1
|
Chang H, Feng H, Wang R, Zhang X, Wang J, Li C, Zhang Y, Li L, Ho SH. Enhanced energy recovery from landfill leachate by linking light and dark bio-reactions: Underlying synergistic effects of dual microalgal interaction. WATER RESEARCH 2023; 231:119578. [PMID: 36645942 DOI: 10.1016/j.watres.2023.119578] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Bioconversion of nutrients and energy from landfill leachate (LL) to biohydrogen and volatile fatty acids (VFAs) using dark fermentation (DF) is a promising technique for developing a sustainable ecosystem. However, poor performance of DF caused by vulnerable fermentative bacteria vitality and strong LL toxicity significantly hinder its commercialization. Herein, an integrated technique linking microalgae photosynthesis and DF was proposed, in which mixed microalgae were applied to robustly reclaim nutrients and chemical oxygen demand (COD) from LL. Then, microalgae biomass was fermented into biohydrogen and VFAs using the DF process. Underlying synergistic mechanisms of the interaction of Scenedesmus obliquus and Chlorella vulgaris resulting from the functioning of extracellular polymeric substances (EPS) were discussed in detail. For better absorption of nutrients from LL, the mixed microalgae secreted obviously more EPS than pure microalgae, which played vital roles in the assimilation of cellular nutrients by forming more negative zeta potential and secreting more tyrosine-/tryptophan-family proteins in EPS. Besides, mixed microalgae produced more intracellular proteins and carbohydrates than the pure microalgae, thereby providing more feedstock for DF and achieving higher energy yield of 10.80 kJ/L than 6.64 kJ/L that was obtained when pure microalgae were used. Moreover, the energy conversion efficiency of 7.75% was higher for mixed microalgae than 4.77% that was obtained for pure microalgae. This work may inspire efficient disposal of LL and production of bioenergy, together with filling the knowledge gaps of synergistic mechanisms of dual microalgal interactions.
Collapse
Affiliation(s)
- Haixing Chang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China; Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Haowen Feng
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Rupeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Xianming Zhang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Jinghan Wang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chunlan Li
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yuanbo Zhang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Lin Li
- School of Energy and Power Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| |
Collapse
|
2
|
Zhou D, Huang G, Xu G, Xiang L, Huang S, Chen X, Zhang Y, Wang D. CRISPRi-Mediated Gene Suppression Reveals Putative Reverse Transcriptase Gene PA0715 to Be a Global Regulator of Pseudomonas aeruginosa. Infect Drug Resist 2022; 15:7577-7599. [PMID: 36579125 PMCID: PMC9792118 DOI: 10.2147/idr.s384980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Pseudomonas aeruginosa is a common pathogen of infection in burn and trauma patients, and multi-drug resistant P. aeruginosa has become an increasingly important pathogen. Essential genes are key to the development of novel antibiotics. The PA0715 gene is a novel unidentified essential gene that has attracted our interest as a potential antibiotic target. Our study aims to determine the exact role of PA0715 in cell physiology and bacterial pathogenicity, providing important clues for antibiotic development. Patients and Methods The shuttle vector pHERD20T containing an arabinose inducible promoter was used to construct the CRISPRi system. Alterations in cellular physiology and bacterial pathogenicity of P. aeruginosa PAO1 after PA0715 inhibition were characterized. High-throughput RNA-seq was performed to gain more insight into the mechanisms by which PA0715 regulates the vital activity of P. aeruginosa. Results We found that down-regulation of PA0715 significantly reduced PAO1 growth rate, motility and chemotaxis, antibiotic resistance, pyocyanin and biofilm production. In addition, PA0715 inhibition reduced the pathogenicity of PAO1 to the greater galleria mellonella larvae. Transcriptional profiling identified 1757 genes including those related to amino acid, carbohydrate, ketone body and organic salt metabolism, whose expression was directly or indirectly controlled by PA0715. Unexpectedly, genes involved in oxidative phosphorylation also varied with PA0715 levels, and these findings support a hitherto unrecognized critical role for PA0715 in oxidative respiration in P. aeruginosa. Conclusion We identified PA0715 as a global regulator of the metabolic network that is indispensable for the survival and reproduction of P. aeruginosa. Our results provide a basis for future studies of potential antibiotic targets for P. aeruginosa and offer new ideas for P. aeruginosa infection control.
