1
|
Maturano-Carrera D, Oltehua-Lopez O, Cuervo-López FDM, Texier AC. Long-term post-storage reactivation of a nitrifying sludge in a sequential batch reactor: physiological and kinetic evaluation. 3 Biotech 2023; 13:17. [PMID: 36568497 PMCID: PMC9768056 DOI: 10.1007/s13205-022-03433-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Production, preservation and recovery of sludge with stabilized nitrifying activity over long time can be difficult. Information on the ability of nitrifying sludge to regain its nitrifying activity after long-term storage is still scarce. In this work, the physiological and kinetic changes during the reactivation and stabilization of a nitrifying sludge previously exposed to ampicillin (AMP) were evaluated in a sequential batch reactor (SBR) after its long-term storage (1 year) at 4 °C. After storage, both ammonium and nitrite oxidizing processes were slow, being nitrite oxidation the most affected step. During the reactivation stage (cycles 1-6), physiological and kinetic activity of the nitrifying sludge improved through the operating cycles, in both its ammonium oxidizing and nitrite oxidizing processes. At the end of the reactivation stage, complete nitrifying activity was achieved in 10 h, reaching ammonium consumption efficiencies (ENH4 +) close to 100% and nitrate yields (YNO3 -) of 0.98 mg NO3 --N/mg NH4 +-N consumed without nitrite accumulation. During the stabilization stage (cycles 7-17), results indicated that the sludge could maintain a steady-state respiratory process with restoration percentages of 100% for nitrifying specific rates (qNH4 + and qNO3 -) with respect to their values obtained before storage. Furthermore, during the addition of 15 mg AMP/L (cycles 18-21), the sludge preserved its metabolic capacity to biodegrade 90% of AMP in 2 h. Therefore, long-term storage of nitrifying sludge could be used to preserve nitrifying inocula as bioseeds for bioremediation and bioaugmentation strategies.
Collapse
Affiliation(s)
- Daniel Maturano-Carrera
- Department of Biotechnology-CBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, CP 09310 Mexico City, Mexico
| | - Omar Oltehua-Lopez
- Department of Biotechnology-CBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, CP 09310 Mexico City, Mexico
| | - Flor de María Cuervo-López
- Department of Biotechnology-CBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, CP 09310 Mexico City, Mexico
| | - Anne-Claire Texier
- Department of Biotechnology-CBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, CP 09310 Mexico City, Mexico
| |
Collapse
|
2
|
Ouyang L, Qiu B. Positive effects of magnetic Fe 3O 4@polyaniline on aerobic granular sludge: Aerobic granulation, granule stability and pollutants removal performance. BIORESOURCE TECHNOLOGY 2023; 368:128296. [PMID: 36370942 DOI: 10.1016/j.biortech.2022.128296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The magnetic material has been determined to have a positive effect on sludge granulation and wastewater treatment performance. In this study, the effect of magnetic Fe3O4@polyaniline (Fe3O4@PANI) on aerobic granulation, granule stability, and pollutants removal performance was evaluated by adding it into a sequencing batch reactor to cultivate aerobic granular sludge (AGS). The results indicated that the composite combined the advantages of PANI and Fe3O4 to promote the formation of AGS during the granulation period. The Fe3O4@PANI stimulated the granules to secrete extracellular polymeric substances with a higher proteins/polysaccharides ratio, thus enhancing the stability of the AGS. In addition, microbial community analysis revealed that the great performance of the AGS on denitrification and phosphorus removal could be attributed to the enrichment of denitrifying bacteria, phosphorus accumulating organisms (PAO), and denitrifying PAO by Fe3O4@PANI. Thus, Fe3O4@PANI has been demonstrated to have a positive effect on the formation and stability of AGS.
