1
|
van Dam L, Cruz-Morales P, Rodriguez Valerón N, Calheiros de Carvalho A, Prado Vásquez D, Lübke M, Kloster Pedersen L, Munk R, Sommer MOA, Jahn LJ. GastronOmics: Edibility and safety of mycelium of the oyster mushroom Pleurotus ostreatus. Curr Res Food Sci 2024; 9:100866. [PMID: 39429921 PMCID: PMC11490876 DOI: 10.1016/j.crfs.2024.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Food production is one of the most environmentally damaging human activities. In the face of climate change, it is essential to rethink our dietary habits and explore potential alternative foods catering both towards human and planetary needs. Fungal mycelium might be an attractive alternative protein source due to its rapid growth on sustainable substrates as well as promising nutritional and organoleptic properties. The natural biodiversity of filamentous fungi is vast and represents an untapped reservoir for food innovation. However, fungi are known to produce bioactive compounds that may affect human health, both positively and negatively. To narrow the search for safe and culinarily attractive fungal species, mycelia of edible fruiting-body forming fungi provide a promising starting point. Here, we explore whether the culinary attractiveness and safety of the commonly eaten mushroom, Pleurotus ostreatus, can also be translated to its mycelium. Whole-genome sequencing and pan-genome analysis revealed a high degree of genetic variability within the genus Pleurotus, suggesting that gastronomic traits as well as food safety may differ between strains. A representative strain, P. ostreatus M2191, was further analyzed for the food safety, nutritional properties and culinary applicability of its mycelium. No regulated mycotoxins were detected in either the fruiting body nor the mycelium. Yet, P. ostreatus is known to produce four peptide toxins, Ostreatin, Ostreolysin and Pleurotoysin A/B. These were found to be lower in the mycelium compared to fruiting bodies, which are already considered safe for consumption. Instead, a number of secondary metabolites with potential health benefits were detected in the fungal mycelium. In silico analysis of the proteome suggested low allergenicity. In addition, the fruiting body and the mycelium showed similar nutritional value, which was dependent on the growth substrate. To highlight the culinary potential of mycelium, we created a dish served at the two-star restaurant the Alchemist in Copenhagen, Denmark. Sensory analysis of the mycelium dish by an untrained consumer panel indicated consumer liking and openness to fungal mycelia. Based on sustainability, safety, culinary potential, and consumer acceptance, our findings suggest that P. ostreatus mycelium has great potential for use as a novel food source.
Collapse
Affiliation(s)
- Loes van Dam
- Novo Nordisk Foundation Center for Biosustainability, DTU Biosustain, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Pablo Cruz-Morales
- Novo Nordisk Foundation Center for Biosustainability, DTU Biosustain, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Nabila Rodriguez Valerón
- Basque Culinary Center, Facultad de Ciencias Gastronómicas, Mondragon Unibersitatea, Donostia– San Sebastián, Spain
| | - Ana Calheiros de Carvalho
- Novo Nordisk Foundation Center for Biosustainability, DTU Biosustain, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Diego Prado Vásquez
- ALCHEMIST Explore, Research and Development, Alchemist Aps, Refshalevej 173C, 1432, København, Denmark
| | - Moritz Lübke
- Novo Nordisk Foundation Center for Biosustainability, DTU Biosustain, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | | | - Rasmus Munk
- ALCHEMIST Explore, Research and Development, Alchemist Aps, Refshalevej 173C, 1432, København, Denmark
| | - Morten Otto Alexander Sommer
- Novo Nordisk Foundation Center for Biosustainability, DTU Biosustain, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Leonie Johanna Jahn
- Novo Nordisk Foundation Center for Biosustainability, DTU Biosustain, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
2
|
Brescia FF, Korf L, Essen LO, Zorn H, Ruehl M. A Novel O- and S-Methyltransferase from Pleurotus sapidus Is Involved in Flavor Formation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6471-6480. [PMID: 38462720 DOI: 10.1021/acs.jafc.3c08849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Increasing consumer aversion to non-natural flavoring substances is prompting a heightened interest in enzymatic processes for flavor production. This includes methylation reactions, which are often performed by using hazardous chemicals. By correlation of aroma profile data and transcriptomic analysis, a novel O-methyltransferase (OMT) catalyzing a respective reaction within the formation of p-anisaldehyde was identified in the mushroom Pleurotus sapidus. Heterologous expression in E. coli followed by purification allowed for further characterization of the enzyme. Besides p-hydroxybenzaldehyde, the proposed precursor of p-anisaldehyde, the enzyme catalyzed the methylation of further hydroxylated aromatic compounds at the meta- and para-position. The Km values determined for p-hydroxybenzaldehyde and S-adenosyl-l-methionine were 80 and 107 μM, respectively. Surprisingly, the studied enzyme enabled the transmethylation of thiol-nucleophiles, as indicated by the formation of 2-methyl-3-(methylthio)furan from 2-methyl-3-furanthiol. Moreover, the enzyme was crystallized at a resolution of 2.0 Å, representing the first published crystal structure of a basidiomycetous OMT.