Collapse
Affiliation(s)
- Dapeng Zhou
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Guangtao Huang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Guangchao Xu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Lijuan Xiang
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
| | - Siyi Huang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Xinchong Chen
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Dali Wang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, People’s Republic of China
| |
Collapse
|
3
|
Chiang CJ, Huang ZC, Ta T, Chao YP. Deciphering glutamate and aspartate metabolism to improve production of succinate in Escherichia coli. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Management of Dark Fermentation Broth via Bio Refining and Photo Fermentation. ENERGIES 2021. [DOI: 10.3390/en14196268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lignocellulose and starch-based raw materials are often applied in the investigations regarding biohydrogen generation using dark fermentation. Management of the arising post-fermentation broth becomes a problem. The Authors proposed sequential processes, to improve the efficiency of both hydrogen generation and by-products management carried under model conditions. During the proposed procedure, the simple sugars remaining in broth are converted into organic acids, and when these products are used as substrates for the photo fermentation process. To enhance the broth management also conditions promoting Deep Eutectic Solvents (DES) precursors synthesis are simultaneously applied. Application of Box-Behnken design allows defining of the optimal conditions for conversion to DESs precursors. During the procedure hydrogen was obtained, the concentration of hydrogen in the photo fermentation reached up to 819 mL H2/L medium/7 d, depending on the broth type, i.e., when the broth was optimized for formic acid concentration. The DESs precursors were separated and engaged in DESs synthesis. To confirm the formation of the DESs, FT-IR analyses were performed. The Chemical Oxygen Demand of post-fermentation broths after dark fermentation optimized for formic acid was reduced by ca. 82%. The proposed procedure can be successfully used as a method of post-fermentation broth management.
Collapse
|
5
|
Volatile Fatty Acid Production from Food Waste Leachate Using Enriched Bacterial Culture and Soil Bacteria as Co-Digester. SUSTAINABILITY 2021. [DOI: 10.3390/su13179606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The production of volatile fatty acids (VFAs) from waste stream has been recently getting attention as a cost-effective and environmentally friendly approach in mechanical–biological treatment plants. This is the first study to explore the use of a functional bacterium, AM5 isolated from forest soil, which is capable of enhancing the production of VFAs in the presence of soil bacteria as a co-digester in non-strict anaerobic fermentation processes of food waste leachates. Batch laboratory-scale trials were conducted under thermophilic conditions at 55 °C and different pH values ranging from approximately 5 to 11, as well as under uncontrolled pH for 15 days. Total solid content (TS) and volatile solid content (VS) were observed with 58.42% and 65.17% removal, respectively. An effluent with a VFA concentration of up to 33,849 mg/L (2365.57 mg/g VS; 2244.45 mg/g chemical oxygen demand (COD)-VFA VS; 1249 mg/g VSremoved) was obtained at pH 10.5 on the second day of the batch culture. The pH resulted in a significant effect on VFA concentration and composition at various values. Additionally, all types of VFAs were produced under pH no-adjustment (approximately 5) and at pH 10.5. This research might lead to interesting questions and ideas for further studies on the complex metabolic pathways of microbial communities in the mixture of a soil solution and food waste leachate.
Collapse
|
6
|
Salakkam A, Sittijunda S, Mamimin C, Phanduang O, Reungsang A. Valorization of microalgal biomass for biohydrogen generation: A review. BIORESOURCE TECHNOLOGY 2021; 322:124533. [PMID: 33348113 DOI: 10.1016/j.biortech.2020.124533] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 05/16/2023]
Abstract
Third generation biomass, i.e. microalgae, has emerged as a promising alternative to first and second generation biomass for biohydrogen production. However, its utilization is still low at present, due to several reasons including the strong and rigidity of the microalgal cell wall that limit the hydrolysis efficiency during dark fermentation (DF) and photofermentation (PF) processes. To improve the utilization efficiency of microalgal biomass, it is crucial that important aspects related to the production of the biomass and the following processes are elaborated. Thus, this article provides detailed overview of algal strains, cultivation, and harvesting. It also presents recent research and detailed information on microalgal biomass pretreatment, and biohydrogen production through DF, PF, and co-digestion of microalgal biomass with organic materials. Furthermore, factors affecting fermentation processes performance and the use of molecular techniques in biohydrogen production are presented. This review also discusses challenges and future prospects towards biohydrogen production from microalgal biomass.