Collapse
Affiliation(s)
- Lingfeng Ouyang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
A Plasma-Based Decontamination Process Reveals Potential for an in-Process Surface-Sanitation Method. PLASMA 2022. [DOI: 10.3390/plasma5030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Methods, which use an indirect plasma treatment for the inactivation of microorganisms in foods, claim a vastly growing field of research. This paper presents a method that uses plasma-processed air (PPA) as a sanitizer. In addition to a sanitation concept for the decontamination of produce in the value chain, the presented method offers a possible application as an “in-process” surface sanitation. PPA provides antimicrobial-potent species, which are predominantly reactive nitrogen species (RNS); this has an outstanding groove penetration property. In an experimental approach, surfaces, made from materials, which are frequently used for the construction of food-processing plants, were inoculated with different microorganisms. Listeria monocytogenes (ATCC 15313), Staphylococcus aureus (ATCC 6538), Escherichia coli (ATCC 10538), Salmonella enterica subsp. enterica serovar Typhimurium (ATCC 43971), and Salmonella enterica subsp. enterica serovar Enteritidis (ATCC 13076) are all microorganisms that frequently appear in foods and possess the risk for cross-contamination from the plant to the produce or vice versa. The contaminated samples were treated for various treatment times (1–5 min) with PPA of different antimicrobial potencies. Subsequently, the microbial load on the specimens was determined and compared with the load of untreated samples. As a result, reduction factors (RF) up to several log10-steps were obtained. Although surface and the bacterial strain showed an influence on the RF, the major influence was seen by a prolongation of the treatment time and an increase in the potency of the PPA.
Collapse
|
4
|
Re-cultivation of dry microalgal-bacterial granular sludge. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
5
|
Reactivation of Frozen Stored Microalgal-Bacterial Granular Sludge under Aeration and Non-Aeration Conditions. WATER 2021. [DOI: 10.3390/w13141974] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this paper, reactivation of microalgal-bacterial granular sludge (MBGS) stored at −20 °C for 6 months was investigated under respective aeration (R1) and non-aeration (R2) conditions. Results showed that the granular activity could be fully recovered within 21 days. The average removal efficiency of ammonia was higher in R1 (92.78%), while R2 showed higher average removal efficiencies of organics (84.97%) and phosphorus (85.28%). It was also found that eukaryotic microalgae growth was stimulated under aeration conditions, whereas prokaryotic microalgae growth and extracellular protein secretion were favored under non-aeration conditions. Sequencing results showed that the microbial community underwent subversive evolution, with Chlorophyta and Proteobacteria being dominant species under both conditions. Consequently, it was reasonable to conclude that the activity and structure of frozen stored MBGS could be recovered under both aeration and non-aeration conditions, of which aeration-free activation was more feasible on account of its energy-saving property. This study provides important information for the storage and transportation of MBGS in wastewater treatment.
Collapse
|
6
|
Peng Z, Lou T, Jiang K, Niu N, Wang J, Li L. Nitrification characteristics of long-term idle aerobic activated sludge during domestication. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23386-23394. [PMID: 33447971 DOI: 10.1007/s11356-020-12297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Nitrite accumulation usually occurred when domesticating the idle aerobic activated sludge. A sequencing batch reactor (SBR) was used to investigate whether the short-cut nitrification sludge could be cultivated using the idle sludge as inoculated sludge. The results showed that the nitrification process consisted of three stages. In the first stage, the activity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were very low with almost no nitrification performance. In the second stage, the activity of AOB started to recover with the effluent NH4+-N gradually decreased to 0.29 mg L-1, while NOB was alternately inhibited by free ammonia (FA), free nitrous acid (FNA), and nitrite. The effluent NOx--N was mainly NO2--N with an average nitrite accumulation ratio of 74.00%. In the third stage, the nitrification altered from short-cut nitrification to complete nitrification, and the nitrification kinetics of AOB and NOB were both well-fitted to the Monod equation (R2 > 0.92). The variations of effluent pH and ORP between cycles could indicate the recovery stage of the nitrifying ability. Through monitoring the curves of effluent pH and ORP, when the domestication process is between the pH peak and ORP plateau, the short-cut nitrification sludge could be cultivated. This study revealed the mechanism of nitrite accumulation during the domestication of long-term idle aerobic activated sludge, and established a control strategy to accelerate the domestication.
