1
|
Zhang Z, Liu R, Zheng W, Lan Y, Li Y. Specialized genera and niche partitioning promote the biosynthesis of short-chain fatty acids in anaerobic cofermentation of sewage sludge and protein-rich waste. ENVIRONMENTAL RESEARCH 2025; 271:121034. [PMID: 39909096 DOI: 10.1016/j.envres.2025.121034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/19/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Elucidating the relationships among various microorganisms and their reactions to environmental fluctuations, such as dissolved organic matter (DOM), remains a key objective in the anaerobic cofermentation (ACF) of sewage sludge (SS) and protein-rich waste (PRW); however, this topic is inadequately understood. In this study, the microbial traits associated with the biosynthesis of short-chain fatty acids (SCFAs) were investigated in the ACF of SS in conjunction with four distinct PRWs (pupa, fishmeal, maize gluten, and soybean meal). Compared with those in the SS-only reactor, the first-order rate constants for biosolid dissolution in the SS/PRW reactors were increased by 1.9-4.0-fold. Pupa performed best among the four PRWs in the ACF process, with the solubilization rate increasing from 9.4% (SS-only reactor) to 33.5%. The copious and readily biodegradable DOM created a unique niche for functional microbes, leading to reframing of the microfloral structure. Specialized genera, such as Holophaga, Alistipes, and Geothrix, were responsible for SCFA biosynthesis in the SS/pupa reactor. The highly differentiated, low-redundancy microecosystem constructed in the SS/pupa reactor contributed to the independent functioning of the hydrolyzers and acidogens, resulting in an SCFA yield that was 6.9-fold greater than that in the SS-only reactor. In addition, the ACF of SS/pupa resulted in the genes encoding the NiFe hydrogenase and Wood-Ljungdahl pathway being intact, which promoted the synthesis of SCFAs, especially acetate. These findings offer new insights into the microbiological mechanisms that augment SCFA generation by the ACF of SS/PRW in terms of microorganism fate, metabolic network relationships, and microecosystem niche.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314006, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Rui Liu
- Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314006, China.
| | - Wei Zheng
- Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314006, China
| | - Yaqiong Lan
- Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314006, China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
2
|
Machhirake N, Singh D, Yadav BR, Tembhare M, Kumar S. Optimizing alkali-pretreatment dosage for waste-activated sludge disintegration and enhanced biogas production yield. ENVIRONMENTAL RESEARCH 2024; 252:118876. [PMID: 38582420 DOI: 10.1016/j.envres.2024.118876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The rapid transition towards modernization and industrialization led to an increase in urban population, resulting in paramount challenge to municipal sewage sludge management. Anaerobic digestion (AD) serves as a promising venue for energy recovery from waste-activated sludge (WAS). Addressing the challenge of breaking down floc structures and microbial cells is crucial for releasing extracellular polymeric substances and cytoplasmic macromolecules to facilitate hydrolysis and fermentation process. The present study aims to introduce a combined process of alkaline/acid pre-treatments and AD to enhance sludge digestion and biogas production. The study investigates the influence of alkali pretreatment at ambient temperature using four alkali reagents (NaOH, Ca(OH)2, Mg(OH)2, and KOH). The primary goal is to provide insights into the intricate interplay of alkali dosages (0.04-0.12 g/gTS) on key physic-chemical parameters crucial for optimizing the pre-treatment dosage. Under the optimized alkaline/acid pre-treatment condition, the TSS reduction of 18%-30% was achieved. An increase in sCOD concentration (24%-50%) signifies the enhanced hydrolysis and solubilization rate of organic substrate in WAS. Finally, the biomethane potential test (BMPT) was performed for pre-treated WAS samples. The maximum methane (CH4) yield was observed in combination A1 (244 mL/g) and D1 (253 mL/g), demonstrating the pivotal role of alkali optimization in enhancing AD efficiency. This study serves as a valuable resource to policymakers, researchers, and technocrats in addressing challenges associated to sludge management.
Collapse
Affiliation(s)
- Nitesh Machhirake
- CSIR- National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Deval Singh
- CSIR- National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Bholu Ram Yadav
- CSIR- National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Mamta Tembhare
- CSIR- National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Sunil Kumar
- CSIR- National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India.
| |
Collapse
|
3
|
Yin Z, Wang J, Wang M, Liu J, Chen Z, Yang B, Zhu L, Yuan R, Zhou B, Chen H. Application and improvement methods of sludge alkaline fermentation liquid as a carbon source for biological nutrient removal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162341. [PMID: 36828064 DOI: 10.1016/j.scitotenv.2023.162341] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Alkaline fermentation can reduce the amount of waste activated sludge and prepare sludge alkaline fermentation liquid (SAFL) rich in short-chain fatty acids (SCFAs), which can be used as a high-quality carbon source for the biological nutrient removal (BNR) process. This review compiles the production method of SAFL and the progress of its application as a BNR carbon source. Compared with traditional carbon sources, SAFL has the advantages of higher efficiency and economy, and different operating conditions can influence the yield and structure of SCFAs in SAFL. SAFL can significantly improve the nutrient removal efficiency of the BNR process. Taking SAFL as the internal carbon source of BNR can simultaneously solve the problem of carbon source shortage and sludge treatment difficulties in wastewater treatment plants, and further reduce the operating cost. However, the alkaline fermentation process results in many refractory organics, ammonia and phosphate in SAFL, which reduces the availability of SAFL as a carbon source. Purifying SCFAs by removing nitrogen and phosphorus, directly extracting SCFAs, or increasing the amount of SCFAs in SAFL by co-fermentation or combining with other pretreatment methods, etc., are effective measures to improve the availability of SAFL.
Collapse
Affiliation(s)
- Zehui Yin
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Jihong Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Mingran Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiandong Liu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha, Suchdol 165 00, Czech Republic
| | - Boyu Yang
- Nanjing Academy of Resources and Ecology Sciences, No. 606, Ningliu Road, Jiangbei New District, 210044 Nanjing, China
| | - Lixin Zhu
- Sinopec Nanjing Chemical Industries Co., Ltd., No. 189, Geguan Road, Liuhe District, Jiangsu 210048, Nanjing, China
| | - Rongfang Yuan
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Beihai Zhou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
4
|
Castro-Fernandez A, Taboada-Santos A, Balboa S, Lema JM. Thermal hydrolysis pre-treatment has no positive influence on volatile fatty acids production from sewage sludge. BIORESOURCE TECHNOLOGY 2023; 376:128839. [PMID: 36906240 DOI: 10.1016/j.biortech.2023.128839] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The study compares the potential to produce volatile fatty acids (VFA) from sewage sludge, both raw and thermally pre-treated in two modes of operation. In batch mode, raw sludge at pH 8 obtained the highest maximum VFA yield (0.41 g COD-VFA/g CODfed) whereas pre-treated sludge achieved a lower value (0.27 g COD-VFA/g CODfed). The operation of 5-L continuous reactors showed that thermal hydrolysis pre-treatment (THP) did not have any significant influence on VFA yields, averaging 15.1 % g COD-VFA/g COD with raw sludge and 16.6 % g COD-VFA/g COD with pre-treated one. Microbial community analysis showed that phylum Firmicutes was predominant in both reactors and that the enzymatic profiles involved in VFA production were very similar regardless of the substrate fed.