Collapse
Affiliation(s)
- Apilak Salakkam
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sureewan Sittijunda
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chonticha Mamimin
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Orawan Phanduang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand; Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand.
| |
Collapse
|
7
|
Elsharkawy K, Gar Alalm M, Fujii M, Afify H, Tawfik A, Elsamadony M. Paperboard mill wastewater treatment via combined dark and LED-mediated fermentation in the absence of external chemical addition. BIORESOURCE TECHNOLOGY 2020; 295:122312. [PMID: 31678889 DOI: 10.1016/j.biortech.2019.122312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Paperboard mill wastewater (PMWW) was treated using two subsequent dark and photo up-flow intermitted stirring tank reactors (UISTRs) under different hydraulic retention times (HRTs) without external chemical use. HRT of 12 h revealed the maximum overall H2 productivity of 1394.1(±70.6) mL/L/d with contents of 48.9(±2.5) and 47.4(±1.4)% for dark- and photo-processes, respectively. Overall substrate removal efficiency (SDE) of 58.9(±4.5)% was registered at HRT o 12 h. High H2 productivity was ascribed to fermentation type occurred at dark reactor, since acetate and butyrate accounted for 70.9% of volatile fatty acids. Besides, pH and carbon to nitrogen ratio of dark reactor's effluent at HRT = 12 h were 5.5(±0.1) and 30.0(±2.5), respectively which are the optimum levels for photo fermentation process. Moreover, energetic and economic analyses emphasized on the superiority of 12 h-HRT, where net gain energy, daily saving and payback period accounted for 1319.5 kWh/d, 148.7 $/d and 9.8 years, respectively.
Collapse
Affiliation(s)
- Khaled Elsharkawy
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, 31521 Tanta City, Egypt
| | - Mohamed Gar Alalm
- Department of Public Works Engineering, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Hafez Afify
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, 31521 Tanta City, Egypt
| | - Ahmed Tawfik
- Department of Water Pollution Research, National Research Centre, P.O 12622, Giza, Egypt
| | - Mohamed Elsamadony
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, 31521 Tanta City, Egypt; Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan.
| |
Collapse
|
8
|
Lin L, Hosseini Koupaie E, Azizi A, Bazyar Lakeh AA, Dhar BR, Hafez H, Elbeshbishy E. Comparison of Two Process Schemes Combining Hydrothermal Treatment and Acidogenic Fermentation of Source-Separated Organics. Molecules 2019; 24:E1466. [PMID: 31013911 PMCID: PMC6514947 DOI: 10.3390/molecules24081466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 01/04/2023] Open
Abstract
This study compares the effects of pre- and post-hydrothermal treatment of source- separated organics (SSO) on solubilization of particulate organics and acidogenic fermentation for volatile fatty acids (VFAs) production. The overall COD solubilization and solids removal efficiencies from both schemes were comparable. However, the pre-hydrolysis of SSO followed by acidogenic fermentation resulted in a relatively higher VFA yield of 433 mg/g VSS, which was 18% higher than that of a process scheme with a post-hydrolysis of dewatered solids from the fermentation process. Regarding the composition of VFA, the dominance of acetate and butyrate was comparable in both process schemes, while propionate concentration considerably increased in the process with pre-hydrolysis of SSO. The microbial community results showed that the relative abundance of Firmicutes increased substantially in the fermentation of pretreated SSO, indicating that there might be different metabolic pathways for production of VFAs in fermentation process operated with pre-treated SSO. The possible reason might be that the abundance of soluble organic matters due to pre-hydrolysis might stimulate the growth of more kinetically efficient fermentative bacteria as indicated by the increase in Firmicutes percentage.