Collapse
Affiliation(s)
- Fabio Francesco Brescia
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
| | - Lukas Korf
- Institute of Biochemistry, Philips University Marburg, Hans-Meerwein-Str. 4, Marburg 35032, Germany
| | - Lars-Oliver Essen
- Institute of Biochemistry, Philips University Marburg, Hans-Meerwein-Str. 4, Marburg 35032, Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, Giessen 35392, Germany
| | - Martin Ruehl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, Giessen 35392, Germany
| |
Collapse
|
3
|
Zhang LL, Chen Y, Li ZJ, Fan G, Li X. Production, Function, and Applications of the Sesquiterpenes Valencene and Nootkatone: a Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:121-142. [PMID: 36541855 DOI: 10.1021/acs.jafc.2c07543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Valencene and nootkatone, two sesquiterpenes, extracted from natural sources, have great market potential with diverse applications. This paper aims to comprehensively review the recent advances in valencene and nootkatone, including source, production, physicochemical and biological properties, safety and pharmacokinetics evaluation, potential uses, and their industrial applications as well as future research directions. Microbial biosynthesis offers a promising alternative approach for sustainable production of valencene and nootkatone. Both compounds exert various beneficial activities, including antimicrobial, insecticidal, antioxidant, anti-inflammatory, anticancer, cardioprotective, neuroprotective, hepatoprotective, and nephroprotective and other activities. However, most of the studies are performed in animals and in vitro, making it difficult to give a conclusive description about their health benefits and extend their application. Hence, more attention should be paid to in vivo and long-term clinical studies in the future. Moreover, valencene and nootkatone are considered safe for consumption and show great promise in the applications of food, cosmetic, pharmaceutical, chemical, and agricultural industries.
Collapse
Affiliation(s)
- Lu-Lu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Yan Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Zhi-Jian Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
4
|
Beato M, Usseglio V, Pizzolitto R, Merlo C, Dambolena J, Zunino M, Zygadlo J, Omarini A. Biotransformation as a source of potential controlling natural mixtures of Sitophilus zeamais. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Li X, Ren JN, Fan G, Yang SZ, Zhang LL, Pan SY. Separation and purification of nootkatone from fermentation broth of Yarrowia lipolytica with high-speed counter-current chromatography. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4487-4498. [PMID: 36193467 PMCID: PMC9525468 DOI: 10.1007/s13197-022-05529-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/17/2021] [Accepted: 06/03/2022] [Indexed: 06/08/2023]
Abstract
Nootkatone is an important functional sesquiterpene, which can be obtained by the biotransformation of valencene. It is increasingly important because of its pleasant citrus aroma and physiological effects. Yarrowia lipolytica is beneficial for biotechnology applications and has ability to transform valencene to nootkatone. High-speed counter-current chromatography (HSCCC) was used to isolate and purify the product of nootkatone in this study. The suitable two-phase solvent system was selected and the optimum separation conditions were determined. The partition coefficients of nootkatone and the separation factor between nootkatone and valencene were considered as the indexes. The results showed that there were numerous products during the transformation of valencene by Yarrowia lipolytica, and the content of nootkatone was 13.75%. The obtained nootkatone was separated by HSCCC with a solvent system n-hexane/methanol/water (5/4/1, v/v). The final purity of nootkatone was 91.61 ± 0.20% and the elution time was 290-310 min. The structure of nootkatone was identified by gas chromatography-mass spectrometry (GC-MS), infrared spectrum and nuclear magnetic resonance hydrogen spectroscopy (1H NMR). This was the first report on the separation of nootkatone from the fermentation broth by HSCCC. This study proved that HSCCC could be used as an effective method to separate and purify the nootkatone from valencene transformed by Yarrowia lipolytica with n-hexane/methanol/water (5/4/1, v/v).