Collapse
Affiliation(s)
- Ander Castro-Fernandez
- CETAQUA, Water Technology Centre, A Vila da Auga, José Villar Granjel 33, E-15890, Santiago de Compostela, Spain; CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain.
| | - Anton Taboada-Santos
- CETAQUA, Water Technology Centre, A Vila da Auga, José Villar Granjel 33, E-15890, Santiago de Compostela, Spain
| | - Sabela Balboa
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Juan M Lema
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| |
Collapse
|
5
|
More PP, Chavan AA, Sharma MB, Lali AM. Biobased volatile fatty acids (VFA) production via anaerobic acidogenesis of sugar processing industry effluent. ENVIRONMENTAL TECHNOLOGY 2023; 44:1179-1189. [PMID: 34669547 DOI: 10.1080/09593330.2021.1996472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Rapid industrialization and unscientific disposal of industrial wastewaters have resulted in the pollution of water bodies and deterioration of water quality all over the globe. Valorization of industrial wastewaters will help in reducing the negative impact on the environment and will add value to the waste. The present study targets utilization of sugar processing industrial effluent for bio-based production of Volatile fatty acids (VFA) through anaerobic acidogenesis. Batch studies conducted to determine the VFA production potential of sugar processing industry effluent resulted in the VFA yield of 0.70 g/g COD utilized. Further continuous VFA production system was developed and optimization of Organic loading rate (OLR) (2-22 g COD/L·day) was carried out with constant Hydraulic retention time (HRT) of 1 day. The continuous reactors studies resulted in a maximum VFA yield of 0.72 g/g COD utilized and productivity of 11.04 g COD/L·day at OLR of 14 g COD/L·day and 22 g COD/L·day, respectively. The developed process will provide an environmentally safe and efficient method for the conversion of complex industrial wastes to valuable products such as VFA.
Collapse
Affiliation(s)
- Pooja P More
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Aniket A Chavan
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Manju B Sharma
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Arvind M Lali
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
6
|
Tanikawa D, Motokawa D, Itoiri Y, Kimura ZI, Ito M, Nagano A. Biogas purification and ammonia load reduction in sewage treatment by two-stage down-flow hanging sponge reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158355. [PMID: 36041617 DOI: 10.1016/j.scitotenv.2022.158355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
In this study, a two-stage down-flow hanging sponge (TSDHS) reactor was used as biotrickling filter for biogas desulfurization by utilizing the anaerobic digester supernatant (ADS) of sewage sludge of an activated sludge process (ASP). The reactor comprises a closed-type first-stage down-flow hanging sponge (1st DHS) and an open-type second-stage down-flow hanging sponge (2nd DHS) reactors. In the 1st DHS, hydrogen sulfide in biogas was dissolved into the ADS, and then it was oxidized into elemental sulfur and sulfate by microbe using dissolved oxygen and nitrite in the ADS. More than 99.9 % of hydrogen sulfide was removed within 400 s of empty bed residence time, and >50 % of removed hydrogen sulfide was oxidized into elemental sulfur and accumulated at the surface of the sponge carrier in the 1st DHS. The 1st DHS effluent was fed into the 2nd DHS for nitrogen removal via nitrification and sulfur-based denitrification with the recirculation of the 2nd DHS effluent under nonaeration condition. In the 2nd DHS, 36.8 % of ammonia and 5.3 % of total inorganic nitrogen were removed. Sulfurimonas and Halothiobacillus were increased and contributed to the sulfur-based denitrification as well as the accumulation of elemental sulfur in the 1st DHS, respectively. In the 2nd DHS, Nitrosococcus, Nitrobacter, and Sulfuritalea were considered as the contributors of nitrogen removal via nitrification and sulfur-based denitrification. Further, this study shows that a TSDHS reactor can achieve not only desulfurization of biogas in the 1st DHS but also a 3.5 %-15 % reduction of the ammonia load in the 2nd DHS by effective utilization of the ADS during sewage treatment, assuming that the ADS is returned to the ASP.
Collapse
Affiliation(s)
- Daisuke Tanikawa
- Department of Civil and Environmental Engineering, National Institute of Technology (KOSEN), Kure College, P.C. 7378506 Kure, Japan.
| | - Daisuke Motokawa
- Advanced Course, Project Design Engineering, National Institute of Technology (KOSEN), Kure College, P.C. 7378506 Kure, Japan
| | - Yuya Itoiri
- Advanced Course, Project Design Engineering, National Institute of Technology (KOSEN), Kure College, P.C. 7378506 Kure, Japan
| | - Zen-Ichiro Kimura
- Department of Civil and Environmental Engineering, National Institute of Technology (KOSEN), Kure College, P.C. 7378506 Kure, Japan
| | - Masahiro Ito
- Technical Research & Development Center, Sanki Engineering Co., Ltd., P.C. 2420007 Yamato, Japan
| | - Akihiro Nagano
- Technical Research & Development Center, Sanki Engineering Co., Ltd., P.C. 2420007 Yamato, Japan
| |
Collapse
|
7
|
Luo X, Yang Y, Xie S, Wang W, Li N, Wen C, Zhu S, Chen L. Drying and rewetting induce changes in biofilm characteristics and the subsequent release of metal ions. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128832. [PMID: 35390615 DOI: 10.1016/j.jhazmat.2022.128832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Drying and rewetting can markedly influence the microbial structure and function of river biofilm communities and potentially result in the release of metal ions from biofilms containing metals. However, little information is available on the response of metal-enriched biofilms to drying and rewetting over time. In this study, natural biofilms were allowed to develop in four rotating annular bioreactors for 2-11 weeks, followed by drying for 5 days and rewetting for another 5 days. Subsequently, we assessed Zn, Cd, and As desorption from the biofilms and other related parameters (microbial community structure, biofilm morphology, enzyme activity, and surface components as well as characteristics). High-throughput sequencing of the 16 S rRNA gene and confocal laser scanning microscopy revealed that the biofilm architecture and bacterial communities were distinct in different growth phases and under drying and rewetting conditions (permutational multivariate analysis of variance; p = 0.001). Proteobacteria was the dominant bacterial phylum, accounting for 69.7-90.1% of the total content. Kinetic experiments revealed that the drying and rewetting process increased metal desorption from the biofilm matrix. The desorption of heavy metals was affected by the age of the biofilm, with the maximum amount of metal ions released from 2-week-old biofilms (one-way ANOVA, Zn: p < 0.001; Cd: p = 0.008; As: p < 0.001). The modifications in biofilm properties and decreased diversity of the bacterial community (paired t-test, p < 0.05) after drying and rewetting decreased the number of specific binding sites for metal ions. In addition, negatively charged arsenate and other anions in the liquid phase could compete with As ions for adsorption sites to promote the release of As(V) and/or reductive desorption of As(III). The results of this study and their interpretation are expected to help refine the behaviors of heavy metals in the aquatic environment.