Collapse
Affiliation(s)
- Long Lin
- Department of Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada.
| | - Ehssan Hosseini Koupaie
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| | - Armineh Azizi
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| | - Amir Abbas Bazyar Lakeh
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| | - Bipro R Dhar
- Department of Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada.
| | - Hisham Hafez
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
- Greenfield Global, 275 Bloomfield Road, Chatham, ON N7M 0N6, Canada.
| | - Elsayed Elbeshbishy
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
9
|
Wang NX, Lu XY, Tsang YF, Mao Y, Tsang CW, Yueng VA. A comprehensive review of anaerobic digestion of organic solid wastes in relation to microbial community and enhancement process. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:507-516. [PMID: 30144051 DOI: 10.1002/jsfa.9315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 07/28/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
Organic solid wastes (OSWs) should be regarded as valuable resources rather than dead-end landfill waste that causes public health and odor concerns. Anaerobic digestion (AD) is an ideal approach for managing organic solid waste issues and involves using a group of anaerobic microorganisms to transform OSWs into useful products. In this review, over 100 publications related to AD of OSWs have been compiled, discussed, and analyzed. A comprehensive analysis of the environmental and safety impacts of AD, its key environmental factors, co-digestion, and pretreatment, as well as the AD of OSWs by various anaerobic microbes uncovered by high throughput sequencing-based approaches, is presented. The purpose of this review is to provide an outline of the current knowledge of AD processes from a multi-angle perspective. A comprehensive understanding of AD of OSWs and genome-enabled biology development could be helpful for providing up-to-date knowledge of AD, developing it, overcoming its drawbacks and, ultimately, improving global waste control for more efficient environmental management. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Neng-Xiong Wang
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Tsing Yi, Hong Kong, China
| | - Xiao-Ying Lu
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Tsing Yi, Hong Kong, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Yiu-Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P. R. China
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, Shenzhen University, Shenzhen, P. R. China
| | - Chi-Wing Tsang
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Tsing Yi, Hong Kong, China
| | - Vivien Au Yueng
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Tsing Yi, Hong Kong, China
| |
Collapse
|
10
|
Reungsang A, Zhong N, Yang Y, Sittijunda S, Xia A, Liao Q. Hydrogen from Photo Fermentation. GREEN ENERGY AND TECHNOLOGY 2018. [DOI: 10.1007/978-981-10-7677-0_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
11
|
Li SY, Ng IS, Chen PT, Chiang CJ, Chao YP. Biorefining of protein waste for production of sustainable fuels and chemicals. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:256. [PMID: 30250508 PMCID: PMC6146663 DOI: 10.1186/s13068-018-1234-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/22/2018] [Indexed: 05/21/2023]
Abstract
To mitigate the climate change caused by CO2 emission, the global incentive to the low-carbon alternatives as replacement of fossil fuel-derived products continuously expands the need for renewable feedstock. There will be accompanied by the generation of enormous protein waste as a result. The economical viability of the biorefinery platform can be realized once the surplus protein waste is recycled in a circular economy scenario. In this context, the present review focuses on the current development of biotechnology with the emphasis on biotransformation and metabolic engineering to refine protein-derived amino acids for production of fuels and chemicals. Its scope starts with the explosion of potential feedstock sources rich in protein waste. The availability of techniques is applied for purification and hydrolysis of various feedstock proteins to amino acids. Useful lessons are leaned from the microbial catabolism of amino acids and lay a foundation for the development of the protein-based biotechnology. At last, the future perspective of the biorefinery scheme based on protein waste is discussed associated with remarks on possible solutions to overcome the technical bottlenecks.