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Jing-Nan Ren
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Shu-Zhen Yang
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Lu-Lu Zhang
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Si-Yi Pan
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| |
Collapse
|
6
|
Berger RG, Bordewick S, Krahe NK, Ersoy F. Mycelium vs. Fruiting Bodies of Edible Fungi-A Comparison of Metabolites. Microorganisms 2022; 10:1379. [PMID: 35889098 PMCID: PMC9315710 DOI: 10.3390/microorganisms10071379] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Edible mushrooms are widely appreciated for their appealing flavours, low caloric values and high content of presumably health-protecting metabolites. Their long history of safe use together with the looming worldwide food crisis have revived the idea of generating meat analogues and protein isolates by the controlled fermentation of mycelia of these edible fungi as a dietary option. The occurrence of proteins, polysaccharides, smaller metabolites, metal ions and toxins in mycelia and fruiting bodies is compared among the three most popular species, Agaricus bisporus (button mushroom), Pleurotus ostreatus (oyster mushroom), Lentinus edodes (shiitake) and some closely related species. Large effects of substrate chemistry, strain, developmental stage and ecological interactions result in a wide variation of the concentrations of some metabolites in both mycelial cells and fruiting bodies. This is obviously a result of the high adaptation abilities required to survive in natural habitats. Fungal bioprocesses are decoupled from agricultural production and can be operated anytime, anywhere, and on any scale according to demand. It is concluded that fungal biomass, if produced under food-grade conditions and on an industrial scale, could provide a safe and nutritious meat substitute and protein isolates with a high biological value for future vegan foods.
Collapse
Affiliation(s)
| | | | | | - Franziska Ersoy
- Institute of Food Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany; (R.G.B.); (S.B.); (N.-K.K.)
| |
Collapse
|
7
|
Abstract
Within the kingdom of fungi, the division Basidiomycota represents more than 30,000 species, some with huge genomes indicating great metabolic potential. The fruiting bodies of many basidiomycetes are appreciated as food (“mushrooms”). Solid-state and submerged cultivation processes have been established for many species. Specifically, xylophilic fungi secrete numerous enzymes but also form smaller metabolites along unique pathways; both groups of compounds may be of interest to the food processing industry. To stimulate further research and not aim at comprehensiveness in the broad field, this review describes some recent progress in fermentation processes and the knowledge of fungal genetics. Processes with potential for food applications based on lipases, esterases, glycosidases, peptidases and oxidoreductases are presented. The formation and degradation of colourants, the degradation of harmful food components, the formation of food ingredients and particularly of volatile and non-volatile flavours serve as examples. In summary, edible basidiomycetes are foods—and catalysts—for food applications and rich donors of genes to construct heterologous cell factories for fermentation processes. Options arise to support the worldwide trend toward greener, more eco-friendly and sustainable processes.
Collapse
|
8
|
Li X, Ren JN, Fan G, He J, Zhang LL, Pan SY. Genomic and Transcriptomic analysis screening key genes for (+)-valencene biotransformation to (+)-nootkatone in Yarrowia lipolytica. Microbiol Res 2022; 260:127042. [DOI: 10.1016/j.micres.2022.127042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 12/21/2022]
|
9
|
Bürger F, Koch M, Fraatz MA, Omarini AB, Berger RG, Zorn H. Production of an Anise- and Woodruff-like Aroma by Monokaryotic Strains of Pleurotus sapidus Grown on Citrus Side Streams. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030651. [PMID: 35163915 PMCID: PMC8838675 DOI: 10.3390/molecules27030651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
Abstract
The production of natural flavors by means of microorganisms is of great interest for the food and flavor industry, and by-products of the agro-industry are particularly suitable as substrates. In the present study, Citrus side streams were fermented using monokaryotic strains of the fungus Pleurotus sapidus. Some of the cultures exhibited a pleasant smell, reminiscent of woodruff and anise, as well as herbaceous notes. To evaluate the composition of the overall aroma, liquid/liquid extracts of submerged cultures of a selected monokaryon were prepared, and the volatiles were isolated via solvent-assisted flavor evaporation. Aroma extract dilution analyses revealed p-anisaldehyde (sweetish, anisic- and woodruff-like) with a flavor dilution factor of 218 as a character impact compound. The coconut-like, herbaceous, and sweetish smelling acyloin identified as (2S)-hydroxy-1-(4-methoxyphenyl)-1-propanone also contributed to the overall aroma and was described as an aroma-active substance with an odor threshold in air of 0.2 ng L−1 to 2.4 ng L−1 for the first time. Supplementation of the culture medium with isotopically substituted l-tyrosine elucidated this phenolic amino acid as precursor of p-anisaldehyde as well as of (2S)-hydroxy-1-(4-methoxyphenyl)-1-propanone. Chiral analysis via HPLC revealed an enantiomeric excess of 97% for the isolated product produced by P. sapidus.