Collapse
Affiliation(s)
- Zhaoxu Peng
- School of Water Conservancy & Environmental Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Tianyu Lou
- School of Water Conservancy & Environmental Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Kun Jiang
- School of Water Conservancy & Environmental Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Ningqi Niu
- School of Water Conservancy & Environmental Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Ju Wang
- School of Water Conservancy & Environmental Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Li
- School of Water Conservancy & Environmental Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
7
|
Long-term preservation of hydrogenogenic biomass by refrigeration: Reactivation characteristics and microbial community structure. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Zhang L, Long B, Wu J, Cheng Y, Zhang B, Zeng Y, Huang S, Zeng M. Evolution of microbial community during dry storage and recovery of aerobic granular sludge. Heliyon 2019; 5:e03023. [PMID: 31890963 PMCID: PMC6926229 DOI: 10.1016/j.heliyon.2019.e03023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/18/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Aerobic granular sludge (AGS) was imbedded in agar and stored at 4 °C for 30 days, and then the stored granules were recovered in a sequencing batch reactor fed real wastewater within 11 days. Variations in microbial community compositions were investigated during dry storage and recovery of AGS, aiming to elucidate the mechanism of granular stability loss and recovery. The storage and recovery of AGS involved microbial community evolution. The dominant bacterial genera of the mature AGS were Zoogloea (relative abundance of 22.39%), Thauera (16.03%) and Clostridium_sensu_stricto (11.17%), and those of the stored granules were Acidovorax (26.79%), Macellibacteroides (12.83%) and Pseudoxanthomonas (5.69%), respectively. However, the dominant genera were Streptococcus (43.64%), Clostridium_sensu_stricto (12.3.6%) and Lactococcus (11.47%) in the recovered AGS. Methanogens were always the dominant archaeal species in mature AGS (93.01%), stored granules (99.99%) and the recovered AGS (94.84%). Facultative anaerobes and anaerobes proliferated and dominated in the stored granules, and their metabolic activities gradually led to granular structure destruction and property deterioration. However, the stored granules served as carriers for the microbes originated from the real septic tank wastewater during recovery. They proliferated rapidly and secreted a large number of extracellular polymeric substances which helped to recover the granular structure in 11 days.
Collapse
Affiliation(s)
- Linan Zhang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Bei Long
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Junfeng Wu
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Mingyue Road, Pingdingshan, 467036, Henan, China
| | - Yuanyuan Cheng
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Binchao Zhang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Yu Zeng
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Sinong Huang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Mingjing Zeng
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
9
|
Cheng Y, Xuan X, Zhang L, Zhao J, Long B. Storage of aerobic granular sludge embedded in agar and its reactivation by real wastewater. JOURNAL OF WATER AND HEALTH 2018; 16:958-969. [PMID: 30540270 DOI: 10.2166/wh.2018.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aerobic granular sludge (AGS) was preserved using an agar embedding method to maintain its stability. No obvious damage was imposed on the granular appearance during 30 days of cold and dry storage, but the granular microstructure had an uneven surface with a large number of holes. The results were consistent with the extinction of microbial communities and the monitored consumption of extracellular polymeric substances, in which granular specific oxygen utilization rate and mixed liquor volatile suspended solids/mixed liquor suspended solids ratio, respectively, decreased by 72.4% and 62.5% during storage. A mass conversation calculation indicated that the loss of granular mass was 1.6393 g. An offensive odour was smelled during storage, and the results indicated that a material transformation and mitigation were involved between AGS and the gas phase. Although the granular structure was destroyed to a certain extent, no obvious damage was imposed on the granular skeleton during storage. After it was aerated again after a feeding with real wastewater, the residual skeleton served as a carrier for the rapid proliferation of microorganisms, and good granular properties were obtained after 11 days of reactivation.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China E-mail:
| | - Xinpeng Xuan
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China E-mail:
| | - Linan Zhang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China E-mail:
| | - Jue Zhao
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China E-mail:
| | - Bei Long
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China E-mail:
| |
Collapse
|
10
|
Relationship between the Viable but Nonculturable State and Antibiotic Persister Cells. J Bacteriol 2018; 200:JB.00249-18. [PMID: 30082460 DOI: 10.1128/jb.00249-18] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria have evolved numerous means of survival in adverse environments with dormancy, as represented by "persistence" and the "viable but nonculturable" (VBNC) state, now recognized to be common modes for such survival. VBNC cells have been defined as cells which, induced by some stress, become nonculturable on media that would normally support their growth but which can be demonstrated by various methods to be alive and capable of returning to a metabolically active and culturable state. Persister cells have been described as a population of cells which, while not being antibiotic resistant, are antibiotic tolerant. This drug-tolerant phenotype is thought to be a result of stress-induced and stochastic physiological changes as opposed to mutational events leading to true resistance. In this review, we describe these two dormancy strategies, characterize the molecular underpinnings of each state, and highlight the similarities and differences between them. We believe these survival modes represent a continuum between actively growing and dead cells, with VBNC cells being in a deeper state of dormancy than persister cells.