Collapse
Affiliation(s)
- Xia Luo
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China.
| | - Yuanhao Yang
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Shanshan Xie
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Wenwen Wang
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Nihong Li
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Chen Wen
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Shijun Zhu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Liqiang Chen
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China.
| |
Collapse
|
8
|
Holtzapple MT, Wu H, Weimer PJ, Dalke R, Granda CB, Mai J, Urgun-Demirtas M. Microbial communities for valorizing biomass using the carboxylate platform to produce volatile fatty acids: A review. BIORESOURCE TECHNOLOGY 2022; 344:126253. [PMID: 34728351 DOI: 10.1016/j.biortech.2021.126253] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The carboxylate platform employs a diverse microbial consortium of anaerobes in which the methanogens are inhibited. Nearly all biomass components are digested to a mixture of C1-C8 monocarboxylic acids and their corresponding salts. The methane-arrested anaerobic digestion proceeds readily without needing to sterilize biomass or equipment. It accepts a wide range of feedstocks (e.g., agricultural residues, municipal solid waste, sewage sludge, animal manure, food waste, algae, and energy crops), and produces high product yields. This review highlights several important aspects of the platform, including its thermodynamic underpinnings, influences of inoculum source and operating conditions on product formation, and downstream chemical processes that convert the carboxylates to hydrocarbon fuels and oxygenated chemicals. This review further establishes the carboxylate platform as a viable and economical route to industrial biomass utilization.
Collapse
Affiliation(s)
- Mark T Holtzapple
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | - Haoran Wu
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA; Applied Materials Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA
| | - Paul J Weimer
- Department of Bacteriology, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Rachel Dalke
- Applied Materials Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA
| | - Cesar B Granda
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | - Jesse Mai
- Applied Materials Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA
| | - Meltem Urgun-Demirtas
- Applied Materials Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA.
| |
Collapse
|
9
|
Application of Internal Carbon Source from Sewage Sludge: A Vital Measure to Improve Nitrogen Removal Efficiency of Low C/N Wastewater. WATER 2021. [DOI: 10.3390/w13172338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biological nitrogen removal from wastewater is widely used all over the world on account of high efficiency and relatively low cost. However, nitrogen removal efficiency is not optimized when the organic matter has inadequate effect for the lack of a sufficient carbon source in influent. Although addition of an external carbon source (e.g., methanol and acetic acid) could solve the insufficient carbon source problem, it raises the operating cost of wastewater treatment plants (WWTPs). On the other hand, large amounts of sludge are produced during biological sewage treatment, which contain high concentrations of organic matter. This paper reviews the emerging technologies to obtain an internal organic carbon resource from sewage sludge and their application on improving nitrogen removal of low carbon/nitrogen wastewater of WWTPs. These are methods that could solve the insufficient carbon problem and excess sludge crisis simultaneously. The recovery of nitrogen and phosphorus from treated sludge before recycling as an internal carbon source should also be emphasized, and the energy and time consumed to treat sludge should be reduced in practical application.
Collapse
|
10
|
Nguyen Quoc B, Armenta M, Carter JA, Bucher R, Sukapanpotharam P, Bryson SJ, Stahl DA, Stensel HD, Winkler MKH. An investigation into the optimal granular sludge size for simultaneous nitrogen and phosphate removal. WATER RESEARCH 2021; 198:117119. [PMID: 33957310 DOI: 10.1016/j.watres.2021.117119] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
An aerobic granular sludge (AGS) pilot plant fed with a mixture of acetate amended centrate and secondary effluent was used to investigate the optimal granule size range for simultaneous nitrification and denitrification (SND) and ortho-phosphate removal. The anaerobic phase was mixed to understand how AGS will perform if integrated with a continuous flow activated sludge system that cannot feed the influent through the settled sludge bed. Five different granule size fractions were taken from the pilot (operated at DO setpoint of 2mgO2/L) and each size was subjected to activity tests in a well-controlled lab-scale AGS reactor at four dissolved oxygen (DO) concentrations of 1, 2, 3, and 4 mgO2/L. The size fractions were: 212 - 600 µm, 600 - 1000 µm, 1000 - 1400 µm, 1400 - 2000 µm, and >2000 µm. The smallest size range (212 - 600 µm) had the highest nitrification and phosphate removal rates at DO setpoints from 1 - 3 mgO2/L, which was attributed to the higher aerobic volume fraction in small granules and hence a higher abundance of phosphorus accumulating organisms (PAO) and ammonia oxidizing bacteria (AOB). In comparison, large granules (>1000 µm) had 1.4 - 4.7 times lower ammonia oxidation rates than the smallest size range, which aligned with their lower AOB abundance relative to granule biomass. The granules with the highest anoxic volume fraction had the highest abundance of nitrite reductase genes (nir gene) but did not show the highest specific nitrogen removal rate. Instead, smaller granules (212 - 600 and 600 - 1000 µm), which had a lower nir gene abundance, had the highest specific nitrogen removal rates (1.2 - 3.1 times higher than larger granules) across all DO values except at 4 mgO2/L. At a DO setpoint of 4 mgO2/L, nitrite production by ammonia oxidation (ammonia monooxygenase) exceeded nitrite reduction by nitrite reductase in granules smaller than 1000 µm, in addition, some denitrifying heterotrophs switched to oxygen utilization in deeper layers hence suppressing denitrification activity. At the DO range of 2 - 4 mg/L, granular size had a greater effect on nutrient removal than DO. Therefore, for AGS developed at an average DO setpoint of 2 mgO2/L, selecting for size fractions in the range of 212 - 1000 µm and avoiding DO values higher than 3 mgO2/L can achieve both a higher nitrogen removal capacity and energy savings. This study is the first to investigate the influence of different DO values on SND and biological phosphorus removal performance of different aerobic granular sludge sizes.
Collapse
Affiliation(s)
- Bao Nguyen Quoc
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA.
| | - Maxwell Armenta
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - John A Carter
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Robert Bucher
- Resource Recovery Section, Wastewater Treatment Division, King County Department of Natural Resources, Parks, WA, USA
| | - Pardi Sukapanpotharam
- Resource Recovery Section, Wastewater Treatment Division, King County Department of Natural Resources, Parks, WA, USA
| | - Samuel J Bryson
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - H David Stensel
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
11
|
Wang R, Lv N, Li C, Cai G, Pan X, Li Y, Zhu G. Novel strategy for enhancing acetic and formic acids generation in acidogenesis of anaerobic digestion via targeted adjusting environmental niches. WATER RESEARCH 2021; 193:116896. [PMID: 33571902 DOI: 10.1016/j.watres.2021.116896] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
Optimization of acetic acid and formic acid production efficient methanogenesis is always the research hot spot in anaerobic digestion. It is a promising approach to adjust the operation parameters to influence the functional microorganisms for better acetic acid and formic acid production in acidogenesis. Herein, the effects of pH, oxidation-reduction potential (ORP) and carbon-nitrogen (C/N) ratio were determined in batch experiments to probe acetic and formic acids production, and were further verified in continuous stirred tank reactor (CSTR). The results revealed that the content of volatile fatty acids (VFAs) reached to maximum at pH 6.0 or ORP -350 mV, while the production of acetic and formic acids was the highest at pH 7.0 or ORP -450 mV in 9 h fermentation. Also, fermentation products dominated by acetic and formic acids were adjusted in the CSTR under the operating conditions of pH 7.0 and ORP -450 mV. Microbiological analysis from batch test showed that fermentation at pH value of 7.0 enriched the diversity of microorganism, and provided a niche for microbes (Petrimonas, norank_f__Synergistaceae, vadinBC27_wastewater-sludge_group, and Trichococcus) to produce acetic and formic acids. Correspondingly, 78.70% of the carbon was converted to acetic and formic acids in pH 7.0. This study provides a promising strategy for the targeted regulation of acetic and formic acids production in acidogenesis of anaerobic digestion.