Collapse
Affiliation(s)
- Friederike Bürger
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; (F.B.); (M.K.); (M.A.F.)
| | - Maximilian Koch
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; (F.B.); (M.K.); (M.A.F.)
| | - Marco A. Fraatz
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; (F.B.); (M.K.); (M.A.F.)
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Alejandra B. Omarini
- CONICET Asociación para el Desarrollo de Villa Elisa y Zona Héctor de Elia 1247, Villa Elisa E3265, Entre Ríos, Argentina;
- Institute of Food Chemistry, Leibniz University Hannover, Callinstrasse 5, 30167 Hannover, Germany;
| | - Ralf G. Berger
- Institute of Food Chemistry, Leibniz University Hannover, Callinstrasse 5, 30167 Hannover, Germany;
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; (F.B.); (M.K.); (M.A.F.)
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-(0)-641-99-349-00
| |
Collapse
|
10
|
Krahe N, Berger RG, Kahlert L, Ersoy F. Co-Oxidative Transformation of Piperine to Piperonal and 3,4-Methylenedioxycinnamaldehyde by a Lipoxygenase from Pleurotus sapidus. Chembiochem 2021; 22:2857-2861. [PMID: 34033194 PMCID: PMC8518924 DOI: 10.1002/cbic.202100183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/21/2021] [Indexed: 11/08/2022]
Abstract
The valuable aroma compound piperonal with its vanilla-like olfactory properties is of high interest for the fragrance and flavor industry. A lipoxygenase (LOXPsa 1) of the basidiomycete Pleurotus sapidus was identified to convert piperine, the abundant pungent principle of black pepper (Piper nigrum), to piperonal and a second volatile product, 3,4-methylenedioxycinnamaldehyde, with a vanilla-like odor through an alkene cleavage. The reaction principle was co-oxidation, as proven by its dependence on the presence of linoleic or α-linolenic acid, common substrates of lipoxygenases. Optimization of the reaction conditions (substrate concentrations, reaction temperature and time) led to a 24-fold and 15-fold increase of the piperonal and 3,4-methylenedioxycinnamaldehyde concentration using the recombinant enzyme. Monokaryotic strains showed different concentrations of and ratios between the two reaction products.
Collapse
Affiliation(s)
- Nina‐Katharina Krahe
- Institut für LebensmittelchemieGottfried Wilhelm Leibniz Universität HannoverCallinstr. 530167HannoverGermany
| | - Ralf G. Berger
- Institut für LebensmittelchemieGottfried Wilhelm Leibniz Universität HannoverCallinstr. 530167HannoverGermany
| | - Lukas Kahlert
- Institut für LebensmittelchemieGottfried Wilhelm Leibniz Universität HannoverCallinstr. 530167HannoverGermany
- Present address: Institut für Organische Chemie undBiomolekulares WirkstoffzentrumGottfried Wilhelm Leibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Franziska Ersoy
- Institut für LebensmittelchemieGottfried Wilhelm Leibniz Universität HannoverCallinstr. 530167HannoverGermany
| |
Collapse
|
11
|
Li X, Ren JN, Fan G, Zhang LL, Pan SY. Advances on (+)-nootkatone microbial biosynthesis and its related enzymes. J Ind Microbiol Biotechnol 2021; 48:kuab046. [PMID: 34279658 PMCID: PMC8788795 DOI: 10.1093/jimb/kuab046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023]
Abstract
(+)-Nootkatone is an important functional sesquiterpene and is comprehensively used in pharmaceutical, cosmetic, agricultural and food flavor industries. However, (+)-nootkatone is accumulated trace amounts in plants, and the demand for industry is mainly met by chemical methods which is harmful to the environment. The oxygen-containing sesquiterpenes prepared using microbial methods can be considered as "natural." Microbial transformation has the advantages of mild reaction conditions, high efficiency, environmental protection, and strong stereoselectivity, and has become an important method for the production of natural spices. The microbial biosynthesis of (+)-nootkatone from the main precursor (+)-valencene is summarized in this paper. Whole-cell systems of fungi, bacteria, microalgae, and plant cells have been employed. It was described that the enzymes involved in the microbial biosynthesis of (+)-nootkatone, including cytochrome p450 enzymes, laccase, lipoxygenase, and so on. More recently, the related enzymes were expressed in microbial hosts to heterologous produce (+)-nootkatone, such as Escherichia coli, Pichia pastoris, Yarrowia lipolytica, and Saccharomyces cerevisiae. Finally, the development direction of research for realizing industrialization of microbial transformation was summarized and it provided many options for future improved bioprocesses.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing-Nan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu-Lu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, PR China
