1
|
Yang K, Yin Y, Xu Y, Wang S, Gao M, Peng K, Luo J, Gao J, Cai Y. Hydrometeorological conditions drive long-term changes in the spatial distribution of Potamogeton crispus in a subtropical lake. FRONTIERS IN PLANT SCIENCE 2024; 15:1424300. [PMID: 39045598 PMCID: PMC11263109 DOI: 10.3389/fpls.2024.1424300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/06/2024] [Indexed: 07/25/2024]
Abstract
Globally, anthropogenic disturbance and climate change caused a rapid decline of submerged macrophytes in lake ecosystems. Potamogeton crispus (P. crispus), a species that germinates in winter, explosively expanded throughout many Chinese lakes, yet the underlying mechanism remained unclear. Here, this study examined the long-term changes in the distribution patterns of P. crispus in Lake Gaoyou by combining remote sensing images and hydrometeorological data from 1984 to 2022 and water quality data from 2009 to 2022. It aims to unravel the relationships between the distribution patterns of P. crispus and hydrometeorological and water quality factors. The results showed that the area of P. crispus in Lake Gaoyou showed a slight increase from 1984 to 2009, a marked increase from 2010 to 2019, followed by a decline after 2020. Spatially, P. crispus was primarily distributed in the western and northern parts of Lake Gaoyou, with less distribution in the central and southeastern parts of the lake. Wind speed (WS), temperature (Temp), water level (WL), ammonia nitrogen (NH3-N), and Secchi depth (SD) were identified as the key factors regulating the variation in the P. crispus area in Lake Gaoyou. We found that the P. crispus area showed an increasing trend with increasing Temp, WL, and SD and decreasing WS and NH3-N. The influence of environmental factors on the area of P. crispus in Lake Gaoyou varied among seasons. The results indicated that hydrometeorology (WS, Temp, and WL) may override water quality (NH3-N and SD) in driving the succession of P. crispus distribution. The findings of this study offer valuable insights into the recent widespread expansion of P. crispus in shallow lakes across Eastern China.
Collapse
Affiliation(s)
- Ke Yang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Yin
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Xu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shaobo Wang
- Jiangsu Surveying and Design Institute of Water Resources Co., Ltd., Yangzhou, China
| | - Mingyuan Gao
- Jiangsu Province Hydrology and Water Resources Investigation Bureau, Nanjing, China
| | - Kai Peng
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Juhua Luo
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junfeng Gao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongjiu Cai
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Chen J, Zhang Y, Zhou H. Development and implementation of a novel mechanized planting method for ecological restoration of aquatic environments using degradable nutrition pots. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121421. [PMID: 38875982 DOI: 10.1016/j.jenvman.2024.121421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/09/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Submerged plants play a significant role in the remediation and purification of polluted water bodies. Reconstruction of submerged plants has been considered as an important ecological method to restore aquatic ecosystems. However, large-scale and efficient plantation of submerged plants in water restoration is a huge challenge. This paper proposes a novel mechanized planting method for submerged plants utilizing nutrition pots as planting units. Firstly, the details of the mechanized planting method were introduced. The mechanized planting method involves pre-planting the reproductive bodies of submerged plants in degradable nutrition pots, and then implanting them into the underwater soil through a planting device. Secondly, the interaction force between the nutrition pot and the soil was measured. It was found that the implantation force of nutrition pots increases with planting velocity. The planting force shows a significant increase trend when the water content in the soil decreases. Thirdly, the deformation of the nutrition pot was studied through simulations. It was discovered that the deformation of the nutrition pot mainly occurs at the bottom and the side walls near the bottom, and the limited deformation ensures the integrity of the nutrition pot. Finally, a planting device with a linear motion mechanism was designed, and a typical submerged plant, Vallisneria natans was tested, using agricultural paper seedling containers as the nutrition pots. It was demonstrated that the mechanized device successfully planted submerged plant nutrition pots into the soil, and the submerged plants survived and showed a clear growth trend. The mechanized planting method of submerged plants proposed in this article is expected to provide a new and friendly technology for ecological restoration of water source.
Collapse
Affiliation(s)
- Jipeng Chen
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, 159 Lonpan Road, Nanjing, 210037, China.
| | - Yuqiu Zhang
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, 159 Lonpan Road, Nanjing, 210037, China
| | - Hongping Zhou
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, 159 Lonpan Road, Nanjing, 210037, China
| |
Collapse
|
3
|
Lin Y, Cheng C, Dai Y, Li W, Chen J, Chen M, Xie P, Gao Q, Fan X, Deng X. The origins of odor (β-cyclocitral) under different water nutrient conditions: Algae or submerged plants? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:173024. [PMID: 38719048 DOI: 10.1016/j.scitotenv.2024.173024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Among the problems caused by water eutrophication, the issue of odor compounds has attracted notable attention. β-Cyclocitral, a widely distributed and versatile odor compound, is commonly derived from both algae and aquatic plants. Planting aquatic plants is a common method of water purification. However, there is limited study on their impact on β-cyclocitral levels in water. Here, we conducted a study on the β-cyclocitral levels in water and the submerged plant leaves under three nutrient levels and six plant density treatments. Our findings revealed the following: (1) Chlorophyll-a (Chla), β-cyclocitral in the water (Wcyc), β-cyclocitral in Potamogeton lucens leaves (Pcyc) and the biomass of the submerged plants increase with rising nutrient concentration, which increased about 83 %, 95 %, 450 %, 320 % from eutrophic treatment to oligotrophic treatment, respectively. (2) In water, β-cyclocitral is influenced not only by algae but also by submerged plants, with primary influencing factors varying across different nutrient levels and plant densities. The main source of β-cyclocitral in water becomes from plants to algae as the water eutrophication and plant density decrease. (3) As submerged plants have the capability to emit β-cyclocitral, the release of β-cyclocitral increases with the density of submerged plants. Hence, when considering planting submerged plants for water purification purposes, it is crucial to carefully manage submerged plant density to mitigate the risk of odor pollution emanating from aquatic plants. This study offers fresh insights into selecting optimal water density for submerged plants and their role in mitigating the release of β-cyclocitral.
Collapse
Affiliation(s)
- Yu Lin
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Chaoyue Cheng
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yutai Dai
- Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Weijie Li
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Jiping Chen
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Ecology and Environment, Tibet University, Lhasa 850012, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Mo Chen
- Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Qiang Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Xiaoyue Fan
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; University of Chinese Academy of Sciences, Beijing 10049, China.
| |
Collapse
|
4
|
Rani N, Pohekar KN, Sehrawat A, Gupta NC. Influence of enzyme activity on domestic wastewater amelioration in a hybrid subsurface flow constructed wetland. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11025. [PMID: 38634172 DOI: 10.1002/wer.11025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/29/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Wastewater treatment in a constructed wetland is achieved by the presence of plant species, the metabolism of microorganisms, and the enzyme activities. Three small-scale hybrid subsurface flow constructed wetlands (HSFCWs) planted with Arundo donax and one unplanted HSFCW were constructed near a water resource recovery facility at Guru Gobind Singh Indraprastha University. The purpose of the study was to determine the correlation between soil enzymatic activities and the removal of contaminants from domestic wastewater. Enzyme activity of phosphatase, protease, urease, and cellulase increased with an increase in temperature. A strong correlation between enzyme activities and TKN and surfactant removal was observed, whereas moderate correlation was observed with phosphate in planted HSFCW during the study. The correlation between COD removal and enzyme activities was low to moderate. In unplanted HSFCW, the correlation between enzyme activities and COD removal was negative, negligible to moderate to strong in the case of TKN, low to moderate in the case of phosphate, and negligible to low in the case of surfactants. The increased removal efficiency of the planted system compared with that of the unplanted system indicated a positive impact on enzyme activities with the growth of plants and their roots. PRACTITIONER POINTS: Protease, urease, and cellulase activities: Planted HSFCW exhibited higher protease, urease, and cellulase activities than unplanted, signifying enhanced breakdown. July displayed maximum enzyme activities, correlating with heightened biological breakdown in both systems. Fluctuations in enzyme activities reflected seasonal changes, influencing nutrient degradation rates. Planted HSFCW consistently showed higher enzymatic activities across protease, urease, and cellulase than unplanted.