Collapse
|
11
|
He Q, Zhou J, Song Q, Zhang W, Wang H, Liu L. Elucidation of microbial characterization of aerobic granules in a sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal at varying carbon to phosphorus ratios. BIORESOURCE TECHNOLOGY 2017; 241:127-133. [PMID: 28551433 DOI: 10.1016/j.biortech.2017.05.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
An aerobic granules simultaneous nitrification, denitrification and phosphorus removal (SNDPR) system was evaluated in terms of the reactor performance and microbial population dynamics with decreasing C/P ratios from 50 to 16. The effects of C/P ratios on organic carbon and nutrients removal were investigated, as well as the alpha diversity of the bacterial community and bacterial compositions by using Illumina MiSeq pyrosequencing technology. Finally, the relative abundances and distribution patterns were identified and assessed given the key functional groups involved in biological nutrients removals to reveal the effects of C/P ratios to aerobic granules in the SNDPR from the molecular level.
Collapse
Affiliation(s)
- Qiulai He
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Jun Zhou
- College of Urban Construction, Nanjing University of Technology, Nanjing 210009, China
| | - Qun Song
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Wei Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Li Liu
- Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, China
| |
Collapse
|
12
|
He Q, Zhang W, Zhang S, Zou Z, Wang H. Performance and microbial population dynamics during stable operation and reactivation after extended idle conditions in an aerobic granular sequencing batch reactor. BIORESOURCE TECHNOLOGY 2017; 238:116-121. [PMID: 28433898 DOI: 10.1016/j.biortech.2017.03.181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
The evolution of removal performance and bacterial population dynamics of an aerobic granular sequencing batch reactor were investigated during stable operation and reactivation after prolonged storage. The system was run for a period of 130days including the stable condition phase, storage period and the subsequent reactivation process. Excellent removal performance was obtained during the stable operation period, which was decayed by the extended idle conditions. The removal efficiencies for both carbon and nitrogen decayed while phosphorus removal remained unaffected. Both granules structure and physical properties could be fully restored. Microbial populations shifted sharply and the storage perturbations irreversibly altered the microbial communities at different levels. Extracellular polymeric substances (especially protein) and key groups were identified as contributors for storage and re-startup of the aerobic granular system.
Collapse
Affiliation(s)
- Qiulai He
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Wei Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Shilu Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Zhuocheng Zou
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
13
|
Vyrides I, Stuckey DC. Compatible solute addition to biological systems treating waste/wastewater to counteract osmotic and other environmental stresses: a review. Crit Rev Biotechnol 2017; 37:865-879. [DOI: 10.1080/07388551.2016.1266460] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ioannis Vyrides
- Department of Environmental Science and Technology, Cyprus University of Technology, Lemesos, Cyprus
| | - David C. Stuckey
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
14
|
Wan C, Shen Y, Chen S, Liu X, Liu G, Lai JY, Lee DJ. Microstructural strength deterioration of aerobic granule sludge under organic loading swap. BIORESOURCE TECHNOLOGY 2016; 221:671-676. [PMID: 27660187 DOI: 10.1016/j.biortech.2016.09.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
This study revealed that the gross indicators commonly adopted for monitoring the performance of aerobic granular sludge processes are not capable of probing the microstructural deterioration of granule interior upon organic loading swaps. These granules subjected to loading swaps retained their global characteristics: appearances, sizes and settling velocities, chemical oxygen demand (COD) and ammonia-nitrogen removal capacities. However, the granule interior strength, as determined by ultrasound method, was largely weakened upon COD switch-off and was not recovered in the subsequent COD re-supply stage. In response to COD switch-off, the 5.6kDa polysaccharides component of granule extracellular polymeric substances (EPS) was diminished. Correspondingly, two bacterial species, Thauera and Sphingomonas sp., were faded away together with the significant decline in contents of intracellular cyclic dimeric GMP (c-di-GMP). The microstructural integrity of granules was seriously deteriorated upon COD switch-off, which was not detectable by the commonly adopted gross indicators.