| | - Si-Yi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Pd-Catalyzed aerobic oxidation of the sesquiterpene isolongifolene: A green and heterogeneous process. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Monokaryotic Pleurotus sapidus Strains with Intraspecific Variability of an Alkene Cleaving DyP-Type Peroxidase Activity as a Result of Gene Mutation and Differential Gene Expression. Int J Mol Sci 2021; 22:ijms22031363. [PMID: 33573012 PMCID: PMC7866418 DOI: 10.3390/ijms22031363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
The basidiomycete Pleurotus sapidus produced a dye-decolorizing peroxidase (PsaPOX) with alkene cleavage activity, implying potential as a biocatalyst for the fragrance and flavor industry. To increase the activity, a daughter-generation of 101 basidiospore-derived monokaryons (MK) was used. After a pre-selection according to the growth rate, the activity analysis revealed a stable intraspecific variability of the strains regarding peroxidase and alkene cleavage activity of PsaPOX. Ten monokaryons reached activities up to 2.6-fold higher than the dikaryon, with MK16 showing the highest activity. Analysis of the PsaPOX gene identified three different enzyme variants. These were co-responsible for the observed differences in activities between strains as verified by heterologous expression in Komagataella phaffii. The mutation S371H in enzyme variant PsaPOX_high caused an activity increase alongside a higher protein stability, while the eleven mutations in variant PsaPOX_low resulted in an activity decrease, which was partially based on a shift of the pH optimum from 3.5 to 3.0. Transcriptional analysis revealed the increased expression of PsaPOX in MK16 as reason for the higher PsaPOX activity in comparison to other strains producing the same PsaPOX variant. Thus, different expression profiles, as well as enzyme variants, were identified as crucial factors for the intraspecific variability of the PsaPOX activity in the monokaryons.
Collapse
|
14
|
Li X, Ren J, Fan G, Zhang L, Peng Z, Pan S. Catalytic condition optimization in the conversion of nootkatone from valencene by
Yarrowia lipolytica. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.14962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xiao Li
- College of Food Science and Technology Huazhong Agricultural UniversityKey Laboratory of Environment Correlative DietologyMinistry of Education Wuhan China
| | - Jing‐Nan Ren
- College of Food Science and Technology Huazhong Agricultural UniversityKey Laboratory of Environment Correlative DietologyMinistry of Education Wuhan China
| | - Gang Fan
- College of Food Science and Technology Huazhong Agricultural UniversityKey Laboratory of Environment Correlative DietologyMinistry of Education Wuhan China
| | - Lu‐Lu Zhang
- College of Food Science and Technology Huazhong Agricultural UniversityKey Laboratory of Environment Correlative DietologyMinistry of Education Wuhan China
| | - Zhi‐Qian Peng
- College of Food Science and Technology Huazhong Agricultural UniversityKey Laboratory of Environment Correlative DietologyMinistry of Education Wuhan China
| | - Si‐Yi Pan
- College of Food Science and Technology Huazhong Agricultural UniversityKey Laboratory of Environment Correlative DietologyMinistry of Education Wuhan China
| |
Collapse
|
15
|
de Melo CN, Moreira Meireles A, da Silva VS, Robles-Azocar P, DeFreitas-Silva G. Manganese complex catalyst for valencene oxidation: The first use of metalloporphyrins for the selective production of nootkatone. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Orban A, Hennicke F, Rühl M. Volatilomes of Cyclocybe aegerita during different stages of monokaryotic and dikaryotic fruiting. Biol Chem 2020; 401:995-1004. [DOI: 10.1515/hsz-2019-0392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/09/2020] [Indexed: 11/15/2022]
Abstract
AbstractVolatile organic compounds (VOC) are characteristic for different fungal species. However, little is known about VOC changes during development and their biological role. Therefore, we established a laboratory cultivation system in modified crystallizing dishes for analyzing VOC during fruiting body development of the dikaryotic strainCyclocybe aegeritaAAE-3 as well as four monokaryotic offspring siblings exhibiting different fruiting phenotypes. From these, VOC were extracted directly from the headspace (HS) and analyzed by means of gas chromatography-mass spectrometry (GC-MS). For all tested strains, alcohols and ketones, including oct-1-en-3-ol, 2-methylbutan-1-ol and cyclopentanone, were the dominant substances in the HS of early developmental stages. In the dikaryon, the composition of the VOC altered with ongoing fruiting body development and, even more drastically, during sporulation. At the latter stage, sesquiterpenes, especially Δ6-protoilludene, α-cubebene and δ-cadinene, were the dominant substances. After sporulation, the amount of sesquiterpenes decreased, while additional VOC, mainly octan-3-one, appeared. In the HS of the monokaryons, less VOC were present of which all were detectable in the HS of the dikaryonC. aegeritaAAE-3. The results of the present study show that the volatilome ofC. aegeritachanges considerably depending on the developmental stage of the fruiting body.