Collapse
Affiliation(s)
- Neetu Rani
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Delhi, India
| | - Karuna N Pohekar
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Anirudh Sehrawat
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Delhi, India
| | - N C Gupta
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Delhi, India
| |
Collapse
|
5
|
Yan X, Xia Y, Ti C, Shan J, Wu Y, Yan X. Thirty years of experience in water pollution control in Taihu Lake: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169821. [PMID: 38190921 DOI: 10.1016/j.scitotenv.2023.169821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024]
Abstract
Taihu Lake has suffered from eutrophication and algal blooms for decades, primarily due to increasing anthropogenic pollutants from human activities. Extensive research and widespread implementation of water pollution control measures have significantly contributed to the improvement of water quality of Taihu Lake. However, the relevant experience of Taihu Lake pollution control has not been well summarized to provide insight for future lake restoration. This review article seeks to address this gap by first providing a comprehensive overview of Taihu Lake's water quality dynamics over the past thirty years, characterized by two distinct stages: (I) water quality deterioration (1990s-2007); and (II) water total nitrogen (TN) improvement but total phosphorus (TP) fluctuation (2007-current). Subsequently, we conducted a thorough review of the experiences and challenges associated with water pollution control during these two stages. Generally, pollution control practices emphasized point source control but overlooked non-point sources before 2007, possibly due to point sources being easier to identify and manage. Accordingly, the focus shifted from industrial point sources to a combination of industrial point and agricultural non-point sources after 2007 to control water pollution in the Taihu Lake Basin. Numerous studies have delved into non-point source pollution control, including source control, transport intercept, in-lake measures, and the integration of these technologies. Taken together, this paper provides suggestions based on the needs and opportunities of this region. Further research is needed to better understand and model the underlying pollution processes, as well as to increase public participation and improve policy and law implementation, which will assist decision-makers in formulating better water management in Taihu Lake.
Collapse
Affiliation(s)
- Xing Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqiu Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Chaopu Ti
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Chang B, Xu Y, Zhang Z, Wang X, Jin Q, Wang Y. Purification Effect of Water Eutrophication Using the Mosaic System of Submerged-Emerged Plants and Growth Response. PLANTS (BASEL, SWITZERLAND) 2024; 13:560. [PMID: 38498525 PMCID: PMC10891872 DOI: 10.3390/plants13040560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
Aquatic plants play a crucial role in the sustainable management of eutrophic water bodies, serving as a valuable tool for water purification. However, the effectiveness of using aquatic plants for improving water quality is influenced by landscape considerations. In practical applications, challenges arise concerning low purification efficiency and compromised aesthetic appeal when utilizing plants for water purification. To address these issues, this study aimed to examine the impact of aquatic plants on the purification of simulated landscape water bodies, specifically focusing on the effectiveness of the mosaic system of submerged-emerged plants in remediating eutrophic water bodies. Our findings indicated that individual aquatic plants exhibited limited efficacy in pollutant (total nitrogen, total phosphorus, ammonia nitrogen, and chemical oxygen demand) removal. However, when combined in appropriate proportions, submerged plants could enhance species growth and improve the purification efficiency of polluted water bodies. Notably, the mosaic system of submerged-emerged plants neither significantly promoted nor inhibited the growth of each other, but it effectively removed pollutants from the simulated water bodies and inhibited turbidity increase. The comprehensive evaluation ranked the purification capacity as Canna indica-submerged plants combination (C + S) > Thalia dealbata-submerged plants combination (T + S) > Iris pseudacorus-submerged plants combination (I + S) > Lythrum salicaria-submerged plants combination (L + S). Both C + S and T + S configurations effectively mitigated the rise of water turbidity and offered appealing landscape benefits, making them viable options for practical applications in urban landscape water bodies. Our study highlights that a submerged-emerged mosaic combination is a means of water purification that combines landscape aesthetics and purification efficiency.
Collapse
Affiliation(s)
- Baoliang Chang
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Flower Biology and Germplasm Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (B.C.); (Y.X.)
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Liaoning Shenyang Urban Ecosystem Research Station, National Forestry and Grassland Administration, Shenyang 110164, China
| | - Yingchun Xu
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Flower Biology and Germplasm Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (B.C.); (Y.X.)
| | - Ze Zhang
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Flower Biology and Germplasm Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (B.C.); (Y.X.)
| | - Xiaowen Wang
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Flower Biology and Germplasm Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (B.C.); (Y.X.)
| | - Qijiang Jin
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Flower Biology and Germplasm Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (B.C.); (Y.X.)
| | - Yanjie Wang
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Flower Biology and Germplasm Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (B.C.); (Y.X.)
| |
Collapse
|
7
|
Xiang C, Du Y, Han W, Guan B, Liu H, An Y, Liu Y, Jiang H, Chang J, Ge Y. Proper C/N ratio enhances the effect of plant diversity on nitrogen removal and greenhouse effect mitigation in floating constructed wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12036-12051. [PMID: 38225493 DOI: 10.1007/s11356-024-31985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Treating wastewater with low carbon-to-nitrogen (C/N) ratios by constructed wetlands (CWs) is still problematic. Adding chemicals is costly and may cause secondary pollution. Configuring plant diversity in substrate-based CWs has been found to be a better way to treat low-C/N wastewater, but wastewater treatment in floating CWs needs to be studied. In this study, wastewater with C/N ratios of 5 and 10 were set in simulated floating CWs, and 9 combinations with plant species richness (SR) of 1, 3, and 4 were configured. The results showed that (1) increasing SR improved the total N mass removal (NMR) by 29% at a C/N ratio of 5 but not 10; (2) the presence of Oenanthe javanica in the microcosms increased the NMR by 13% and 20% with C/N ratios of 5 and 10, respectively; (3) increasing SR mitigated the net global warming potential (GWP) by 120% at a C/N ratio of 5 but not 10; and (4) a Hemerocallis fulva × O. javanica × Echinodorus parviflours × Iris hybrids mixture resulted in a high NMR and low net GWP. In summary, assembling plant diversity in floating CWs is an efficient and clean measure during the treatment of wastewater with a C/N ratio of 5.
Collapse
Affiliation(s)
- Chenxu Xiang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Yuanyuan Du
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
- Huaxin Design Group Co., Ltd, Wuxi, 214100, People's Republic of China
| | - Wenjuan Han
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, People's Republic of China
| | - Baohua Guan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Hua Liu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Yu An
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Hang Jiang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Jie Chang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Ying Ge
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
8
|
Qu Y, Yang Y, Sonne C, Chen X, Yue X, Gu H, Lam SS, Peng W. Phytosphere purification of urban domestic wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122417. [PMID: 37598935 DOI: 10.1016/j.envpol.2023.122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
Industrialization and overpopulation have polluted aquatic environments with significant impacts on human health and wildlife. The main pollutants in urban sewage are nitrogen, phosphorus, heavy metals and organic pollutants, which need to be treated with sewage, and the use of aquatic plants to purify wastewater has high efficiency and low cost. However, the effectiveness and efficiency of phytoremediation are also affected by temperature, pH, microorganisms and other factors. The use of biochar can reduce the cost of wastewater purification, and the combination of biochar and nanotechnology can improve the efficiency of wastewater purification. Some aquatic plants can enrich pollutants in wastewater, so it can be considered to plant these aquatic plants in constructed wetlands to achieve the effect of purifying wastewater. Biochar treatment technology can purify wastewater with high efficiency and low cost, and can be further applied to constructed wetlands. In this paper, the latest research progress of various pollutants in wastewater purification by aquatic plants is reviewed, and the efficient treatment technology of wastewater by biochar is discussed. It provides theoretical basis for phytoremediation of urban sewage pollution in the future.
Collapse
Affiliation(s)
- Yimeng Qu
- Henan Province International Collaboration Lab of Forest Resources Utilization,School of Forestry,Henan Agricultural University,Zhengzhou 450002,China
| | - Yafeng Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization,School of Landscape Architecture,Henan Agricultural University,Zhengzhou 450002,China
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde DK-4000, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Xiangmeng Chen
- Henan Province International Collaboration Lab of Forest Resources Utilization,School of Science,Henan Agricultural University,Zhengzhou 450002,China
| | - Xiaochen Yue
- Henan Province International Collaboration Lab of Forest Resources Utilization,School of Forestry,Henan Agricultural University,Zhengzhou 450002,China
| | - Haiping Gu
- Henan Province International Collaboration Lab of Forest Resources Utilization,School of Forestry,Henan Agricultural University,Zhengzhou 450002,China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization,School of Forestry,Henan Agricultural University,Zhengzhou 450002,China.
| |
Collapse
|
9
|
Zhang Y, Sun S, Gu X, Yu Q, He S. Role of hydrophytes in constructed wetlands for nitrogen removal and greenhouse gases reduction. BIORESOURCE TECHNOLOGY 2023; 388:129759. [PMID: 37716572 DOI: 10.1016/j.biortech.2023.129759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
With the prominence of global climate change and proposal of carbon reduction concept, how to maximize the comprehensive effect of nitrogen removal and greenhouse gases (GHGs) reduction in constructed wetlands (CWs) has become crucial. As indispensable biological component of CWs, hydrophytes have received extensive attention owing to their application potential. This review comprehensively evaluates the functions of hydrophytes in nitrogen removal and GHGs reduction in CWs in terms of plants themselves, plant-mediated microbes and plant residues (hydrophyte carbon sources and hydrophyte-derived biochars). On this basis, the strategies for constructing an ideal CW system are put forward from the perspective of full life-cycle utilization of hydrophytes. Finally, considering the variability of plant species composition in CWs, outlooks for future research are specifically proposed. This review provides guidance and novel perspectives for the full life-cycle utilization of hydrophytes in CWs, as well as for the construction of an ideal CW system.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingjiang Yu
- Daqing Water Group Company Limited, Daqing 163000, China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, China.