Collapse
Affiliation(s)
- Si-Yu Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402 Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Po Ting Chen
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710 Taiwan
| | - Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402 Taiwan
| | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung, 40724 Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354 Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, 40447 Taiwan
| |
Collapse
|
12
|
Ding L, Cheng J, Qiao D, Yue L, Li YY, Zhou J, Cen K. Investigating hydrothermal pretreatment of food waste for two-stage fermentative hydrogen and methane co-production. BIORESOURCE TECHNOLOGY 2017; 241:491-499. [PMID: 28600943 DOI: 10.1016/j.biortech.2017.05.114] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
The growing amount of food waste (FW) in China poses great pressure on the environment. Complex solid organics limit the hydrolysis of FW, hence impairing anaerobic digestion. This study employed hydrothermal pretreatment (HTP) to facilitate the solubilization of FW. When HTP temperature increased from 100 to 200°C, soluble carbohydrate content first increased to a peak at 140°C and then decreased, whereas total carbohydrate content was negatively correlated with increasing temperature due to the enhanced degradation and Maillard reactions. Protein solubilization was dramatically promoted after HTP, whereas protein degradation was negligibly enhanced. The hydrogen and methane yields from hydrothermally pretreated FW under the optimum condition (140°C, 20min) through two-stage fermentation were 43.0 and 511.6mL/g volatile solids, respectively, resulting in an energy conversion efficiency (ECE) of 78.6%. The ECE of pretreated FW was higher than that of untreated FW by 31.7%.
Collapse
Affiliation(s)
- Lingkan Ding
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Dan Qiao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Liangchen Yue
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Tohoku University, Sendai 9808579, Japan
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Kefa Cen
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
13
|
Luongo V, Ghimire A, Frunzo L, Fabbricino M, d'Antonio G, Pirozzi F, Esposito G. Photofermentative production of hydrogen and poly-β-hydroxybutyrate from dark fermentation products. BIORESOURCE TECHNOLOGY 2017; 228:171-175. [PMID: 28063359 DOI: 10.1016/j.biortech.2016.12.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/16/2016] [Accepted: 12/22/2016] [Indexed: 05/08/2023]
Abstract
The aim of this work is to investigate the hydrogen and poly-β-hydroxybutyrate (PHB) production during the photofermentative treatment of the effluent from a dark fermentation reactor fed with the organic fraction of municipal solid waste. Two different inocula, an adapted culture of Rhodobacter sphaeroides AV1b and a mixed consortium of purple non sulphur bacteria have been investigated under the same operational conditions. Different hydrogen productivities of 364 and 559NmL H2 L-1 were observed for the Rhodobacter sphaeroides and the mixed culture consortium tests, respectively: the consortium of PNSB resulted 1.5-fold more productive than the pure culture. On the other hand, Rhodobacter sphaeroides culture showed a higher PHB productivity (155mg PHB g COD-1) than the mixed culture (55mg PHB g COD-1). In all the tests, the concomitant H2 and PHB production was associated to a dissolved COD removal higher than 80%.
Collapse
Affiliation(s)
- Vincenzo Luongo
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy; Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, via Cintia, Monte S. Angelo, 80124 Naples, Italy.
| | - Anish Ghimire
- Department of Environmental Science and Engineering, Kathmandu University, P.O.Box 6250, Dhulikhel, Nepal
| | - Luigi Frunzo
- Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, via Cintia, Monte S. Angelo, 80124 Naples, Italy
| | - Massimiliano Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy
| | - Giuseppe d'Antonio
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy
| | - Francesco Pirozzi
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy
| | - Giovanni Esposito
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, 03043 Cassino (FR), Italy
| |
Collapse
|
14
|
Bizkarra K, Barrio VL, Arias PL, Cambra JF. Sustainable hydrogen production from bio-oil model compounds (meta-xylene) and mixtures (1-butanol, meta-xylene and furfural). BIORESOURCE TECHNOLOGY 2016; 216:287-293. [PMID: 27253476 DOI: 10.1016/j.biortech.2016.05.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 06/05/2023]
Abstract
In the present work m-xylene and an equimolecular mixture of m-xylene, 1-butanol and furfural, all of them bio-oil model compounds, were studied in steam reforming (SR) conditions. Three different nickel catalysts, which showed to be active in 1-butanol SR (Ni/Al2O3, Ni/CeO2-Al2O3 and Ni/La2O3-Al2O3), were tested and compared with thermodynamic equilibrium values. Tests were carried out at temperatures from 800 to 600°C at atmospheric pressure with a steam to carbon ratio (S/C) of 5.0. Despite the different bio-oils fed, the amount of moles going through the catalytic bed was kept constant in order to obtain comparable results. After their use, catalysts were characterized by different techniques and those values were correlated with the activity results. All catalysts were deactivated during the SR of the mixture, mainly by coking. The highest hydrogen yields were obtained with Ni/Al2O3 and Ni/CeO2-Al2O3 catalysts in the SR of m-xylene and SR of the mixture, respectively.