Collapse
Affiliation(s)
- Axel Orban
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Florian Hennicke
- Junior Research Group Genetics and Genomics of Fungi, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberg Gesellschaft für Naturforschung/Goethe University Frankfurt, D-60325 Frankfurt/Main, Germany
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, D-35392 Giessen, Germany
- Institute for Molecular Biology and Applied Ecology IME Branch for Bioresources, D-35392 Giessen, Germany
| |
Collapse
|
17
|
Pinela J, Omarini AB, Stojković D, Barros L, Postemsky PD, Calhelha RC, Breccia J, Fernández-Lahore M, Soković M, Ferreira ICFR. Biotransformation of rice and sunflower side-streams by dikaryotic and monokaryotic strains of Pleurotus sapidus: Impact on phenolic profiles and bioactive properties. Food Res Int 2020; 132:109094. [PMID: 32331629 DOI: 10.1016/j.foodres.2020.109094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 12/16/2022]
Abstract
Fungi are known to modify the properties of lignocellulosic materials during solid-state fermentation (SSF). In this study, agricultural side-streams (sunflower seed hulls, rice husks and rice straw) were used as substrates for SSF with dikaryotic and monokaryotic strains of Pleurotus sapidus. The phenolic profiles of the mentioned substrates were characterized by LC-DAD/ESI-MSn pre- and post- fermentation. Moreover, antioxidant, cytotoxic and antimicrobial activities were screened against oxidizable cellular substrates, tumour and primary cell lines, and different bacteria and fungi, respectively. The concentration of phenolic compounds in the crop side-streams was reduced after fermentation with both strains of the fungus. The fermented extracts also displayed lower antioxidant and cytotoxic activities and had no hepatotoxicity. The antimicrobial activity depended upon the crop side-stream and/or SSF conditions. These results indicate that P. sapidus represent a good candidate to modify the phenolic fraction presents in crop side-streams with a consequent decrease in its bioactivities. However, the SSF with P. sapidus strains play an interesting role in the detoxification of plant materials which can be used for different applications according to the "reduce - reuse - recycle" concept contributing with the sustainable land use and circular economy.