| |
Collapse
|
10
|
Gu X, Peng Y, Yan P, Fan Y, Zhang M, Sun S, He S. Microbial response to nitrogen removal driven by combined iron and biomass in subsurface flow constructed wetlands with plants of different ages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162692. [PMID: 36894080 DOI: 10.1016/j.scitotenv.2023.162692] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the nitrogen removal enhanced by combined iron scraps and plant biomass, and its microbial response in the wetland with different plant ages and temperatures. The results showed that older plants benefitted the efficiency and stability of nitrogen removal, which could reach 1.97 ± 0.25 g m-2 d-1 in summer and 0.42 ± 0.12 g m-2 d-1 in winter. Plant age and temperature were the main factors determining the microbial community structure. Compared with temperature, plant ages affected more significantly on relative abundance of microorganisms such as Chloroflexi, Nitrospirae, Bacteroidetes and Cyanobacteria, and functional genera for nitrification (e.g., Nitrospira) and iron reduction (e.g., Geothrix). The absolute abundance of total bacterial 16S rRNA ranged from 5.22 × 108 to 2.63 × 109 copies g-1 and presented extremely significant negative correlation to plant age, which would lead to a decline in microbial function on information storage and processing. The quantitative relationship further revealed that the ammonia removal was related to 16S rRNA and AOB amoA, while nitrate removal was controlled by 16S rRNA, narG, norB and AOA amoA jointly. These findings suggested that a mature wetland for nitrogen removal enhancement should focus on aging microbes caused by old plants and possible endogenous pollution.
Collapse
Affiliation(s)
- Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuanyuan Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuanyuan Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
11
|
Effects of Enrofloxacin on Nutrient Removal by a Floating Treatment Wetland Planted with Iris pseudacorus: Response and Resilience of Rhizosphere Microbial Communities. SUSTAINABILITY 2022. [DOI: 10.3390/su14063358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Constructed wetlands (CWs), including floating treatment wetlands (FTWs), possess great potential for treating excessive nutrients in surface waters, where, however, the ubiquitous presence of antibiotics, e.g., enrofloxacin (ENR), is threatening the performance of CWs. In developing a more efficient and resilient system, we explored the responses of the FTW to ENR, using tank 1, repeatedly exposed to ENR, and tank 2 as control. Plant growth and nutrient uptake were remarkably enhanced in tank 1, and similar phosphorus removal rates (86~89% of the total added P) were obtained for both tanks over the experimental period. Contrarily, ENR apparently inhibited N removal by tank 1 (35.1%), compared to 40.4% for tank 2. As ENR rapidly decreased by an average of 71.6% within a week after each addition, tank 1 took only 4 weeks to adapt and return to a similar state compared to that of tank 2. This might be because of the recovery of microbial communities, particularly denitrifying and antibiotic-resistance genes containing bacteria, such as Actinobacteria, Patescibacteria, Acidovorax and Pseudomonas. After three ENR exposures over six weeks, no significant differences in the nutrient removal and microbial communities were found between both tanks, suggesting the great resilience of the FTW to ENR.
Collapse
|
12
|
Wang X, Jain A, Chen B, Wang Y, Jin Q, Yugandhar P, Xu Y, Sun S, Hu F. Differential efficacy of water lily cultivars in phytoremediation of eutrophic water contaminated with phosphorus and nitrogen. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:139-146. [PMID: 34998101 DOI: 10.1016/j.plaphy.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Excessive inputs of phosphorus (P) and nitrogen (N) trigger eutrophication of the water bodies, which promotes the undesirable growth of algal bloom and deterioration of the water quality, and aquatic biodiversity. Macrophytes provide an environmentally benign and economically viable paradigm for the ecological restoration of eutrophic aquatic ecosystems. Water lily (Nymphaea) is largely used as ornamental plant for landscaping, and it has been documented that water lily possesses the potentiality in mitigating polluted aquatic environments. In the present study, water lily cultivars Nymphaea Texas Dawn (NTD), Nymphaea Colorado (NC), Nymphaea Madame Wilfron Gonnère (NMWG), and Nymphaea Sunshine Princess (NSP) were investigated for their potency in alleviating the eutrophication. The concentrations of total P and total N were significantly higher in the leaves of NC and NSP compared with NTD and NMWG. Therefore, NC and NSP were selected for subsequent studies to decipher their recuperation efficacy on eutrophic waters at different growth stages. NC and NSP significantly reduced the concentrations of eutrophication indicators i.e., total P, NH4+-N, and chemical oxygen demand in different gradients of the simulated eutrophic water in a growth-dependent manner. On the contrary, NC and NSP triggered a significant increase in the concentration of dissolved oxygen particularly at the seedling stage. Notably, the concentrations of total P (shoot and root) and total N (root) were relatively higher in NSP than NC. The study thus revealed a growth-dependent differential efficacy of NSP and NC in mitigating the different eutrophic waters.
Collapse
Affiliation(s)
- Xiaowen Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Bingqiong Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanjie Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qijiang Jin
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Poli Yugandhar
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - Yingchun Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shubin Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Feng Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
13
|
Lu Y, Kronzucker HJ, Shi W. Stigmasterol root exudation arising from Pseudomonas inoculation of the duckweed rhizosphere enhances nitrogen removal from polluted waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117587. [PMID: 34182390 DOI: 10.1016/j.envpol.2021.117587] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Rhizospheric microorganisms such as denitrifying bacteria are able to affect 'rhizobioaugmention' in aquatic plants and can help boost wastewater purification by benefiting plant growth, but little is known about their effects on the production of plant root exudates, and how such exudates may affect microorganismal nitrogen removal. Here, we assess the effects of the rhizospheric Pseudomonas inoculant strain RWX31 on the root exudate profile of the duckweed Spirodela polyrrhiza, using gas chromatography/mass spectrometry. Compared to untreated plants, inoculation with RWX31 specifically induced the exudation of two sterols, stigmasterol and β-sitosterol. An authentic standard assay revealed that stigmasterol significantly promoted nitrogen removal and biofilm formation by the denitrifying bacterial strain RWX31, whereas β-sitosterol had no effect. Assays for denitrifying enzyme activity were conducted to show that stigmasterol stimulated nitrogen removal by targeting nitrite reductase in bacteria. Enhanced N removal from water by stigmasterol, and a synergistic stimulatory effect with RWX31, was observed in open duckweed cultivation systems. We suggest that this is linked to a modulation of community composition of nirS- and nirK-type denitrifying bacteria in the rhizosphere, with a higher abundance of Bosea, Rhizobium, and Brucella, and a lower abundance of Rubrivivax. Our findings provide important new insights into the interaction of duckweed with the rhizospheric bacterial strain RWX31 and their involvement in the aquatic N cycle and offer a new path toward more effective bio-formulations for the purification of N-polluted waters.
Collapse
Affiliation(s)
- Yufang Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Herbert J Kronzucker
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
14
|
Mander Ü, Tournebize J, Espenberg M, Chaumont C, Torga R, Garnier J, Muhel M, Maddison M, Lebrun JD, Uher E, Remm K, Pärn J, Soosaar K. High denitrification potential but low nitrous oxide emission in a constructed wetland treating nitrate-polluted agricultural run-off. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146614. [PMID: 34030255 DOI: 10.1016/j.scitotenv.2021.146614] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetlands (CW) can efficiently remove nitrogen from polluted agricultural run-off, however, a potential caveat is nitrous oxide (N2O), a harmful greenhouse gas and stratospheric ozone depleter. During five sampling campaigns, we measured N2O fluxes from a 0.53 ha off-stream CW treating nitrate-rich water from the intensively fertilized watershed in Rampillon, France, using automated chambers with a quantum cascade laser system, and manual chambers. Sediment samples were analysed for potential N2 flux using the HeO2 incubation method. Both inlet nitrate (NO3-) concentrations and N2O emission varied significantly between the seasons. In the Autumn and Winter inlet concentrations were about 11 mg NO3--N L-1, and < 6.5 mg NO3--N L-1 in the Spring and Summer. N2O emission was highest in the Autumn (mean ± standard error: 9.7 ± 0.2 μg N m-2 h-1) and lowest in the Summer (wet period: 0.2 ± 0.3 μg N m-2 h-1). The CW was a very weak source of N2O emitting 0.32 kg N2O-N ha-1 yr-1 and removing around 938 kg NO3--N ha-1 yr-1, the ratio of N2O-N emitted to NO3--N removed was 0.033%. The automated and manual chambers gave similar results. From the potential N2O formation in the sediment, only 9% was emitted to the atmosphere, the average N2 N 2O ratio was high: 89:1 for N2-Npotential: N2O-Npotential and 1353:1 for N2-Npotential: N2O-Nemitted. These results indicate complete denitrification. The focused principal component analysis showed strong positive correlation between the gaseous N2O fluxes and the following environmental factors: NO3--N concentrations in inlet water, streamflow, and nitrate reduction rate. Water temperature, TOC and DOC in the water and hydraulic residence time showed negative correlations with N2O emissions. Shallow off-stream CWs such as Rampillon may have good nitrate removal capacity with low N2O emissions.