Collapse
Affiliation(s)
- Ruming Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China; Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture and Rural Affairs, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Lv
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxing Li
- Department of Environmental Engineering, Technical University of Denmark, DK,-2800 Lyngby, Denmark
| | - Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yanlin Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gefu Zhu
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China; Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
12
|
Pang H, Ma W, He J, Pan X, Ma Y, Guo D, Yan Z, Nan J. Hydrolase activity and microbial community dynamic shift related to the lack in multivalent cations during cation exchange resin-enhanced anaerobic fermentation of waste activated sludge. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122930. [PMID: 32464562 DOI: 10.1016/j.jhazmat.2020.122930] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
The correlation of the lack in multivalent cations with hydrolase activity and microbial community in anaerobic fermentation of waste activated sludge was investigated in this study. It was demonstrated that considerable solid phase reduction of 41 % (7.87 g/L) was achievable through a cation exchange resin-enhanced anaerobic fermentation of 4 days. The protease and α-glucosidase, especially α-glucosidase, were easily influenced by a lack in multivalent cations. Furthermore, species abundance and diversity of microbial community gradually decreased. Meanwhile, the bacteria community structure presented obvious dynamic shifts. Ruminococcaceae_UCG_009, Bacteroides and Macellibacteroides responsible for organic matter biodegradation and SCFAs production became dominant bacteria in cation exchange resin-enhanced anaerobic fermentation, which was less influenced by the lack in multivalent cations, while the SCFA consumers (e.g. methanogens) were inhibited with reduced abundances due to their susceptibility to the lack in multivalent cations. Redundancy analysis revealed that the lack in multivalent cations were responsible for the microbial community evolution, which was proved by the high Grey relational coefficients (0.747-0.820) and significant negative Spearman coefficients (-0.5798 to -0.9429) between multivalent cation and microbial community. Obviously, the cation exchange resin-induced removal of multivalent cations reduced enzyme activity and modified microbial community structure, which created a beneficial environment for enhancing anaerobic fermentation.
Collapse
Affiliation(s)
- Heliang Pang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Weiwei Ma
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| | - Xinlei Pan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Dabin Guo
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian, 350116, PR China
| | - Jun Nan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
13
|
Zhang Q, Gao X, Jin Y, Zhao L, Zhu H, Zhang P. Modified steel slag for effect prolongation of calcium peroxide: A novel approach to enhancing SCFAs production from sludge anaerobic fermentation. BIORESOURCE TECHNOLOGY 2020; 309:123379. [PMID: 32315918 DOI: 10.1016/j.biortech.2020.123379] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
In order to prolong the effect of CaO2 on improvement of short-chain fatty acids (SCFAs) production in sludge anaerobic fermentation, CaO2 particles were successfully loaded onto the porous surface of steel slag pre-modified with salicylic acid-methanol (SAM-SS). The prepared CaO2/SAM-SS was then characterized and investigated for its effects on anaerobic fermentation. Experimental results revealed that, due to the slow release and reaction of CaO2/SAM-SS, SCFAs concentrations in CaO2/SAM-SS tests were significantly higher than in the control and SAM-SS tests, and high SCFAs concentration was sustained for a longer period than in the CaO2 tests. Since most bacterial indexes were reduced by CaO2/SAM-SS, more supply of "raw materials" from a better disintegration and hydrolysis, which was associated with the alkalinity and •OH radicals released from the reaction of CaO2 with H2O, contribute to the higher SCFAs yields. This study provides a new approach towards a higher and longer SCFAs harvesting.
Collapse
Affiliation(s)
- Qianqian Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xiaole Gao
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yifan Jin
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Ling Zhao
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
14
|
Hou H, Li Z, Liu B, Liang S, Xiao K, Zhu Q, Hu S, Yang J, Hu J. Biogas and phosphorus recovery from waste activated sludge with protocatechuic acid enhanced Fenton pretreatment, anaerobic digestion and microbial electrolysis cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135274. [PMID: 31822422 DOI: 10.1016/j.scitotenv.2019.135274] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/16/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Biogas and phosphorus recovery from waste activated sludge (WAS) with sequential homogeneous protocatechuic acid (PCA) enhanced Fenton pretreatment, anaerobic digestion (AD) and microbial electrolysis cell (MEC) were investigated. The cumulation of biogas production of WAS-Fenton-AD was 330.4 mL/g VS, which was 2.05-fold of the control without pretreatment (WAS-AD) during anaerobic digestion. Biogas production of 178 mL/L/d from WAS-Fenton-AD-MEC was achieved, which was 5.23-fold of the WAS-MEC, 2.28-fold of WAS-Fenton-MEC and 1.46-fold of WAS-AD-MEC, respectively. Enhanced phosphorus recovery in form of struvite reached 1.72 g/g TS (18.03% of total P) with a purity of 74.4%. Microbial community richness and diversity analysis revealed that the pretreatment process under circumneutral condition improved the diversity of microbial community, which was consisted of Bacteroidetes (33.90%), Proteobacteria (33.14%), and Chloroflexi (10.14%), compared to a majority of Firmicutes (70.81%) in WAS-AD. This study provides a feasible strategy for the recovery of biogas combined with phosphorus from WAS.
Collapse
Affiliation(s)
- Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, PR China
| | - Zhen Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, PR China
| | - Bingchuan Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, PR China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, PR China
| | - Keke Xiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, PR China
| | - Qian Zhu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, PR China
| | - Shaogang Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China.
| |
Collapse
|
15
|
Huang W, Yang F, Huang W, Lei Z, Zhang Z. Enhancing hydrogenotrophic activities by zero-valent iron addition as an effective method to improve sulfadiazine removal during anaerobic digestion of swine manure. BIORESOURCE TECHNOLOGY 2019; 294:122178. [PMID: 31563116 DOI: 10.1016/j.biortech.2019.122178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
In this study, the feasibility of Fe0 addition for driving sulfadiazine (SDZ) removal during anaerobic digestion of swine manure (SM) was tested. Compared with the Fe0-free digesters spiked with 200 mg/L SDZ (RSDZ), treatments with 5.0 g/L Fe0 (RSDZ/Fe0) significantly accelerated and optimized the acidification process by enriching Clostridia and Bacteroidia (key members responsible for VFAs/H2 production), providing more readily available substrates for methanogenesis. Furthermore, Fe0 increased the overall abundance of hydrogenotrophic methanogens, specifically toxicant resistant Methanoculleus and Methanosphaera spp. were selectively enriched, helping achieve a 36.9% higher CH4 yield and a 26.4% greater total solids removal efficiency. A positive correlation between the solid content and the SDZ concentration adsorbed in SM was observed. The addition of Fe0 increased the distribution of SDZ in liquid and facilitated its removal through the enhanced biodegradation and physicochemical processes. Overall, the total SDZ removal efficiency was improved by 86.8% with Fe0.