Collapse
Affiliation(s)
- K Bizkarra
- Dept. of Chemical and Environmental Engineering, Faculty of Engineering, University of the Basque Country (UPV/EHU), C/Alda. Urquijo s/n, 48013 Bilbao, Spain.
| | - V L Barrio
- Dept. of Chemical and Environmental Engineering, Faculty of Engineering, University of the Basque Country (UPV/EHU), C/Alda. Urquijo s/n, 48013 Bilbao, Spain
| | - P L Arias
- Dept. of Chemical and Environmental Engineering, Faculty of Engineering, University of the Basque Country (UPV/EHU), C/Alda. Urquijo s/n, 48013 Bilbao, Spain
| | - J F Cambra
- Dept. of Chemical and Environmental Engineering, Faculty of Engineering, University of the Basque Country (UPV/EHU), C/Alda. Urquijo s/n, 48013 Bilbao, Spain
| |
Collapse
|
15
|
Laocharoen S, Reungsang A, Plangklang P. Bioaugmentation of Lactobacillus delbrueckii ssp. bulgaricus TISTR 895 to enhance bio-hydrogen production of Rhodobacter sphaeroides KKU-PS5. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:190. [PMID: 26613000 PMCID: PMC4660636 DOI: 10.1186/s13068-015-0375-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/09/2015] [Indexed: 05/30/2023]
Abstract
BACKGROUND Bioaugmentation or an addition of the desired microorganisms or specialized microbial strains into the anaerobic digesters can enhance the performance of microbial community in the hydrogen production process. Most of the studies focused on a bioaugmentation of native microorganisms capable of producing hydrogen with the dark-fermentative hydrogen producers while information on bioaugmentation of purple non-sulfur photosynthetic bacteria (PNSB) with lactic acid-producing bacteria (LAB) is still limited. In our study, bioaugmentation of Rhodobacter sphaeroides KKU-PS5 with Lactobacillus delbrueckii ssp. bulgaricus TISTR 895 was conducted as a method to produce hydrogen. Unfortunately, even though well-characterized microorganisms were used in the fermentation system, a cultivation of two different organisms in the same bioreactor was still difficult because of the differences in their metabolic types, optimal conditions, and nutritional requirements. Therefore, evaluation of the physical and chemical factors affecting hydrogen production of PNSB augmented with LAB was conducted using a full factorial design followed by response surface methodology (RSM) with central composite design (CCD). RESULTS A suitable LAB/PNSB ratio and initial cell concentration were found to be 1/12 (w/w) and 0.15 g/L, respectively. The optimal initial pH, light intensity, and Mo concentration obtained from RSM with CCD were 7.92, 8.37 klux and 0.44 mg/L, respectively. Under these optimal conditions, a cumulative hydrogen production of 3396 ± 66 mL H2/L, a hydrogen production rate (HPR) of 9.1 ± 0.2 mL H2/L h, and a hydrogen yield (HY) of 9.65 ± 0.23 mol H2/mol glucose were obtained. KKU-PS5 augmented with TISTR 895 produced hydrogen from glucose at a relatively high HY, 9.65 ± 0.23 mol H2/mol glucose, i.e., 80 % of the theoretical yield. CONCLUSIONS The ratio of the strains TISTR 895/KKU-PS5 and their initial cell concentrations affected the rate of lactic acid production and its consumption. A suitable LAB/PNSB ratio and initial cell concentration could balance the lactic acid production rate and its consumption in order to avoid lactic acid accumulation in the fermentation system. Through use of appropriate environmental conditions for bioaugmentation of PNSB with LAB, a hydrogen production could be enhanced.
Collapse
Affiliation(s)
- Sucheera Laocharoen
- />Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Alissara Reungsang
- />Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002 Thailand
- />Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Pensri Plangklang
- />Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002 Thailand
| |
Collapse
|