Collapse
Affiliation(s)
- Ülo Mander
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia; UR 1462 HYCAR, University Paris Saclay, French National Institute for Agriculture, Food, and Environment (INRAE), Antony, France.
| | - Julien Tournebize
- UR 1462 HYCAR, University Paris Saclay, French National Institute for Agriculture, Food, and Environment (INRAE), Antony, France
| | - Mikk Espenberg
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Cedric Chaumont
- UR 1462 HYCAR, University Paris Saclay, French National Institute for Agriculture, Food, and Environment (INRAE), Antony, France
| | - Raili Torga
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | | | - Mart Muhel
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Martin Maddison
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Jérémie D Lebrun
- UR 1462 HYCAR, University Paris Saclay, French National Institute for Agriculture, Food, and Environment (INRAE), Antony, France
| | - Emmanuelle Uher
- UR 1462 HYCAR, University Paris Saclay, French National Institute for Agriculture, Food, and Environment (INRAE), Antony, France
| | - Kalle Remm
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Jaan Pärn
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Kaido Soosaar
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
15
|
Kim Y, Lee YS, Wee J, Hong J, Lee M, Kim JG, Bae YJ, Cho K. Process-based modeling to assess the nutrient removal efficiency of two endangered hydrophytes: Linking nutrient-cycle with a multiple-quotas approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:144223. [PMID: 33373786 DOI: 10.1016/j.scitotenv.2020.144223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Hydrophytes have been widely used to reduce nutrient levels in aquatic ecosystems, but only limited species with high nutrient removal efficiencies have been implemented. Thus, it is necessary to continually explore new candidate species with high nutrient removal efficiencies. To effectively explore the nutrient removal ability of hydrophytes, a new process-based model combining the multiple-quotas approach and nutrient-cycle model was developed. The multiple-quotas approach provides a theoretical framework to conceptually explain the uptake and response of autotrophs to multiple nutrients. The developed process-based model was validated using observational data from microcosm experiments with two emergent hydrophytes, Menyanthes trifoliata and Cicuta virosa. The results showed that both M. trifoliata and C. virosa effectively reduced nitrogen (N) and phosphorus (P) in both water and sediment layers, but M. trifoliata showed a higher removal efficiency for both nutrients than C. virosa, particularly for total ammonia + ammonium-nitrogen (NHx-N) and nitrate-nitrogen (NO3-N) in the sediment layer (M. trifoliata: 0.579-0.976 for NHx-N, 0.567-0.702 for NO3-N; C. virosa: 0.212-0.501 for NHx-N, 0.466-0.560 for NO3-N). In addition, M. trifoliata achieved the maximum removal efficiency for N and P at higher nutrient exposure levels than C. virosa (M. trifoliata: exposure level of 0.725-0.775; C. virosa: exposure level of 0.550-0.575). The developed model well simulated the species-specific growth patterns of hydrophytes depending on the nutrient exposure level as well as the N and P dynamics in the water and sediment layers. The approach adopted in this study provides a useful tool for discovering candidate species to improve hydrophyte diversity and effectively remove nutrients from aquatic ecosystems.
Collapse
Affiliation(s)
- Yongeun Kim
- Ojeong Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Yun-Sik Lee
- Ojeong Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - June Wee
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinsol Hong
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Minyoung Lee
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jae Geun Kim
- Department of Biology Education, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeon Jae Bae
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Kijong Cho
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
16
|
Gu X, Chen D, Wu F, He S, Huang J. Recycled utilization of Iris pseudacorus in constructed wetlands: Litters self-consumption and nitrogen removal improvement. CHEMOSPHERE 2021; 262:127863. [PMID: 32768758 DOI: 10.1016/j.chemosphere.2020.127863] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Aquatic plants litters from constructed wetlands might become pollutants without proper treatment. Due to its high carbon and low nitrogen contained, Iris pseudacorus litters have potential to be used as carbon source to enhance denitrification process in advanced treatments of secondary effluent from wastewater treatment plants. This study investigated the characteristics of carbon release form Iris pseudacorus litters and its performance on enhancement of nitrogen removal. The batch experiment showed that the organic carbon release process can be simulated by combining dissolution and hydrolysis process, and it was found that dissolved organic matters mainly consisted of 60% sugar and 35% humic acid-like compounds from the neutral detergent solution and hemicellulose of litters. The long-term operation of lab-scale constructed wetlands revealed a high nitrogen removal of 78.81-90.39% in treating the synthetic wastewater treatment plants effluent with the equivalent dosage of 25-150 g litters m-2 d-1. Furthermore, it is possible to establish an Iris pseudacorus self-consumed constructed wetland to reuse all of the litters produced during the operation. These findings can contribute to the understanding of the dynamics of carbon release from Iris pseudacorus litters and recycled utilization of plant biomass in the constructed wetlands.
Collapse
Affiliation(s)
- Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Danyue Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Fei Wu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Jungchen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
17
|
Manolaki P, Mouridsen MB, Nielsen E, Olesen A, Jensen SM, Lauridsen TL, Baattrup-Pedersen A, Sorrell BK, Riis T. A comparison of nutrient uptake efficiency and growth rate between different macrophyte growth forms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 274:111181. [PMID: 32810679 DOI: 10.1016/j.jenvman.2020.111181] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/16/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Aquatic macrophytes grow abundantly in many lowland streams and play a key role in ecosystem functioning, such as nutrient retention. In this study, we performed a microcosm experiment to quantify and compare the contribution of two freshwater macrophyte growth forms to nutrient cycling. We measured and compared inorganic nitrogen (NH4-N and NO3-N) and phosphorus (PO4-P) uptake kinetic parameters (Vmax and Cmin) in 12 submerged and seven amphibious plant species. We tested whether relative growth rate (RGR) was related to high Vmax and low Cmin, and quantified changes in nutrient uptake kinetic in a subset of six out of 19 plants species during the growth season. Uptake rates of NH4-N were higher in submerged compared to amphibious plants, whereas uptake rates of NO3-N were significantly higher in amphibious species; PO4-P uptake kinetics were not significantly different between the two growth forms. There were also significant seasonal differences in Vmax NH4-N rate among both submerged and amphibious species and in Vmax NO3-N among amphibious species. Highest uptake rates were observed in summer for both submerged and amphibious species. Overall, we found that nutrient uptake kinetics differed between the two growth forms within and between seasons. Consequently, the presence of both growth forms should extend the period of nutrient uptake across the year and enhance nutrient uptake within seasons. We conclude that higher functional diversity enhances annual nutrient uptake in streams and that stream restoration efforts should consider increasing the niche space available for both submerged and amphibious species.
Collapse
Affiliation(s)
- P Manolaki
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark; Department of Biology, Aarhus University, Ole Worms Allé 1, Aarhus, Denmark.
| | - M B Mouridsen
- Department of Biology, Aarhus University, Ole Worms Allé 1, Aarhus, Denmark
| | - E Nielsen
- Department of Biology, Aarhus University, Ole Worms Allé 1, Aarhus, Denmark
| | - A Olesen
- Department of Biology, Aarhus University, Ole Worms Allé 1, Aarhus, Denmark
| | - S M Jensen
- Department of Biology, Aarhus University, Ole Worms Allé 1, Aarhus, Denmark
| | - T L Lauridsen
- Department of Biology, Aarhus University, Ole Worms Allé 1, Aarhus, Denmark
| | - A Baattrup-Pedersen
- Department of Bioscience, Aarhus University, Vejlsøvej 25, P.O. Box 314, DK-8600, Silkeborg, Denmark
| | - B K Sorrell
- Department of Biology, Aarhus University, Ole Worms Allé 1, Aarhus, Denmark
| | - T Riis
- Department of Biology, Aarhus University, Ole Worms Allé 1, Aarhus, Denmark
| |
Collapse
|
18
|
Li X, Li Y, Li Y, Wu J. Myriophyllum elatinoides growth and rhizosphere bacterial community structure under different nitrogen concentrations in swine wastewater. BIORESOURCE TECHNOLOGY 2020; 301:122776. [PMID: 31958692 DOI: 10.1016/j.biortech.2020.122776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
In this study, Myriophyllum elatinoides growth under different nitrogen (N) concentrations (2, 250, 300, 350 and 400 mg L-1) and changes in rhizosphere bacterial community structure were investigated. High N (>300 mg L-1) concentrations caused reduction in M. elatinoides biomass. Growth tended to stabilize at 49 days. N concentration in roots were higher than that in stems and leaves under high N conditions. TN and NH4+ removal efficiencies reached 84.0% and 87.2%, respectively, in M. elatinoides surface flow constructed wetlands (SFCWs). Rhizosphere bacterial diversity increased over time. Proteobacteria, Firmicutes, Cyanobacteria, and Bacteroidetes dominated at the phylum level. Genera Turicibacter, Allochromatium, and Methylocystis increased at low N (<300 mg L-1) concentrations, while Pseudomonas increased at high N concentrations over the experimental period. Redundancy analysis showed that pH was strongly correlated with changes in rhizosphere bacterial community structure. These findings helped to insight into N removal mechanism in M. elatinoides.