Collapse
Affiliation(s)
- Weiwei Huang
- College of Environment and Ecology, Hainan University, Renmin Road, Haikou 570228, China
| | - Fei Yang
- College of Environment and Ecology, Hainan University, Renmin Road, Haikou 570228, China
| | - Wenli Huang
- MOE Key Laboratory of Pollution Process and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China.
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
16
|
Huang Y, Wang Y, Liu S, Huang W, He L, Zhou J. Enhanced hydrolysis-acidification of high-solids and low-organic-content sludge by biological thermal-alkaline synergism. BIORESOURCE TECHNOLOGY 2019; 294:122234. [PMID: 31610488 DOI: 10.1016/j.biortech.2019.122234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
In this study, a biological thermal-alkaline synergistic system was successfully established to enhance the hydrolysis-acidification efficiency of high-solids and low-organic-content sludge (HS-LOC-S). The results indicated that the highest hydrolysis rate was obtained at pH of 12 (52.62%) leading to the highest production of soluble chemical oxygen demand (SCOD) and soluble protein (SP). The highest acidification rate was observed at pH of 10 (32.15%), leading to the highest production of volatile fatty acids (VFAs). At pH of 10, average sludge size reduced by 24.60%, and the proportion of biodegradable dissolved organic matter (DOM) produced by synergistic system increased by 15.82%, when compared with those of raw sludge. Moreover, results of 16S rRNA clearly validated that the relative abundance of hydrolytic and acidogenic microbes (e.g. Tepidimicrobium, Coprothermobacter) abundantly enriched at pH of 10 (49.88%) was greatly higher than others, which was the main reason for its maximum VFAs accumulation.
Collapse
Affiliation(s)
- Yangyang Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yingmu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Shihu Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Wei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
17
|
Jin Y, Lin Y, Wang P, Jin R, Gao M, Wang Q, Chang TC, Ma H. Volatile fatty acids production from saccharification residue from food waste ethanol fermentation: Effect of pH and microbial community. BIORESOURCE TECHNOLOGY 2019; 292:121957. [PMID: 31430672 DOI: 10.1016/j.biortech.2019.121957] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
In this study, residue from saccharification and centrifugation of food waste ethanol fermentation was used as substrate to produce volatile fatty acids. The effects of different pH (5.5, 6.5, and uncontrolled) on the VFAs concentration, composition, acidogenic efficiency and microbial community distribution were investigated. The results showed that the highest concentration of VFAs was 267.8 ± 8.9 mg COD/g VS at pH of 6.5, and the highest percentage of butyric acid (79.8%) was followed by propionic acid and acetic acid at the end of the reaction. Microbial analysis showed that the contents of Vagococcus and Actinomyces increased, while the contents of Bacteroides and Fermentimonas decreased during anaerobic fermentation. The comparative high pH induced the accumulation of butyric acid. This study provides a new idea for the step anaerobic fermentation of food waste to produce alcohol and acid simultaneously.
Collapse
Affiliation(s)
- Yong Jin
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Yujia Lin
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Pan Wang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Runwen Jin
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Ming Gao
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Qunhui Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Tien-Chin Chang
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan
| | - Hongzhi Ma
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
18
|
He ZW, Tang CC, Liu WZ, Ren YX, Guo ZC, Zhou AJ, Wang L, Yang CX, Wang AJ. Enhanced short-chain fatty acids production from waste activated sludge with alkaline followed by potassium ferrate treatment. BIORESOURCE TECHNOLOGY 2019; 289:121642. [PMID: 31226670 DOI: 10.1016/j.biortech.2019.121642] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
This study reported an efficient approach, i.e., alkaline followed by potassium ferrate (PF) pretreatment, to enhance short chain fatty acids (SCFAs) production from waste activated sludge anaerobic fermentation process. The optimum condition was initial pH of 10.0 and PF dosage of 28 mg Fe(VI)/g total suspended solid, with the highest SCFAs production of 382 mg chemical oxygen demand/g volatile suspended solid, which was 2.03 and 2.06 times higher than that of corresponding sole treatments. It was found that the alkaline + PF treatment could provide more soluble substrates for subsequent acidification process by accelerating disruption of both microbial cells and extracellular polymeric substances. And the alkaline + PF treatment also benefited to the activity promotion of specific hydrolases and inhibition of methanogens. Besides, the abundances of microorganisms related to SCFAs production, such as Proteiniclasticum and Macellibacteroides, were increased greatly, whereas the main SCFAs consumer, Proteobacteria, was decreased from 29.1% to 14.4%.
Collapse
Affiliation(s)
- Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wen-Zong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China.
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ze-Chong Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ling Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chun-Xue Yang
- School of Geography and Tourism, Harbin University, Harbin 150086, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| |
Collapse
|
19
|
Synthetic Effect of EDTA and Ni2+ on Methane Production and Microbial Communities in Anaerobic Digestion Process of Kitchen Wastes. Processes (Basel) 2019. [DOI: 10.3390/pr7090590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Batch tests were carried out to study the effect of simultaneous addition of ethylenediaminetetraacetic acid and Ni2+ (EDTA-Ni) on anaerobic digestion (AD) performances of kitchen wastes (KWs). The results indicated that the cumulative biogas yield and methane content were enhanced to 563.82 mL/gVS and 63.7% by adding EDTA-Ni, respectively, which were almost 1.15 and 1.07-fold of that in the R2 with Ni2+ addition alone. At the same time, an obvious decrease of propionic acid was observed after EDTA-Ni addition. The speciation analysis of Ni showed that the percentages of water-soluble and exchangeable Ni were increased to 38.8% and 36.3% due to EDTA-Ni addition, respectively. Also, the high-throughput sequencing analysis revealed that the EDTA-Ni promoted the growth and metabolism of Methanosarcina and Methanobacterium, which might be the major reason for propionic acid degradation and methane production.
Collapse
|
20
|
Shao M, Guo L, She Z, Gao M, Zhao Y, Sun M, Guo Y. Enhancing denitrification efficiency for nitrogen removal using waste sludge alkaline fermentation liquid as external carbon source. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4633-4644. [PMID: 30565112 DOI: 10.1007/s11356-018-3944-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
External carbon source was usually added to enhance denitrification efficiency for nitrogen removal in wastewater treatment. In this study, waster sludge alkaline fermentation liquid was successfully employed as an alternative carbon source for biological denitrification. The denitrification performance was studied at different C/Ns (carbon-to-nitrogen ratios) and HRTs (hydraulic retention times). A C/N of 7 and an HRT of 8 h were the optimal conditions for denitrification. The nitrate removal efficiency of 96.4% and no obvious nitrite accumulation in the effluent were achieved under the optimal conditions with a low soluble chemical oxygen demand (SCOD) level. The sludge carbon source utilization was analyzed and showed that the volatile fatty acids (VFAs) were prior utilized than proteins and carbohydrates. The excitation-emission matrix (EEM) spectroscopy with fluorescence regional integration (FRI) was adopted to analyze the compositional and variations of dissolved organic matters (DOM). Moreover, a high denitrification rate (VDN) and potential (PDN) with low heterotroph anoxic yield (YH) was exhibited at the optimal C/N and HRT condition, indicating the better denitrification ability and organic matter utilization efficiencies.
