar production leads to higher sorption capacity of the organic compounds due to an increase of the surface area. The activation process further increases the surface area of the biochar that becomes similar to that of a commercial activated carbon while the sorption capacity exceeds that of commercial activated carbon of 2.5 times.
Collapse
Affiliation(s)
- Benedetta de Caprariis
- Department of Chemical Engineering, Sapienza University of Rome, Via Eudossiana 18, Rome, Italy.
| | - Paolo De Filippis
- Department of Chemical Engineering, Sapienza University of Rome, Via Eudossiana 18, Rome, Italy
| | - A David Hernandez
- Department of Chemical Engineering, Sapienza University of Rome, Via Eudossiana 18, Rome, Italy
| | - Elisabetta Petrucci
- Department of Chemical Engineering, Sapienza University of Rome, Via Eudossiana 18, Rome, Italy
| | - Antonietta Petrullo
- Department of Chemical Engineering, Sapienza University of Rome, Via Eudossiana 18, Rome, Italy
| | - Marco Scarsella
- Department of Chemical Engineering, Sapienza University of Rome, Via Eudossiana 18, Rome, Italy
| | - Mattia Turchi
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
48
|
Zhang F, Li Y, Zhang G, Li W, Yang L. The importance of nano-porosity in the stalk-derived biochar to the sorption of 17β-estradiol and retention of it in the greenhouse soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9575-9584. [PMID: 28247270 DOI: 10.1007/s11356-017-8630-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/12/2017] [Indexed: 06/06/2023]
Abstract
Natural estrogens in greenhouse soils with long-term manure application are becoming a potential threat to adjacent aquatic environment. Porous stalk biochar as a cost-effective adsorbent of estrogen has a strong potential to reduce their transportation from soil to waters. But the dominant adsorption mechanism of estrogen to stalk biochars and retention of estrogen by greenhouse soils amended with biochar are less well known. Element, function groups, total surface area (SAtotal), nano-pores of stalk biochars, and chemical structure of 17β-estradiol (E2, length 1.20 nm, width 0.56 nm, thickness 0.48 nm) are integrated in research on E2 sorption behavior in three stalk-derived biochars produced from wheat straw (WS), rice straw (RS), and corn straw (CS), and greenhouse soils amended with optimal biochar. The three biochars had comparable H/C and (O + N)/C, while their aromatic carbon contents and total surface areas (SAtotal) both varied as CS > WS > RS. However, WS had the highest sorption capacity (logK oc), sorption affinity (K f ), and strongest nonlinearity (n). Additionally, the variation of Langmuir maximum adsorption capacity (Q 0) was consistent with the trend for SA1.2-20 (WS > RS > CS) but contrary to the trend for SAtotal and SA<1.2 (CS > WS > RS). These results indicate that pore-filling dominates the sorption of E2 by biochars and exhibits "sieving effect" and length-directionality-specific via H-bonding between -OH groups on the both ends of E2 in the length direction and polar groups on the inner surface of pores. After the addition of wheat straw biochar, the extent of increase in the sorption affinity for E2 in the soil with low OC content was higher than those in the soil with high OC content. Therefore, the effectiveness for the wheat straw biochar mitigating the risk of E2 in greenhouse soil depended on the compositions of soil, especially organic matter.
Collapse
Affiliation(s)
- Fengsong Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875, Beijing, China
| | - Guixiang Zhang
- College of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China.
| | - Wei Li
- Nuclear and Radiation Safety Centre, Ministry of Environmental Protection of China, 100082, Beijing, China
| | - Lingsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
49
|
Kołtowski M, Charmas B, Skubiszewska-Zięba J, Oleszczuk P. Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 136:119-125. [PMID: 27842277 DOI: 10.1016/j.ecoenv.2016.10.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
The objective of the study was to determine the effect of various methods of biochar activation on the ecotoxicity of soils with various properties and with various content and origin of contaminants. The biochar produced from willow (at 700°C) was activated by 1) microwaves (in a microwave reactor under an atmosphere of water vapour), 2) carbon dioxide (in the quartz fluidized bed reactor) and 3) superheated steam (in the quartz fluidized bed reactor). Three different soils were collected from industrial areas. The soils were mixed with biochar and activated biochars at the dose of 5% and ecotoxicological parameters of mixture was evaluated using two solid phase test - Phytotoxkit F (Lepidium sativum) and Collembolan test (Folsomia candida) and one liquid phase test - Microtox® (Vibrio fischeri). Biochar activation had both positive and negative impacts, depending on the activation method, kind of bioassay and kind of soil. Generally, biochar activated by microwaves increased the effectiveness of ecotoxicity reduction relative to non-activated biochars. Whereas, biochar activated with CO2 most often cause a negative effect manifested by deterioration or as a lack of improvement in relation to non-activated biochar or to non-amended soil. It was also demonstrated that the increase of biochar specific surface area caused a significant reduction of toxicity of water leachates from the studied soils. Effectiveness of the reduction of leachate toxicity was weakened in the presence of dissolved organic carbon in the soil.
Collapse
Affiliation(s)
- Michał Kołtowski
- Department of Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Barbara Charmas
- Department of Chromatographic Methods, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Jadwiga Skubiszewska-Zięba
- Department of Chromatographic Methods, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Patryk Oleszczuk
- Department of Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland.
| |
Collapse
|
50
|
Wei L, Huang Y, Li Y, Huang L, Mar NN, Huang Q, Liu Z. Biochar characteristics produced from rice husks and their sorption properties for the acetanilide herbicide metolachlor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:4552-4561. [PMID: 27957688 DOI: 10.1007/s11356-016-8192-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
Rice husk biochar (RHBC) was prepared for use as adsorbents for the herbicide metolachlor. The characteristics and sorption properties of metolachlor adsorbed by the RHBC prepared at different pyrolysis temperatures were determined by analysis of physico-chemical characteristics, Fourier transform infrared spectroscopy (FTIR), Boehm titration, scanning electron microscopy (SEM), and thermodynamics and kinetics adsorption. With increasing pyrolysis temperature, the RHBC surface area greatly increased (from 2.57 to 53.08 m2 g-1). RHBC produced at the highest temperature (750 °C) had the greatest surface area; SEM also showed the formation of a porous surface on RH-750 biochar. The sorption capacity of RHBC also increased significantly with increasing pyrolysis temperature and was characterized by the Freundlich constant K f for the adsorption capacity increasing from 125.17-269.46 (pyrolysis at 300 °C) to 339.94-765.24 (pyrolysis at 750 °C). The results indicated that the surface area and pore diameter of RHBC produced with high pyrolysis temperature (i.e., 750 °C) had the greatest impact on the adsorption of metolachlor. The FTIR, Boehm titration, and SEM analysis showed that the greatest number of surface groups were on RHBC produced at the lowest temperature (300 °C). The biochars produced at different pyrolysis temperatures had different mechanisms of adsorbing metolachlor, which exhibited a transition from hydrogen bonds dominant at low pyrolytic temperature to pore-filling dominant at higher pyrolytic temperature.
Collapse
Affiliation(s)
- Lan Wei
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yufen Huang
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yanliang Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Lianxi Huang
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Nyo Nyo Mar
- Biotechnological Research Department, Ministry of Education, Kyauk-se, 09568, Myanmar
| | - Qing Huang
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhongzhen Liu
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|