Collapse
Affiliation(s)
- Xi Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China
| | - Yuyuan Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China.
| | - Yong Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
19
|
Zuo X, Zhang H, Yu J. Microbial diversity for the improvement of nitrogen removal in stormwater bioretention cells with three aquatic plants. CHEMOSPHERE 2020; 244:125626. [PMID: 32050356 DOI: 10.1016/j.chemosphere.2019.125626] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 05/20/2023]
Abstract
The aquatic plants Iris pseudacorus L., Canna indica L. and Lythrum salicaria L. have been proved to be potential choices for nitrogen removal. However, little is known about microbial diversity for the improvement of nitrogen removal (nitrification and denitrification) in stormwater bioretention cells with the above plants. In this study, batch experiments were conducted to investigate nitrogen removal, substrate layer status, and bacterial community structure to understand microbial diversity and evaluate its effects on performances of nitrogen removal. Ammonia nitrogen removal in the bioretention cell with Lythrum salicaria L. was the highest (88.1%), which was consistent with oxidation reduction potential (ORP) in the bioretention cells. Whilst, removals for both total nitrogen and nitrate were the highest in the bioretention cell with Canna indica L., which was in line with urease activity in the mentioned cells. The used plants had different impact on top 11 dominant microflora at phylum level in the used bioretention cells. Ramlibacter and Nitrosomonadaceaea were both responsible for the difference of nitrogen removal in the bioretention cells with three aquatic plants, suggesting the enhancement of the above dominant microflora could strengthen nitrogen removal in the used bioretention cells.
Collapse
Affiliation(s)
- XiaoJun Zuo
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, 210044, China.
| | - HongSheng Zhang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, 210044, China
| | - Jianghua Yu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, 210044, China
| |
Collapse
|
20
|
Vegetated Ditch Habitats Provide Net Nitrogen Sink and Phosphorus Storage Capacity in Agricultural Drainage Networks Despite Senescent Plant Leaching. WATER 2020. [DOI: 10.3390/w12030875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The utility of vegetated ditch environments as nutrient sinks in agricultural watersheds is dependent in part on biogeochemical transformations that control plant uptake and release during decomposition. We investigated nitrogen (N) and phosphorus (P) uptake and release across four P enrichment treatments in ditch mesocosms planted with rice cutgrass (Leersia oryzoides) during the summer growing and winter decomposition seasons. Measured N retention and modeled denitrification rates did not vary, but P retention significantly increased with P enrichment. At the end of the growing season, root biomass stored significantly more N and P than aboveground stem and leaf biomass. Decomposition rates were low (<10% organic matter loss) and not affected by P enrichment. Nitrogen and P export during winter did not vary across the P enrichment gradient. Export accounted for <10% of observed summer N uptake (1363 mg m−2), with denitrification potentially accounting for at least 40% of retained N. In contrast, net P retention was dependent on enrichment; in unenriched mesocosms, P uptake and release were balanced (only 25% net retention), whereas net retention increased from 77% to 88% with increasing P enrichment. Our results indicate that vegetated ditch environments have significant potential to serve as denitrification sinks, while also storing excess P in agricultural watersheds.
Collapse
|
21
|
Assessment of the Nutrient Removal Potential of Floating Native and Exotic Aquatic Macrophytes Cultured in Swine Manure Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17031103. [PMID: 32050519 PMCID: PMC7037392 DOI: 10.3390/ijerph17031103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/02/2022]
Abstract
Although eutrophication and biological invasion have caused serious harm to aquatic ecosystems, exotic and even invasive plants have been used extensively in phytoremediation water systems in China. To identify native aquatic plants with excellent water restoration potential, two representative native floating aquatic plants from Guangdong Province, namely Ludwigia adscendens (PL) and Trapa natans (PT), were selected, with Eichhornia crassipes as a control, to study their growth status, adaptability, and nutrient removal potentials in swine manure wastewater. The results demonstrated that the two native plants offered greater advantages than E. crassipes in water restoration. Within 60 days, PL and PT exhibited excellent growth statuses, and their net biomass growth rates were 539.8% and 385.9%, respectively, but the E. crassipes decayed and died with an increasing HRT (hydraulic retention time). The PL and PT could adjust the pH of the wastewater, improve the dissolved oxygen and oxidation-reduction potential, and reduce the electrical conductivity value. The removal rates of NH4+–N, NO3−–N, NO2−–N, total nitrogen, total phosphorus, chemical oxygen demand (COD), and Chl-a in the PL group reached 98.67%, 64.83%, 26.35%, 79.30%, 95.90%, 69.62%, and 92.23%, respectively; those in the PT group reached 99.47%, 95.83%, 85.17%, 83.73%, 88.72%, 75.06%, and 91.55%, respectively. The absorption contribution rates of total nitrogen (TN) and total phosphorus (TP) in the PL group were 40.6% and 43.5%, respectively, while those in the PT group were 36.9% and 34.5%, respectively. The results indicated that L. adscendens and T. natans are both promising aquatic plants for application to the restoration of swine manure wastewater in subtropical areas.
Collapse
|
22
|
Han JY, Kim DH, Oh S, Moon HS. Effects of water level and vegetation on nitrate dynamics at varying sediment depths in laboratory-scale wetland mesocosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134741. [PMID: 31767307 DOI: 10.1016/j.scitotenv.2019.134741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/17/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Recent increases in the frequency of extreme floods and droughts associated with climate change can affect fluctuating groundwater or wetland water levels and wetland plant growth, and consequently cause redox condition changes in nitrogen dynamics in wetland sediments. Here, we studied the fate of nitrate (NO3-), dissolved organic carbon (DOC), and the microbial characteristics at different sediment depths in response to water levels (i.e., 5 or 2.5 cm) above the sediment surface and in the presence or absence of plants (Phragmites communis Trin) for four months in three wetland mesocosms. Results showed that mesocosm A (MA) with a high water level (5 cm above the surface) and plants had significantly higher DOC concentrations (17.57 ± 8.22 mg/L) in sediment that were actively consumed by microorganisms than other mesocosms with low water level (MB) and without plant (MC) (8.77 ± 2.38 mg/L and 7.87 ± 2.72 mg/L in MB and MC, respectively). Consequently, the most of influent NO3- (20 mg-N/L) dramatically reduced in the vicinity of plant roots (-20 to -15 cm sediment depth) where active denitrification was expected in MA. Moreover, the functional genes involved in denitrification such as narG (2.4 × 108 -3.5 × 108 copies·g-1) and nirS (5.6 × 106-1.1 × 107 copies·g-1) were more abundant in this mesocosm. The profile of the microbial community structure at the class level revealed that Alphaproteocbacteria (MA: 14.19 ± 1.19%; MB: 14.01 ± 0.51%; MC: 15.21 ± 2.76%) and Actinobacteria (MA: 8.21 ± 1.91%; MB: 13.91 ± 2.13%; MC: 11.75 ± 3.43%) were predominant in all three mesocosms. Interestingly, the clustered heatmap supported the obvious difference in microbial composition of MA from other mesocosms showing relatively more abundant Clostridia (6.71 ± 1.54%) and Deltaproteobacteria (7.05 ± 0.68%). These results can provide an insight to understand the biogeochemical nitrogen cycle associated with climate change in wetland systems.
Collapse
Affiliation(s)
- Ji Yeon Han
- Groundwater Research Center, Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea; Department of Mineral and Groundwater Resources, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Dong-Hun Kim
- Groundwater Research Center, Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea
| | - Seolran Oh
- Groundwater Research Center, Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea; Department of Mineral and Groundwater Resources, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee Sun Moon
- Groundwater Research Center, Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea; Department of Mineral and Groundwater Resources, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
23
|
A novel submerged Rotala rotundifolia, its growth characteristics and remediation potential for eutrophic waters. Sci Rep 2019; 9:14855. [PMID: 31619734 PMCID: PMC6795905 DOI: 10.1038/s41598-019-51508-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 10/02/2019] [Indexed: 11/16/2022] Open
Abstract
The vegetative growth and remediation potential of Rotala rotundifolia, a novel submerged aquatic plant, for eutrophic waters were investigated on different sediments, and under a range of nitrogen concentrations. Rotala Rotundifolia grew better on silt than on sand and gravel in terms of plant height, tiller number and biomass accumulation. Percent increment of biomass was enhanced at low water nitrogen (ammonium nitrogen concentration ≤10 mg/L). The maximum total nitrogen and total phosphorus removals in the overlying water were between 54% to 66% and 42% to 57%, respectively. Nitrogen contents in the sediments increased with increasing water nitrogen levels, whereas, nitrogen contents in the plant tissues showed no apparent regularity, and the greatest value was obtained at ammonium nitrogen concentration 15 mg/L. Both phosphorus contents in the sediments and tissues of plants were not affected significantly by additional nitrogen supply. Direct nitrogen uptake by plants was in the range of 16% to 39% when total phosphorus concentration was 1.0 mg/L. These results suggested that Rotala Rotundifolia can be used to effectively remove nitrogen and phosphorus in eutrophic waters.