Collapse
Affiliation(s)
- Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yanggui Shen
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Si Chen
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Guangmin Liu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Juin-Yih Lai
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chungli, Taiwan
| | - Duu-Jong Lee
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chungli, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
15
|
Hu J, Zhang Q, Chen YY, Lee DJ. Drying and recovery of aerobic granules. BIORESOURCE TECHNOLOGY 2016; 218:397-401. [PMID: 27392096 DOI: 10.1016/j.biortech.2016.06.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 06/25/2016] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Abstract
To dehydrate aerobic granules to bone-dry form was proposed as a promising option for long-term storage of aerobic granules. This study cultivated aerobic granules with high proteins/polysaccharide ratio and then dried these granules using seven protocols: drying at 37°C, 60°C, 4°C, under sunlight, in dark, in a flowing air stream or in concentrated acetone solutions. All dried granules experienced volume shrinkage of over 80% without major structural breakdown. After three recovery batches, although with loss of part of the volatile suspended solids, all dried granules were restored most of their original size and organic matter degradation capabilities. The strains that can survive over the drying and storage periods were also identified. Once the granules were dried, they can be stored over long period of time, with minimal impact yielded by the applied drying protocols.
Collapse
Affiliation(s)
- Jianjun Hu
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Henan Province, Zhengzhou, China
| | - Quanguo Zhang
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Henan Province, Zhengzhou, China
| | - Yu-You Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Duu-Jong Lee
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Henan Province, Zhengzhou, China; Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| |
Collapse
|
16
|
Wang J, Qian F, Liu X, Liu W, Wang S, Shen Y. Cultivation and characteristics of partial nitrification granular sludge in a sequencing batch reactor inoculated with heterotrophic granules. Appl Microbiol Biotechnol 2016; 100:9381-9391. [PMID: 27557719 DOI: 10.1007/s00253-016-7797-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/12/2016] [Accepted: 08/09/2016] [Indexed: 01/01/2023]
Abstract
The aim of this study was to develop a simple operation strategy for the cultivation of partial nitrification granules (PNGs) treating an autotrophic medium. For this strategy, aerobic granular sludge adapted to high concentration organics removal was seeded in a sequencing batch reactor (SBR) with a height/diameter ratio of 3.8, and the ratio of organics to the ammonia nitrogen-loading rate (C/N ratio) in the influent was employed as the main control parameter to start up the partial nitrification process. After 86 days of operation, the nitrite accumulation rate reached 1.44 kg/(m3 day) in the SBR, and the removal efficiency of ammonia nitrogen (NH4+-N) was over 95 %. The PNGs showed a dense and compact structure, with an excellent settling ability, a typical extracellular polymeric substance (EPS) composition, and a high ammonia oxidation activity. The high-throughput pyrosequencing results indicated that the microbial community structure in the granules was significantly influenced by the C/N ratio, and ammonia-oxidizing bacteria (AOB), including the r-strategist Nitrosomonas and k-strategist Nitrosospira genre, which accounted for approximately 40 % of the total biomass at the end of operation. The effective suppression of nitrite-oxidizing bacteria (NOB) growth was attributed to oxygen competition on the granular surface among functional bacteria, as well as the high free ammonia or free nitrous acid concentrations during the aeration period.
Collapse
Affiliation(s)
- Jianfang Wang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, People's Republic of China.,Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, 215009, Suzhou, People's Republic of China.,College of Tianping, Suzhou University of Science and Technology, No. 55 Changjiang Road, 215009, Suzhou, People's Republic of China
| | - Feiyue Qian
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, People's Republic of China. .,Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, 215009, Suzhou, People's Republic of China.
| | - Xiaopeng Liu
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, People's Republic of China
| | - Wenru Liu
- College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, 200092, Shanghai, People's Republic of China
| | - Shuyong Wang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, People's Republic of China
| | - Yaoliang Shen
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, People's Republic of China.,Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, 215009, Suzhou, People's Republic of China
| |
Collapse
|
17
|
Zhang Q, Hu J, Lee DJ. Aerobic granular processes: Current research trends. BIORESOURCE TECHNOLOGY 2016; 210:74-80. [PMID: 26873285 DOI: 10.1016/j.biortech.2016.01.098] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/23/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Aerobic granules are large biological aggregates with compact interiors that can be used in efficient wastewater treatment. This mini-review presents new researches on the development of aerobic granular processes, extended treatments for complicated pollutants, granulation mechanisms and enhancements of granule stability in long-term operation or storage, and the reuse of waste biomass as renewable resources. A discussion on the challenges of, and prospects for, the commercialization of aerobic granular process is provided.