Collapse
Affiliation(s)
- José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Alejandra B Omarini
- INCITAP Institute of Earth and Environmental Sciences of La Pampa (CONICET-UNLPam) National Scientific and Technical Research Council-National University of La Pampa. Mendoza 109 (CP6300), Santa Rosa, La Pampa, Argentina; Downstream Bioprocessing Laboratory, Jacobs University Bremen gGmbH. Campus Ring 1, CP28759 Bremen, Germany
| | - Dejan Stojković
- University of Belgrade, Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", Bulevar despota Stefana 142, Belgrade, Serbia
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Pablo D Postemsky
- Laboratorio de Biotecnología de Hongos Comestibles y Medicinales, CERZOS-UNS/CONICET, Camino de La Carrindaga Km7, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Javier Breccia
- INCITAP Institute of Earth and Environmental Sciences of La Pampa (CONICET-UNLPam) National Scientific and Technical Research Council-National University of La Pampa. Mendoza 109 (CP6300), Santa Rosa, La Pampa, Argentina
| | - Marcelo Fernández-Lahore
- Downstream Bioprocessing Laboratory, Jacobs University Bremen gGmbH. Campus Ring 1, CP28759 Bremen, Germany
| | - Marina Soković
- University of Belgrade, Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", Bulevar despota Stefana 142, Belgrade, Serbia
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
18
|
Postemsky PD, Bidegain MA, Lluberas G, Lopretti MI, Bonifacino S, Inés Landache M, Zygadlo JA, Fernández-Lahore M, Omarini AB. Biorefining via solid-state fermentation of rice and sunflower by-products employing novel monosporic strains from Pleurotus sapidus. BIORESOURCE TECHNOLOGY 2019; 289:121692. [PMID: 31265963 DOI: 10.1016/j.biortech.2019.121692] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Pleurotus sapidus monokaryotic strains (Mk) were screened as a novel source of mycelia to valorize rice straw (RS), rice husks (RH) and sunflower seed hulls (SSH) into value-added products through solid-state fermentation (SSF). P. sapidus Dk3174 basidiospores were cultured in the presence of Remazol Brillant Blue R for strain selection, revealing the ligninolytic ability of emerging colonies. Further screening demonstrated the intraspecific variability in dye degradation and enzyme production of 63 strains. Growth rate, biomass and enzyme production in plates containing RS, RH or SSH pointed at MkP6 as a suitable strain for pilot-scale SSF. MkP6 presented a similar laccase profile as the parental Dk3174, being greater in pasteurized substrates (300-1200 U/Kg) than in sterilized substrates (30-250 U/Kg). Peroxidase represented 25% of the total ligninolytic activity measured. The SSH fermented biomass with MkP6 obtained good yields of nanocellulose (67%) and the saccharide release for ethanol production increased by 3-4 times.
Collapse
Affiliation(s)
- Pablo D Postemsky
- Laboratory of Biotechnology of Edible and Medicinal Mushrooms, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-UNS/CONICET), Camino de La Carrindaga Km7, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Maximiliano A Bidegain
- Laboratory of Biotechnology of Edible and Medicinal Mushrooms, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-UNS/CONICET), Camino de La Carrindaga Km7, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Gabriela Lluberas
- Universidad de la República (UdelaR), Facultad de Ciencias, CIN, Mataojos s/n, Malvin Norte, Montevideo, 11200 Montevideo, Uruguay
| | - Mary I Lopretti
- Universidad de la República (UdelaR), Facultad de Ciencias, CIN, Mataojos s/n, Malvin Norte, Montevideo, 11200 Montevideo, Uruguay
| | - Silvana Bonifacino
- Universidad de la República (UdelaR), Facultad de Ciencias, CIN, Mataojos s/n, Malvin Norte, Montevideo, 11200 Montevideo, Uruguay
| | - María Inés Landache
- Downstream Bioprocessing Laboratory, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Julio A Zygadlo
- Instituto Multidisciplinario de Biología Vegetal, IMBIV-UNC/CONICET, Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina
| | - Marcelo Fernández-Lahore
- Downstream Bioprocessing Laboratory, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Alejandra B Omarini
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa, INCITAP-UNLPam/CONICET, Mendoza 109, L6300DUG Santa Rosa, La Pampa, Argentina.
| |
Collapse
|
19
|
Upgrading the Nutritional Value of Rice Bran by Solid-State Fermentation with Pleurotus sapidus. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5020044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Solid-state fermentation (SSF) of rice bran (RB) employing the edible fungus Pleurotus sapidus was investigated as a process strategy to improve the nutritional quality of this low-cost and abundant substrate. During fermentation, samples were withdrawn at different time intervals (4, 6, and 10 days) and further analyzed. Established methods were deployed to monitor the changes in nutritional composition (carbohydrates, proteins, ash, and lipids). Additionally, changes in fatty acid composition was studied as a function of culture progress. Results showed that the SSF of rice bran increased total carbohydrates from 36.6% to 50.2%, total proteins from 7.4% to 12.8%, and ash from 7.6% to 11.5%. However, the total lipid content was reduced from 48.5% to 27.8%. The fatty acid (FA) composition of RB included mainly oleic, linoleic, and palmitic acids. Upon fermentation with P. sapidus, small differences were found: linoleic acid and oleic acid content were increased by 0.4% and 1.1%, respectively, while palmitic acid content was reduced by 0.8%. This study demonstrated an improvement in the nutritional quality of RB after fermentation with P. sapidus, since protein, carbohydrates, minerals, and specific FA components were increased. As a whole, our results indicate that fermented rice bran could be used as a high-quality animal feed supplement.