Collapse
Affiliation(s)
- Mengyu Shao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
- Key Laboratory of Marine Environmental and Ecology, Ministry of Educatin, Ocean University of China, Qingdao, 266100, China.
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao, 266100, China.
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mei Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yiding Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
21
|
Lin L, Li XY. Acidogenic fermentation of iron-enhanced primary sedimentation sludge under different pH conditions for production of volatile fatty acids. CHEMOSPHERE 2018; 194:692-700. [PMID: 29245135 DOI: 10.1016/j.chemosphere.2017.12.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
Iron-based chemically enhanced primary sedimentation (CEPS) is increasingly adopted for wastewater treatment in mega cities, producing a large amount of sludge (Fe-sludge) with a high content of organics for potential organic resource recovery. In this experimental study, acidogenic fermentation was applied treat FeCl3-based CEPS sludge for production of volatile fatty acids (VFAs) at different pHs. Batch fermentation tests on the Fe-sludge with an organic content of 10 g-COD/L showed that the maximum VFAs production reached 2782.2 mg-COD/L in the reactor without pH control, and it reached 688.4, 3095.3, and 2603.7 mg-COD/L in reactors with pHs kept at 5.0, 6.0 and 8.0, respectively. Analysis of the acidogenesis kinetics and enzymatic activity indicated that the alkaline pH could accelerate the rate of organic hydrolysis but inhibited the further organic conversion to VFAs. In semi-continuous sludge fermentation tests, the VFAs yield in the pH6 reactor was 20% higher than that in the control reactor without pH regulation, while the VFAs yield in the pH8 reactor was 10% lower than the control. Illumina MiSeq sequencing revealed that key functional microorganisms known for effective sludge fermentation, including Bacteroidia and Erysipelotrichi, were enriched in the pH6 reactor with an enhanced VFAs production, while Clostridia became more abundant in the pH8 reactor to stand the unfavorable pH condition. The research presented acidogenic fermentation as an effective process for CEPS sludge treatment and organic resource recovery and provided the first insight into the related microbial community dynamics.
Collapse
Affiliation(s)
- Lin Lin
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiao-Yan Li
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China; Shenzhen Engineering Research Laboratory for Sludge and Food Wastes, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.
| |
Collapse
|
22
|
Liu N, Li H, Li M, Ding L, Weng CH, Dong CD. Oxygen exposure effects on the dechlorinating activities of a trichloroethene-dechlorination microbial consortium. BIORESOURCE TECHNOLOGY 2017; 240:98-105. [PMID: 28274623 DOI: 10.1016/j.biortech.2017.02.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
The aim of this work was to study the effects of the presence of oxygen on the dechlorination of trichloroethene by a microbial consortium containing D. mccartyi. The 16S rRNA and reductive dechlorination genes of the functional bacteria and the non-dechlorinators were monitored. Exposing the consortium to oxygen altered the overall biotransformation rate of the dechlorination process, biotransformation processes prolonged with oxygen concentrations changing from 0 to 7.2mg/L, however, trichloroethylene was eventually dechlorinated to ethene. The qPCR analyses revealed that the D. mccartyi strains containing the tceA gene were less sensitive to exposure to oxygen than were the D. mccartyi strains containing the vcrA gene. High-throughput sequencing by Illumina MiSeq indicated that the non-dechlorinating organisms were probably crucial to scavenge the oxygen to protect D. mccartyi from being damaged.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Haijun Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Mengyan Li
- Department of Chemistry and Environment Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Longzhen Ding
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Chih-Huang Weng
- Department of Civil and Ecological Engineering, I-Shou University, Kaohsiung City 84008, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environment Engineering, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan
| |
Collapse
|
23
|
Simultaneous recovery of nitrogen and phosphorus from sludge fermentation liquid by zeolite adsorption: Mechanism and application. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.02.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Chen Y, Jiang X, Xiao K, Shen N, Zeng RJ, Zhou Y. Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase - Investigation on dissolved organic matter transformation and microbial community shift. WATER RESEARCH 2017; 112:261-268. [PMID: 28178608 DOI: 10.1016/j.watres.2017.01.067] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/05/2017] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
In this study, a mixture of primary and wasted activated sludge was fermented in a semi-continuous reactor aiming for enhanced volatile fatty acids (VFAs) production. The reactor was subjected to a stepwise pH increase from 7 to 10 during approximately 130 days of operation. The result revealed that the maximum acidification was obtained at pH 8.9 (21%) resulting in the maximum production of VFAs (423.22 ± 25.49 mg COD/g VSS), while the maximum hydrolysis efficiency was observed at pH 9.9 (42%). The high pH was effective in releasing dissolved organic matter (DOM) including protein, carbohydrate, building blocks and low molecular weight (LMW) neutrals. More LMW DOMs were released than high molecular weight (HMW) DOMs fractions at higher pH. pH 9.9 favored hydrolysis of HMW DOMs while it did not enhance the acidogenesis of LMW DOMs. The microbial community analysis showed that the relative abundance of phyla Actinobacteria and Proteobacteria increased with the increased pH, which may lead to the maximum hydrolysis at pH 9.9. At pH 8.9, class Clostridia (59.16%) was the most dominant population where the maximum acidification (21%) was obtained. This suggested that the dominance of Clostridia was highly related to acidification extent. The relative abundance of Euryarchaeota decreased significantly from 58% to 2% with increased pH.
Collapse
Affiliation(s)
- Yun Chen
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Xie Jiang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Keke Xiao
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Nan Shen
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Raymond J Zeng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
25
|
Volatile Fatty Acids Production from Codigestion of Food Waste and Sewage Sludge Based on β-Cyclodextrins and Alkaline Treatments. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:1698163. [PMID: 28096735 PMCID: PMC5206858 DOI: 10.1155/2016/1698163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/19/2016] [Indexed: 11/17/2022]
Abstract
Volatile fatty acids (VFAs) are preferred valuable resources, which can be produced from anaerobic digestion process. This study presents a novel technology using β-cyclodextrins (β-CD) pretreatment integrated alkaline method to enhance VFAs production from codigestion of food waste and sewage sludge. Experiment results showed that optimized ratio of food waste to sewage sludge was 3 : 2 because it provided adequate organic substance and seed microorganisms. Based on this optimized ratio, the integrated treatment of alkaline pH 10 and β-CD addition (0.2 g/g TS) performed the best enhancement on VFAs production, and the maximum VFAs production was 8631.7 mg/L which was 6.13, 1.38, and 1.57 times higher than that of control, initial pH 10, and 0.2 g β-CD/g TS treatment, respectively. Furthermore, the hydrolysis rate of protein and polysaccharides was greatly improved in integration treatment, which was 1.18–3.45 times higher than that of other tests. Though the VFAs production and hydrolysis of polymeric organics were highly enhanced, the primary bacterial communities with different treatments did not show substantial differences.