Collapse
Affiliation(s)
- Quanguo Zhang
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Henan Province, Zhengzhou, China
| | - Jianjun Hu
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Henan Province, Zhengzhou, China
| | - Duu-Jong Lee
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Henan Province, Zhengzhou, China; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
18
|
Saheb Alam S, Persson F, Wilén BM, Hermansson M, Modin O. Effects of storage on mixed-culture biological electrodes. Sci Rep 2015; 5:18433. [PMID: 26678949 PMCID: PMC4683449 DOI: 10.1038/srep18433] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/18/2015] [Indexed: 01/24/2023] Open
Abstract
Storage methods are important to preserve the viability and biochemical characteristics of microbial cultures between experiments or during periods when bioreactors are inactive. Most of the research on storage has focused on isolates; however, there is an increasing interest in methods for mixed cultures, which are of relevance in environmental biotechnology. The purpose of this study was to investigate the effect of different storage methods on electrochemically active enrichment cultures. Acetate-oxidizing bioanodes generating a current density of about 5 A m−2 were enriched in a microbial electrolysis cell. The effect of five weeks of storage was evaluated using electrochemical techniques and microbial community analysis. Storage by refrigeration resulted in quicker re-activation than freezing in 10% glycerol, while the bioelectrochemical activity was entirely lost after storage using dehydration. The results showed that the bioelectrochemical activity of bioanodes stored at low temperature could be retained. However, during the re-activation period the bioanodes only recovered 75% of the current density generated before storage and the bacterial communities were different in composition and more diverse after storage than before.
Collapse
Affiliation(s)
- Soroush Saheb Alam
- Division of Water Environment Technology, Department of Civil and Environmental Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Frank Persson
- Division of Water Environment Technology, Department of Civil and Environmental Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Civil and Environmental Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Malte Hermansson
- Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Oskar Modin
- Division of Water Environment Technology, Department of Civil and Environmental Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
19
|
Mata A, Pinheiro H, Lourenço N. Effect of sequencing batch cycle strategy on the treatment of a simulated textile wastewater with aerobic granular sludge. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Lin L, Wen L, Chen S, Yang X, Liu X, Wan C. Effect of alkaline treatment pattern on anaerobic fermentation of swine manure. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Yang YC, Liu X, Wan C, Sun S, Lee DJ. Accelerated aerobic granulation using alternating feed loadings: alginate-like exopolysaccharides. BIORESOURCE TECHNOLOGY 2014; 171:360-366. [PMID: 25218208 DOI: 10.1016/j.biortech.2014.08.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 06/03/2023]
Abstract
Alginate-like exopolysaccharides (ALE) likely contribute markedly to strength of aerobic granules. This study cultivated aerobic granules from propionate wastewaters using strategies with different organic loading rates (OLRs) (4.4-17.4 kg/m(3)-d). When the OLR increased suddenly, the constituent cells (Pseudomonas, Clostridium, Thauera and Arthrobacter) were stimulated to secret extracellular cyclic diguanylate (c-di-GMP) and produced excess ALE, which formed a large quantity of sticky materials that served as the precursor of aerobic granules. Formation of excess ALE was the prerequisite for accelerated granulation. Conversely, this study observed no enrichment of poly guluronic acid blocks in ALE during granulation.
Collapse
Affiliation(s)
- Ya-Chun Yang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Supu Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
22
|
Wan C, Lee DJ, Yang X, Wang Y, Lin L. Saline storage of aerobic granules and subsequent reactivation. BIORESOURCE TECHNOLOGY 2014; 172:418-422. [PMID: 25270079 DOI: 10.1016/j.biortech.2014.08.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 06/03/2023]
Abstract
Loss of structural stability and bioactivity during long-term storage and operation is primary challenge to field applications of aerobic granular processes. This study for the first time stored aerobic granules in 5%w/w NaCl solution at 4°C for 187d. The stored granules were then successfully reactivated and used for 85d in sequencing batch reactors (SBR) and continuous-flow reactors (CFR) at varying levels of chemical oxygen demand (COD). High-throughput sequencing results reveal that Thauera sp., Paracoccus sp., and Nitrosomonas sp. were the predominant in the stored aerobic granules, and Pseudoxanthomonas sp. accumulated during the reactivation process. Saline storage, in which cells are in an unculturable state by saline stress, is a promising storage process for aerobic granules.
Collapse
Affiliation(s)
- Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Duu-Jong Lee
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Xue Yang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lin Lin
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|