Collapse
|
20
|
Li J, Liu XB, Zhao ZW, Yang ZL. Genetic diversity, core collection and breeding history of Pleurotus ostreatus in China. MYCOSCIENCE 2019. [DOI: 10.1016/j.myc.2018.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Linke D, Omarini AB, Takenberg M, Kelle S, Berger RG. Long-Term Monokaryotic Cultures of Pleurotus ostreatus var. florida Produce High and Stable Laccase Activity Capable to Degrade ß-Carotene. Appl Biochem Biotechnol 2018; 187:894-912. [PMID: 30099681 DOI: 10.1007/s12010-018-2860-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 08/03/2018] [Indexed: 12/30/2022]
Abstract
An extracellular laccase (Lacc10) was discovered in submerged cultures of Pleurotus ostreatus var. florida bleaching ß-carotene effectively without the addition of a mediator (650 mU/L, pH 4). Heterologous expression in P. pastoris confirmed the activity and structural analyses revealed a carotenoid-binding domain, which formed the substrate-binding pocket and is reported here for the first time. In order to increase activity, 106 basidiospore-derived monokaryons and crosses of compatible progenies were generated. These showed high intraspecific variability in growth rate and enzyme formation. Seventy-two homokaryons exhibited a higher activity-to-growth-rate-relation than the parental dikaryon, and one isolate produced a very high activity (1800 mU/L), while most of the dikaryotic hybrids showed lower activity. The analysis of the laccase gene of the monokaryons revealed two sequences differing in three amino acids, but the primary sequences gave no clue for the diversity of activity. The enzyme production in submerged cultures of monokaryons was stable over seven sub-cultivation cycles.
Collapse
Affiliation(s)
- Diana Linke
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany.
| | - Alejandra B Omarini
- Downstream Bioprocessing Lab, Jacobs University Bremen gGmbH, Campus Ring 1, 28759, Bremen, Germany.,INCITAP (CONICET-UNLPam) Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Pampa, Uruguay 151, CP 6300, Santa Rosa, La Pampa, Argentina
| | - Meike Takenberg
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Sebastian Kelle
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Ralf G Berger
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany
| |
Collapse
|
22
|
|
23
|
Kinetic, oxygen mass transfer and hydrodynamic studies in a three-phase stirred tank bioreactor for the bioconversion of (+)-valencene on Yarrowia lipolytica 2.2ab. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Palmerín-Carreño DM, Rutiaga-Quiñones OM, Verde-Calvo JR, Prado-Barragán A, Huerta-Ochoa S. Whole Cell Bioconversion of (+)-valencene to (+)-nootkatone in 100 % Organic Phase using Yarrowia lipolytica 2.2ab. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2016. [DOI: 10.1515/ijcre-2016-0013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The aim of this work was to assess the whole cell bioconversion of (+)-valencene to (+)-nootkatone in 100 % organic phase (orange essential oil) using a stirred tank bioreactor. Yarrowia lipolytica 2.2ab was used to perform bioconversion experiments; 600 mL of orange essential oil was inoculated with 50 cm3 of cell paste containing 13.5 g of biomass previously permeabilized with 0.2 % (w/v) of cetyl trimethylammonium bromide (CTAB) and enriched with 2.0 mM niacin. Experiments were conducted at 200 rpm, 0.5 vvm and 30 °C. The highest (+)-nootkatone yield was ca. 773 mg L−1 after 4 days of conversion. Bioconversion percent and volumetric productivity increased to 82.3 % and 8.06 mg L−1 h−1 compared to those reported previously using a three-phase partitioning bioreactor. The absence of free water in the system did not affect the performance of Y. lipolytica 2.2ab.
Collapse
Affiliation(s)
- Dulce M. Palmerín-Carreño
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, P.A. 55–535, 09340 Iztapalapa, México D.F., México
| | | | - José R. Verde-Calvo
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, P.A. 55–535, 09340 Iztapalapa, México D.F., México
| | - Arely Prado-Barragán
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, P.A. 55–535, 09340 Iztapalapa, México D.F., México
| | - Sergio Huerta-Ochoa
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, P.A. 55–535, 09340 Iztapalapa, México D.F., México
| |
Collapse
|
25
|
Struch M, Krahe NK, Linke D, Mokoonlall A, Hinrichs J, Berger RG. Dose dependent effects of a milk ion tolerant laccase on yoghurt gel structure. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|