Collapse
|
26
|
Yan P, Guo JS, Wang J, Ji FY, Zhang CC, Chen YP, Shen Y. Enhanced excess sludge hydrolysis and acidification in an activated sludge side-stream reactor process with single-stage sludge alkaline treatment: a pilot scale study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22761-22770. [PMID: 27562811 DOI: 10.1007/s11356-016-7490-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
A pilot-scale side-stream reactor process with single-stage sludge alkaline treatment was employed to systematically investigate characteristics of excess sludge hydrolysis and acidification with alkaline treatment and evaluate feasibility of recovering a carbon source (C-source) from excess sludge to enhance nutrient removal at ambient temperature. The resulting C-source and volatile fatty acid specific yields reached 349.19 mg chemical oxygen demand (COD)/g volatile suspended solids (VSS) d-1 and 121.3 mg COD/g VSS d-1, respectively, the process had excellent C-source recovery potential. The propionic-to-acetic acid ratio of the recovered C-source was 3.0 times that in the influent, which beneficially enhanced biological phosphorus removal. Large populations and varieties of hydrolytic acid producing bacteria cooperated with alkaline treatment to accelerate sludge hydrolysis and acidification. Physicochemical characteristics indicated that recovered C-source was derived primarily from extracellular polymeric substances hydrolysis rather than from cells disruption during alkaline treatment. This study showed that excess sludge as carbon source was successfully recycled by alkaline treatment in the process.
Collapse
Affiliation(s)
- Peng Yan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Science, Chongqing, 400714, China
| | - Jin-Song Guo
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Science, Chongqing, 400714, China
| | - Jing Wang
- Chongqing Jianzhu College, Chongqing, 400072, China
| | - Fang-Ying Ji
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Cheng-Cheng Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - You-Peng Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
- Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Science, Chongqing, 400714, China.
| | - Yu Shen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
- Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Science, Chongqing, 400714, China.
| |
Collapse
|
27
|
Huang C, Lai J, Sun X, Li J, Shen J, Han W, Wang L. Enhancing anaerobic digestion of waste activated sludge by the combined use of NaOH and Mg(OH)2: Performance evaluation and mechanism study. BIORESOURCE TECHNOLOGY 2016; 220:601-608. [PMID: 27619711 DOI: 10.1016/j.biortech.2016.08.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 06/06/2023]
Abstract
In this study, the combination treatment of NaOH and Mg(OH)2 was applied to anaerobic digestion of waste activated sludge (WAS) for simultaneously enhancement of volatile fatty acids (VFAs) production, nutrients removal and sludge dewaterability. The maximum VFAs production (461mg COD/g VSS) was obtained at the NaOH/Mg(OH)2 ratio of 75:25, which was much higher than that of the blank or sole NaOH. Moreover, nutrients removal and sludge dewaterability were improved by the combined using of NaOH and Mg(OH)2. Mechanism investigations revealed that the presence of Mg(OH)2 could maintain alkaline environment, which contributed to inhibit the activity of methanogens. Also, the bridging between Mg(2+) and extracellular polymeric substances (EPS) plays an important role in the solubilization and dewatering of sludge. High-throughput sequencing analysis demonstrated that the abundance of bacteria involved in sludge hydrolysis and VFAs accumulation was greatly enriched with the mixtures of NaOH and Mg(OH)2.
Collapse
Affiliation(s)
- Cheng Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Jia Lai
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China.
| | - Jiansheng Li
- Engineering Research Center for Chemical Pollution Control (Ministry of Education), School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Jinyou Shen
- Engineering Research Center for Chemical Pollution Control (Ministry of Education), School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Weiqing Han
- Engineering Research Center for Chemical Pollution Control (Ministry of Education), School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China; Engineering Research Center for Chemical Pollution Control (Ministry of Education), School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| |
Collapse
|
28
|
Liu H, Wang Y, Yin B, Zhu Y, Fu B, Liu H. Improving volatile fatty acid yield from sludge anaerobic fermentation through self-forming dynamic membrane separation. BIORESOURCE TECHNOLOGY 2016; 218:92-100. [PMID: 27347803 DOI: 10.1016/j.biortech.2016.06.077] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 05/16/2023]
Abstract
Self-forming dynamic membrane (SFDM) separation was applied to the conventional sludge fermenter for improving VFA yields. Results indicated SFDM presented good performance in transferring products, retaining substrates, and enriching useful bacteria. The retention ratios of suspended solids, soluble COD, proteins, and polysaccharides reached 99%, 30%, 70%, and 40%, respectively, and more than 90% of the VFAs and ammonia could be transferred in a timely manner. The structure of the microbial community was optimized, which led to enhanced releases of hydrolytic enzymes and accelerated enrichments of functional bacteria. Protease and β-glucosidase activities increased from 1.0 to 5.0U/mL and 15.0 to 23.0μmol/L·h, respectively. VFA yield and sludge conversion ratio increased by 233.3% and 227.9%, respectively. Moreover, SFDM had good operation stability, including a short formation time, a long operation period, and a low transmembrane pressure. These results show VFA yield from sludge fermentation can be greatly improved by SFDM separation.
Collapse
Affiliation(s)
- Hongbo Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, Jiangsu Province, PR China
| | - Yuanyuan Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| | - Bo Yin
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| | - Yanfang Zhu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| | - Bo Fu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, Jiangsu Province, PR China
| | - He Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|
29
|
Wu QL, Guo WQ, Zheng HS, Luo HC, Feng XC, Yin RL, Ren NQ. Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: The mechanism and microbial community analyses. BIORESOURCE TECHNOLOGY 2016; 216:653-660. [PMID: 27289056 DOI: 10.1016/j.biortech.2016.06.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/28/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
The study provided a cost-effective and high-efficiency volatile fatty acid (VFA) production strategy by co-fermentation of food waste (FW) and excess sludge (ES) without artificial pH control. VFA production of 867.42mg COD/g-VS was obtained under the optimized condition: FW/ES 5, solid retention time 7d, organic loading rate 9g VS/L-d and temperature 40°C. Mechanism exploration revealed that the holistic biodegradability of substrate was greatly enhanced, and proper pH range (5.2-6.4) was formed by the high buffering capacity of the co-fermentation system itself, which effectively enhanced hydrolysis yield (63.04%) and acidification yield (83.46%) and inhibited methanogenesis. Moreover, microbial community analysis manifested that co-fermentation raised the relative abundances of hydrolytic and acidogenic bacteria including Clostridium, Sporanaerobacter, Tissierella and Bacillus, but suppressed the methanogen Anaerolineae, which also facilitated high VFA production. These results were of great guiding significance aiming for VFA recovery from FW and ES in large-scale.