Collapse
|
24
|
Luo Y, Sun S, Zhang H. Effectiveness of various wetland vegetation species on mitigating water pollution from highway runoff. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:906-917. [PMID: 31033132 DOI: 10.1002/wer.1131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/17/2019] [Accepted: 04/20/2019] [Indexed: 06/09/2023]
Abstract
This study selected and tested five submerged aquatic vegetation-based (SAV) wetlands to improve highway runoff treatment in best management practices. The removal efficiencies of suspended solid (SS), chemical oxygen demand (COD), total nitrogen (TN), ammonia nitrogen ( NH 4 + - N ), and total phosphorus (TP) in the five SAV wetlands were analyzed. Furthermore, the lead (Pb) and zinc (Zn) accumulation capabilities of five submerged macrophytes were determined. The obtained results show that Ceratophyllum demersum wetlands achieved the highest nutrient removal and had the heavy metal accumulation property. Vallisneria natans showed the highest bioaccumulation of Pb among all tested species. Ceratophyllum demersum wetlands showed the highest average removal efficiencies of SS (82.97%), COD (62.08%), TN (77.63%), NH 4 + - N (76.24%), TP (77.55%), Pb (96.24%), and Zn (91.23%). The tendencies of contaminant removal showed seasonal variation, and SAV wetlands performed better in summer than in spring and autumn. Consequently, SAV wetlands showed selectivity for contaminant removal. PRACTITIONER POINTS: Chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in highway runoff were removed by submerged aquatic vegetation (SAV). Ceratophyllum demersum and Myriophyllum spicatum wetlands performed well on heavy metal removing. Ceratophyllum demersum showed the highest removal efficiencies of TSS, COD, TN, NH 4 + - N , and TP. The SAV wetlands performed better in summer than in other seasons.
Collapse
Affiliation(s)
- Yanzhang Luo
- Qin Tan (Shanghai) Environmental Engineering Co. Ltd., Shanghai, China
| | - Shiqing Sun
- College of Nanhu, Jiaxing University, Jiaxing, China
| | - Hui Zhang
- College of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing, China
| |
Collapse
|
25
|
Zhang X, Zha L, Jiang P, Wang X, Lu K, He S, Huang J, Zhou W. Comparative study on nitrogen removal and functional genes response between surface flow constructed wetland and floating treatment wetland planted with Iris pseudacorus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23696-23706. [PMID: 31203550 DOI: 10.1007/s11356-019-05580-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Excessive nitrogen accumulated from wastewater with low C/N ratio is a new threat to water ecosystem. In this study, surface flow constructed wetland (SFCW) and floating treatment wetland (FTW) planted with Iris pseudacorus were set in parallel for nitrogen removal. The nitrogen removal efficiencies and pathways, as well as the abundance and functional diversities of the microbial community, were investigated. The results demonstrated that SFCW generally had better nitrogen removal performance than FTW did over four seasons. The average total nitrogen removal efficiency was 66.0% and 43.8% in SFCW and FTW, respectively. The plant uptake played a vital role in nitrogen reduction, which accounted for 29.3% and 7.7% of the total removed nitrogen in SFCW and FTW, respectively. A combination of high-throughput sequencing and quantitative polymerase chain reaction analysis revealed that the two wetland systems had complete nitrogen cycling, and the narG gene was the dominant nitrogen-transformation functional gene in both systems. More abundant denitrifying genes in SFCW than in FTW were also responsible for higher removal capacity of nitrogen. The results suggest that the planting pattern of wetland vegetation has an important impact on nitrogen removal efficiency by influencing the plant absorption and the development of microbial communities.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Lina Zha
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Panyu Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiayu Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Kewei Lu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| | - Jungchen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Weili Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
26
|
Huang J, Cao C, Liu J, Yan C, Xiao J. The response of nitrogen removal and related bacteria within constructed wetlands after long-term treating wastewater containing environmental concentrations of silver nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:522-531. [PMID: 30833250 DOI: 10.1016/j.scitotenv.2019.02.396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
The wide application of consumer products containing silver nanoparticles (AgNPs) inevitably results in their release into sewer systems and wastewater treatment plants, where they would encounter (and cause potential negative impacts) constructed wetlands (CWs), a complex biological system containing plants, substrate and microorganisms. Herein, the long-term effects of environmental AgNPs concentrations on nitrogen removal, key enzymatic activities and nitrogen-related microbes in constructed wetlands (CWs) were investigated. The short-term exposure (40 d) to AgNPs significantly inhibited TN and NH4+-N removal, and the inhibition degree had a positive relationship with AgNPs levels. After about 450 d exposure, 200 μg/L AgNPs could slightly increase average TN removal efficiency, while presence of 50 μg/L AgNPs showed no difference, compared to control. The NH4+-N removal in all CWs had no difference. The present study indicated that short-term AgNPs loading evidently reduced nitrogen removal, whereas long-term exposure to AgNPs showed no adverse impacts on NH4+-N removal and slightly stimulated TN removal, which was related to the increase of corresponding enzymatic activities. After exposing AgNPs for 450 d, the abundance of relative functional genes and the composition of key community structure were determined by qPCR and high-throughput sequencing, respectively. The results showed that the abundance of amoA and nxrA dramatically higher than control, whereas the abundance of nirK, nirS, nosZ and anammox 16S rRNA was slightly higher than control, but had no statistical difference, which accorded with the TN removal performance. The microbial community analysis showed that different AgNPs concentrations could affect the microbial diversity and structure. The changes of the relative abundance of nitrogen-related genera were associated with the impacts of AgNPs on the nitrogen removal performance. Overall, the AgNPs loading had impacts on the key enzymatic activities, the abundance of nitrogen-related genes and microbial community, thus finally affected the treatment performance of CWs.
Collapse
Affiliation(s)
- Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Chong Cao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Jialiang Liu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Chunni Yan
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Jun Xiao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
27
|
Tong X, Wang X, He X, Xu K, Mao F. Effects of ofloxacin on nitrogen removal and microbial community structure in constructed wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:503-511. [PMID: 30522033 DOI: 10.1016/j.scitotenv.2018.11.358] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
Constructed wetlands (CWs) have emerged as a promising technology for the purification of micro-polluted water. However, their nitrogen removal performance can be significantly degraded by design, operational, and environmental factors. The present study investigates the effects of ofloxacin (OFL: 0.1, 10, and 1000 μg L-1) and plants (Cyperus alternifolius L. and Typha angustifolia L.) on nitrogen removal in a micro-polluted CW system over a duration of 12 weeks. The effects were evaluated by investigating NH4-N and NO3-N removal efficiency, nitrification genes (amoA-AOA and amoA-AOB), denitrification genes (nirK and nirS), fungal 18S rRNA gene and microorganism community structure. The results showed that in unplanted CWs, OFL increased the NH4-N removal efficiency (from 72.6% to 80.7-82.1%), the abundances of amoA-AOA, nirS, nirK and fungal 18S rRNA gene, and the bacterial diversity but decreased the abundance of both amoA-AOB and bacterial richness. In contrast, both the nitrogen removal efficiency (83.4-89.5% for NH4-N and 33.8-38.5% for NO3-N) and bacterial diversity/richness were not significantly affected by OFL in planted CWs. In planted systems, OFL increased the relative abundance of Arthrobacter, Pseudomonas, and Enterococcus, which are proven antibiotic-resistant bacteria. This study showed that CWs are able to remove nitrogen from antibiotic-contaminated micro-polluted water, which might primarily be attributed to the presence of plants that protect the microorganism community.
Collapse
Affiliation(s)
- Xinnan Tong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, China
| | - Xinze Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, China.
| | - Xiaojuan He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, China
| | - Kaiqin Xu
- Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Feijian Mao
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, E1A 07-03, Singapore117576, Singapore
| |
Collapse
|
28
|
Zhou X, Wang M, Wen C, Liu D. Nitrogen release and its influence on anammox bacteria during the decay of Potamogeton crispus with different values of initial debris biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:604-615. [PMID: 30208346 DOI: 10.1016/j.scitotenv.2018.08.358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 07/03/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
Aquatic macrophytes play a significant role in the nutrient cycle of freshwater ecosystems. However, nutrients from plant debris release into both sediments and overlying water if not timely harvested. To date, minimal information is available regarding nutrient release and its subsequent influences on bacterial communities with decaying debris. In this study, Potamogeton crispus was used as a model plant. Debris biomass levels of 0 g (control, J-CK), 10 g dry weight (DW) (100 g DW/m2, J-10 g), 40 g DW (400 g DW/m2, J-40 g) and 80 g DW (800 g DW/m2, J-80 g) were used to simulate the different biomass densities of P. crispus in field. The physicochemical parameters of overlying water and sediment samples were analysed. The community composition of anammox bacteria in the sediment was also analysed using 16S rRNA genes as markers. The results showed that dissolved oxygen and pH dramatically decreased, whereas total nitrogen (TN) and NH4+-N concentrations increased in the overlying water in the initial stage of P. crispus decomposition. However, NO3--N concentration changes in the overlying water were more complicated. The concentrations of organic matter, TN and NH4+-N in the sediment all increased, but the rate of increase varied among the groups with different initial biomass levels, indicating that these physicochemical properties in sediment are significantly affected by debris biomass level and decay time. In addition, the order of anammox bacteria abundance was J-40 g > J-CK > J-80 g > J-10 g. Moreover, the community structure of anammox bacteria were simpler compared to that of J-CK as debris biomass level increased. The results demonstrate that P. crispus debris decomposition could affect the ecological distribution of anammox bacteria. Such influence clearly varies with varying amounts of P. crispus biomass debris. This information could be useful for the management of aquatic macrophytes in freshwater ecosystems.
Collapse
Affiliation(s)
- Xiaohong Zhou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Mingyuan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chunzi Wen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dan Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
29
|
He M, Chen WJ, Tian L, Shao B, Lin Y. Plant-microbial synergism: An effective approach for the remediation of shale-gas fracturing flowback and produced water. JOURNAL OF HAZARDOUS MATERIALS 2019; 363:170-178. [PMID: 30308355 DOI: 10.1016/j.jhazmat.2018.09.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Effective and affordable treatment of hydraulic fracturing flowback and produced water (FPW) is a major challenge for the sustainability of unconventional shale-gas exploration and development. We investigated the effectiveness of different combinations of activated sludge (AS), three microbial preparations, and ten plants (ryegrass, water dropwort, typha, reed, iris, canna, water caltrop, rape, water spinach, and Alternanthera philoxeroides) on the treatment performance of FPW. Water quality parameters (NH4-N, NO3-N, NO2-N, CODcr, and BOD) and the algal toxicity of the treated FPW were used as metrics to assess the treatment efficiency. The results showed that AS had higher treatment efficiency than the prepared microorganisms, and water dropwort was the best plant candidate for boosting performance of AS treatment of FPW. The treated FPW showed improved water quality and microbial diversity. The Shannon-Wiener index increased from 4.76 to 7.98 with FPW treatment. The relative abundance of microbes with a greater resistance to high salt conditions, such as Bacteroidetes, Firmicutes, Chloroflexi, increased substantially in the treated FPW. The combination of water dropwort and AS showed the greatest improvement in water quality, the highest algal density and microbial diversity, thus indicating good potential for this candidate in the treatment of FPW.
Collapse
Affiliation(s)
- Mei He
- Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education, China; School of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Wen-Jie Chen
- School of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Lei Tian
- Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education, China; School of Petroleum Engineering, Yangtze University, Wuhan 430100, China
| | - Bo Shao
- School of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Yan Lin
- Norwegian Institute for Water Research, Oslo 0349, Norway; School of Resources and Environment, Yangtze University, Wuhan 430100, China.
| |
Collapse
|
30
|
Kim DK, Javed A, Yang C, Arhonditsis GB. Development of a mechanistic eutrophication model for wetland management: Sensitivity analysis of the interplay among phytoplankton, macrophytes, and sediment nutrient release. ECOL INFORM 2018. [DOI: 10.1016/j.ecoinf.2018.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Cui N, Chen G, Liu Y, Zhou L, Cai M, Song X, Zou G. Comparison of two different ecological floating bio-reactors for pollution control in hyper-eutrophic freshwater. Sci Rep 2018; 8:14306. [PMID: 30250172 PMCID: PMC6155254 DOI: 10.1038/s41598-018-32151-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/31/2018] [Indexed: 12/05/2022] Open
Abstract
The use of ecological floating beds (EFBs) to control water pollution has been increasingly reported worldwide due to the severe situation of eutrophication in water bodies. In this study, two kinds of EFBs were set up under similar condition to compare their purification efficiency in hyper-eutrophic water. The conventional ecological floating bed (CEFB) was made of polystyrene foam board, and the enhanced ecological floating bio-reactor (EEFB) was designed as an innovative hollow, thin floating bed integrated with substrates of zeolite and limestone. The results showed that the EEFB increased treatment efficiency of total nitrogen (TN), total phosphate (TP), and ammonia nitrogen (NH4+-N) to 63.5%, 59.3%, and 68.0%, respectively. Plant accumulation was the main pathway for TN and TP removal in the CEFB. Microbial degradation played an increasingly important role in TN and TP removal in the EEFB. A higher concentration of nitrogen cycling bacteria was recorded in the EEFB than the CEFB (P < 0.05), suggesting that the substrates might enhanced the removal efficiency of the EEFB by promoting the growth of microorganisms rather than their absorption effect.
Collapse
Affiliation(s)
- Naxin Cui
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Guifa Chen
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China.,Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Yaqin Liu
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Li Zhou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Min Cai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China.
| | - Xiangfu Song
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China.,Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Guoyan Zou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China. .,Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China.
| |
Collapse
|
32
|
Guttman L, Boxman SE, Barkan R, Neori A, Shpigel M. Combinations of Ulva and periphyton as biofilters for both ammonia and nitrate in mariculture fishpond effluents. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Huang J, Cao C, Yan C, Guan W, Liu J. Comparison of Iris pseudacorus wetland systems with unplanted systems on pollutant removal and microbial community under nanosilver exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:1336-1347. [PMID: 29929246 DOI: 10.1016/j.scitotenv.2017.12.222] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 06/08/2023]
Abstract
Rapidly developing industry raises concerns about the environmental risks of silver nanoparticles (AgNPs), but the effects of AgNPs on the performance and microbial community in the constructed wetlands remain unclear. In this study, long-term exposure of AgNPs in two VFCWs was conducted to determine the effects of AgNPs on the pollutant removal and microbial community structure. Before exposing AgNPs, the water quality of effluent was better in planted wetland (CW2), compared with unplanted wetland (CW1). After continuous exposure of 100μg/L AgNPs, the COD (chemical oxygen demand) removal of two CWs had no difference. However, addition of AgNPs reduced the nitrogen and phosphorus removal in two CWs, with decreasing average removal efficiencies of ammonia nitrogen from 46.31% to 32.09% and 59.66% to 51.06%, total nitrogen from 57.76% to 43.78% and 67.35 to 60.58%, total phosphorus from 71.29% to 59.31% and 67.35% to 60.58%, respectively. The vegetable wetlands showed higher resistances to AgNPs loading than unplanted wetlands. In addition, AgNPs accumulated in the wetland substrate, especially in the soil layer with the silver concentration of approximately 4.32μg/g. The small portion of silver was found in plant tissues, and plants played a minor role to remove the AgNPs from wastewater. Moreover, the constructed wetlands could effectively remove the AgNPs from the synthetic wastewater. The illumine high-throughput sequencing results demonstrated the variations of the bacterial community structure at the exposure of AgNPs. The results showed that the dominant phyla were Proteobacteria, Acidobacteria and Bacteroidetes. Compared with unplanted wetlands, the contents of several nitrifying bacteria such as Candidatus Nitrososphaera (AOA) and Nitrospira (NOB) at genus level increased, leading to the higher nitrogen removal in the planted wetlands.
Collapse
Affiliation(s)
- Juan Huang
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Chong Cao
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Chunni Yan
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Wenzhu Guan
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Jialiang Liu
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
34
|
Sricoth T, Meeinkuirt W, Pichtel J, Taeprayoon P, Saengwilai P. Synergistic phytoremediation of wastewater by two aquatic plants (Typha angustifolia and Eichhornia crassipes) and potential as biomass fuel. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5344-5358. [PMID: 29209971 DOI: 10.1007/s11356-017-0813-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
The ability of a mixture of Typha angustifolia and Eichhornia crassipes to remove organics, nutrients, and heavy metals from wastewater from a Thailand fresh market was studied. Changes in physicochemical properties of the wastewater including pH, temperature, chemical oxygen demand, dissolved oxygen, biochemical oxygen demand (BOD), total P, TOC, conductivity, total Kjeldahl nitrogen, NO3--N, NH3-N, and metal (Pb, Cd, and Zn) concentrations were monitored. In the aquatic plant (AP) treatment, 100% survival of both species was observed. Dry biomass production and growth rate of T. angustifolia were approximately 3.3× and 2.7× of those for E. crassipes, respectively. The extensive root system of the plants improved water quality as determined by a marked decrease in turbidity in the AP treatment after 7 days. BOD content served as a useful indicator of water quality; BOD declined by 91% over 21 days. Both T. angustifolia and E. crassipes accumulated similar quantities of metals in both roots and shoots. Accumulation of metals was as follows: Zn > Cd > Pb. A study of calorific value and biomass composition revealed that T. angustifolia and E. crassipes possessed similar carbon content (~ 35%), hydrogen content (~ 6%), and gross calorific value. E. crassipes contained up to 16.9% ash and 65.4% moisture. Both species are considered invasive in Thailand; however, they may nonetheless provide practical benefits: In addition to their combined abilities to treat wastewater, T. angustifolia holds potential as an alternative energy source due to its high biomass production.