Collapse
Affiliation(s)
- Qing-Lian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - He-Shan Zheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Hai-Chao Luo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiao-Chi Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Ren-Li Yin
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
30
|
Huang J, Zhou R, Chen J, Han W, Chen Y, Wen Y, Tang J. Volatile fatty acids produced by co-fermentation of waste activated sludge and henna plant biomass. BIORESOURCE TECHNOLOGY 2016; 211:80-86. [PMID: 27003793 DOI: 10.1016/j.biortech.2016.03.071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/09/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
Anaerobic co-fermentation of waste activated sludge (WAS) and henna plant biomass (HPB) for the enhanced production of volatile fatty acids (VFAs) was investigated. The results indicated that VFAs was the main constituents of the released organics; the accumulation of VFAs was much higher than that of soluble carbohydrates and proteins. HPB was an advantageous substrate compared to WAS for VFAs production; and the maximum VFAs concentration in an HPB mono-fermentation system was about 2.6-fold that in a WAS mono-fermentation system. In co-fermentation systems, VFAs accumulation was positively related to the proportion of HPB in the mixed substrate, and the accumulated VFAs concentrations doubled when HPB was increased from 25% to 75%. HPB not only adjust the C/N ratio; the associated and/or released lawsone might also have a positive electron-shuttling effect on VFAs production.
Collapse
Affiliation(s)
- Jingang Huang
- Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China.
| | - Rongbing Zhou
- Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Jianjun Chen
- Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Wei Han
- Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Yi Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 16521 Prague 6, Czech Republic
| | - Yue Wen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Junhong Tang
- Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| |
Collapse
|
31
|
Niu T, Zhou Z, Shen X, Qiao W, Jiang LM, Pan W, Zhou J. Effects of dissolved oxygen on performance and microbial community structure in a micro-aerobic hydrolysis sludge in situ reduction process. WATER RESEARCH 2016; 90:369-377. [PMID: 26766160 DOI: 10.1016/j.watres.2015.12.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 06/05/2023]
Abstract
A sludge process reduction activated sludge (SPRAS), with a sludge process reduction module composed of a micro-aerobic tank and a settler positioned before conventional activated sludge process, showed good performance of pollutant removal and sludge reduction. Two SPRAS systems were operated to investigate effects of micro-aeration on sludge reduction performance and microbial community structure. When dissolved oxygen (DO) concentration in the micro-aerobic tank decreased from 2.5 (SPH) to 0.5 (SPL) mg/L, the sludge reduction efficiency increased from 42.9% to 68.3%. Compared to SPH, activated sludge in SPL showed higher contents of extracellular polymeric substances and dissolved organic matter. Destabilization of floc structure in the settler, and cell lysis in the sludge process reduction module were two major reasons for sludge reduction. Illumina-MiSeq sequencing showed that microbial diversity decreased under high DO concentration. Proteobacteria, Bacteroidetes and Chloroflexi were the most abundant phyla in the SPRAS. Specific comparisons down to the class and genus level showed that fermentative, predatory and slow-growing bacteria in SPL community were more abundant than in SPH. The results revealed that micro-aeration in the SPRAS improved hydrolysis efficiency and enriched fermentative and predatory bacteria responsible for sludge reduction.
Collapse
Affiliation(s)
- Tianhao Niu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Xuelian Shen
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Weimin Qiao
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lu-Man Jiang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Wei Pan
- Shanghai Municipal Sewerage Co., Ltd., Shanghai 200233, China
| | - Jijun Zhou
- Shanghai Municipal Sewerage Co., Ltd., Shanghai 200233, China
| |
Collapse
|
32
|
Ma H, Chen X, Liu H, Liu H, Fu B. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH? WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 48:397-403. [PMID: 26652215 DOI: 10.1016/j.wasman.2015.11.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/11/2015] [Accepted: 11/14/2015] [Indexed: 05/17/2023]
Abstract
In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process.
Collapse
Affiliation(s)
- Huijun Ma
- School of Environmental and Civil Engineering, Jiangnan University, 214122 Wuxi, China
| | - Xingchun Chen
- School of Environmental and Civil Engineering, Jiangnan University, 214122 Wuxi, China
| | - He Liu
- School of Environmental and Civil Engineering, Jiangnan University, 214122 Wuxi, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, 214122 Wuxi, China.
| | - Hongbo Liu
- School of Environmental and Civil Engineering, Jiangnan University, 214122 Wuxi, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, 214122 Wuxi, China
| | - Bo Fu
- School of Environmental and Civil Engineering, Jiangnan University, 214122 Wuxi, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, 214122 Wuxi, China
| |
Collapse
|
33
|
Lin L, Wen L, Chen S, Yang X, Liu X, Wan C. Effect of alkaline treatment pattern on anaerobic fermentation of swine manure. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Yang X, Wen L, Liu X, Chen S, Wang Y, Wan C. Bio-augmentative volatile fatty acid production from waste activated sludge hydrolyzed at pH 12. RSC Adv 2015. [DOI: 10.1039/c5ra04651c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although many pretreatment methods are employed to enhance the hydrolysis of waste activated sludge (WAS), the bioconversion of soluble complex substrates needs improvement to produce higher volatile fatty acids (VFAs).
Collapse
Affiliation(s)
- Xue Yang
- Postdoctoral Research Station of Civil Engineering
- Tongji University
- Shanghai 200092
- China
- State Key Laboratory of Pollution Control and Resources Reuse
| | - Lei Wen
- Department of Environmental Science and Engineering
- Fudan University
- Shanghai 200433
- China
| | - Xiang Liu
- Department of Environmental Science and Engineering
- Fudan University
- Shanghai 200433
- China
| | - Si Chen
- Department of Environmental Science and Engineering
- Fudan University
- Shanghai 200433
- China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Chunli Wan
- Department of Environmental Science and Engineering
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
35
|
Jin N, Shou Z, Yuan H, Lou Z, Zhu N. Effects of ferric nitrate additions under different pH conditions on autothermal thermophilic aerobic digestion for sewage sludge. RSC Adv 2015. [DOI: 10.1039/c5ra16761b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Effects of ferric nitrate additions under different pH conditions on disinhibition of excessive VFAs for enhancement of ATAD performance.
Collapse
Affiliation(s)
- Ningben Jin
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Zongqi Shou
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Haiping Yuan
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Ziyang Lou
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Nanwen Zhu
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
36
|
Guo L, Zhang J, Yin L, Zhao Y, Gao M, She Z. Optimization of VFAs and ethanol production with waste sludge used as the denitrification carbon source. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:1348-1357. [PMID: 26465305 DOI: 10.2166/wst.2015.338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An acidification metabolite such as volatile fatty acids (VFAs) and ethanol could be used as denitrification carbon sources for solving the difficult problem of carbon source shortages and low nitrogen removal efficiency. A proper control of environmental factors could be essential for obtaining the optimal contents of VFAs and ethanol. In this study, suspended solids (SS), oxidation reduction potential (ORP) and shaking rate were chosen to investigate the interactive effects on VFAs and ethanol production with waste sludge. It was indicated that T-VFA yield could be enhanced at lower ORP and shaking rate. Changing the SS, ORP and shaking rate could influence the distribution of acetic, propionic, butyric, valeric acids and ethanol. The optimal conditions for VFAs and ethanol production used as a denitrification carbon source were predicted by analyzing response surface methodology (RSM).
Collapse
Affiliation(s)
- Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China E-mail: ; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiawen Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China E-mail:
| | - Li Yin
- PLA Navy Submarine Academy, Qingdao 266042, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China E-mail:
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China E-mail:
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China E-mail:
| |
Collapse
|