Collapse
Affiliation(s)
- Theeta Sricoth
- Navamindradhiraj University, Khao Road, Bangkok, 10300, Thailand
| | | | - John Pichtel
- Natural Resources and Environmental Management, Ball State University, Muncie, IN, 47306, USA
| | | | - Patompong Saengwilai
- Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education, Bangkok, Thailand
| |
Collapse
|
35
|
Guo Y, Xie H, Zhang J, Wang W, Ngo HH, Guo W, Kang Y, Zhang B. Improving nutrient removal performance of surface flow constructed wetlands in winter using hardy submerged plant-benthic fauna systems. RSC Adv 2018; 8:42179-42188. [PMID: 35558756 PMCID: PMC9092255 DOI: 10.1039/c8ra06451b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/09/2018] [Indexed: 11/21/2022] Open
Abstract
A novel hardy submerged plant-benthic fauna systems to enhance the performance of surface flow constructed wetlands in winter.
Collapse
Affiliation(s)
- Ying Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan
- China
| | - Huijun Xie
- Environmental Research Institute
- Shandong University
- Jinan 250100
- China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan
- China
| | - Wengang Wang
- Shandong Academy of Environmental Science
- Jinan 250100
- PR China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering
- University of Technology Sydney
- Australia
| | - Wenshan Guo
- School of Civil and Environmental Engineering
- University of Technology Sydney
- Australia
| | - Yan Kang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan
- China
| | - Bowei Zhang
- Environmental Research Institute
- Shandong University
- Jinan 250100
- China
| |
Collapse
|
36
|
Wu H, Wang X, He X, Zhang S, Liang R, Shen J. Effects of root exudates on denitrifier gene abundance, community structure and activity in a micro-polluted constructed wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:697-703. [PMID: 28456121 DOI: 10.1016/j.scitotenv.2017.04.150] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
In micro-polluted constructed wetland (CW), the low pollutant concentrations and the low COD/N ratios (chemical oxygen demand: total nitrogen in influent), make the biological treatment more difficult. It is expected that root exudates drive microbial-based transformations within plant rhizosphere. In this research, the roles of root exudates of three aquatic plants (Phragmites australis, Typha angustifolia and Cyperus alternifolius) in improving the growth of heterotrophic denitrifying bacteria were determined in a micro-polluted CW. In studied root rhizospheres, the total organic carbon (TOC) released from the plant roots varied significantly among plant species and seasons; the average TOC ranged from 0.1715 to 0.9221mgg-1rootDMd-1, which could fuel a denitrification rate of approximately 156-841kgNO3--Nha-1year-1 if all were used by the denitrifying bacteria; the abundances of nirK- and nirS-encoding bacteria were significantly influenced by the concentration of sucrose and glucose (0.869≤r≤0.933, p<0.05), and microbial community richness and diversity had response to root exudates. The results revealed that root exudates can act as endogenous carbon sources for heterotrophic denitrifying bacteria and ultimately determine the microbe distribution patterns in micro-polluted CW.
Collapse
Affiliation(s)
- Hailu Wu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China
| | - Xinze Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Xiaojuan He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China
| | - Shengbo Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China
| | - Jian Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China
| |
Collapse
|
37
|
Yuan J, Dong W, Sun F, Zhao K, Du C, Shao Y. Bacterial communities and enzymatic activities in the vegetation-activated sludge process (V-ASP) and related advantages by comparison with conventional constructed wetland. BIORESOURCE TECHNOLOGY 2016; 220:341-351. [PMID: 27591520 DOI: 10.1016/j.biortech.2016.08.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 06/06/2023]
Abstract
A new-developed vegetation-activated sludge process (V-ASP) was implemented for decentralized domestic wastewater treatment, and studied in lab-scale and full-scale. The main purpose of this work was the investigation of biomass activities and microbial communities in V-ASP by comparison with conventional constructed wetland (CW), to unveil the causations of its consistently higher pollutants removal efficiencies. Compared with CWs, V-ASP has greater vegetation nitrogen and phosphorus uptake rates, higher biomass and enzymatic activities, and more bacteria community diversity. The microbial community structure was comprehensively analyzed by using high-throughput sequencing. It was observed that Proteobacteria was dominated in both CWs and V-ASPs, while their subdivisions distribution was rather different. V-ASPs contained a higher nitrite-oxidizing bacteria (Nitrospira) abundances that resulted in a consistently better nitrogen removal efficiency. Hence, a long-term experiment of full-scale V-ASP displayed stably excellent capability in resistance of influent loading shocks and seasonal temperature effect.
Collapse
Affiliation(s)
- Jiajia Yuan
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Wenyi Dong
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Feiyun Sun
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China.
| | - Ke Zhao
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Changhang Du
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Yunxian Shao
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| |
Collapse
|
38
|
Li J, Zhang J, Huang W, Kong F, Li Y, Xi M, Zheng Z. Comparative bioavailability of ammonium, nitrate, nitrite and urea to typically harmful cyanobacterium Microcystis aeruginosa. MARINE POLLUTION BULLETIN 2016; 110:93-98. [PMID: 27357916 DOI: 10.1016/j.marpolbul.2016.06.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 05/03/2023]
Abstract
Phosphorus is generally considered as the prime limiting nutrient responsible for cyanobacterial blooms. However, recent research is drawing attention to the importance of bioavailable nitrogen (N) in freshwater eutrophication. This study investigated the bioavailability of NO3(-)-N, NO2(-)-N, NH4(+)-N and Urea-N under different concentrations of 1.2, 3.6 and 6.0mgL(-1) to Microcystis aeruginosa. Overall, Urea-N ranked the first in promoting M. aeruginosa growth, followed by NO3(-)-N and NO2(-)-N. However, the algal growth cultured in NH4(+)-N was depressed under test N levels. The bioavailability of N to M. aeruginosa was seriously influenced by both N forms and N concentrations (p<0.01). Total N concentrations in Urea-N treatment decreased the fastest, which were corresponding with the μ values of M. aeruginosa. The high enzymic activities of nitrate reductase, nitrite reductase and glutamine synthetase indicated that the decomposition process for urea is effective, which contributed in N assimilation and utilization in M. aeruginosa cells.
Collapse
Affiliation(s)
- Jihua Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Wei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yue Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Min Xi
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| |
Collapse
|
39
|
Zhang L, Zhao J, Cui N, Dai Y, Kong L, Wu J, Cheng S. Enhancing the water purification efficiency of a floating treatment wetland using a biofilm carrier. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7437-7443. [PMID: 26697862 DOI: 10.1007/s11356-015-5873-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
Floating treatment wetlands (FTWs) and biofilm carriers are widely used in water purification. The objective of the present work was to explore whether and to what extent an FTW integrated with plants and biofilm carriers (FTW-I) could enhance the nutrient removal efficiency. Significantly higher removal rates of ammonia nitrogen (85.2 %), total phosphorus (82.7 %), and orthophosphate (82.5 %) were observed in the FTW-I treatment relative to the FTW with plants (FTW-P; 80.0, 78.5, and 77.6 %, respectively) and the FTW with biofilm carriers (FTW-B; 56.7, 12.9, and 13.4 %, respectively) (p < 0.05). The mass balance results indicated that plant uptake was the main pathway for N and P removal (accounting for 58.1 and 91.4 %, respectively) in FTW-I, in which only 1.2 % of the N and 5.7 % of the P was deposited on the bottom of the tank. In addition, the plants translocated 43.9 and 80.2 % of the N and P in the water and 83.5 and 88.3 % of the absorbed N and P, respectively, into their aboveground tissues. The combination of an FTW and biofilm carriers can improve the efficiency of water purification, and nutrients can be rapidly removed from the system by harvesting the aboveground plant tissues.
Collapse
Affiliation(s)
- Lingling Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jing Zhao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Naxin Cui
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yanran Dai
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Lingwei Kong
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Juan Wu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shuiping Cheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
40
|
Li J, Wang Z, Cao X, Wang Z, Zheng Z. Effect of orthophosphate and bioavailability of dissolved organic phosphorous compounds to typically harmful cyanobacterium Microcystis aeruginosa. MARINE POLLUTION BULLETIN 2015; 92:52-58. [PMID: 25627194 DOI: 10.1016/j.marpolbul.2015.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/01/2015] [Accepted: 01/02/2015] [Indexed: 06/04/2023]
Abstract
Results show that Microcystis aeruginosa can utilize both dissolved organic phosphorus (DOP) and orthophosphate (DIP) even under low phosphorus (P) conditions to sustain its growth. Total P concentrations decreased markedly in all three P source treatments. Alkaline phosphatase activity (APA) in the different P sources tested changed in response to the DOP and DIP. The APA of DOP groups remained low after decreasing significantly, but the APA in the DIP treatments remained high during the period of culture. Changes in APA at different PO4(3-)-P concentrations in a culture medium revealed negative correlations between APA and DIP. However, a positive relationship was observed between APA and DOP under low P concentrations. These findings indicate that M. aeruginosa can regulate its physiological metabolism to acclimate to low ambient DIP environments.
Collapse
Affiliation(s)
- Jihua Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zhongwei Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China; Dalian Environmental Monitoring Centre, Dalian 116023, PR China
| | - Xin Cao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zhengfang Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|