1
|
Huang J, Wang C, Huang X, Zhang Q, Feng R, Wang X, Zhang S, Wang J. Long-term effect of phenol, quinoline, and pyridine on nitrite accumulation in the nitrification process: performance, microbial community, metagenomics and molecular docking analysis. BIORESOURCE TECHNOLOGY 2024; 412:131407. [PMID: 39233185 DOI: 10.1016/j.biortech.2024.131407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Phenol, quinoline, and pyridine, commonly found in industrial wastewater, disrupt the nitrification process, leading to nitrite accumulation. This study explores the potential mechanisms through which these biotoxic organic compounds affect nitrite accumulation, using metagenomic and molecular docking analyses. Despite increasing concentrations of these compounds from 40 to 160 mg/L, ammonia nitrogen removal was not hindered, and stable nitrite accumulation rates exceeding 90 % were maintained. Additionally, these compounds inhibited nitrite-oxidizing bacteria (NOB) and enriched ammonia-oxidizing bacteria (AOB) in situ. As the concentration of these compounds rose, protein (PN) and polysaccharide (PS) concentrations also increased, along with a higher PN/PS ratio. Metagenomic analysis further revealed an increase in hao relative abundance, while microbial community analysis showed increased Nitrosomonas abundance, which contributed to nitrite accumulation stability. Molecular docking indicated that these compounds have lower binding energy with hydroxylamine oxidoreductase (HAO) and nitrate reductase (NAR), theoretically supporting the observed sustained nitrite accumulation.
Collapse
Affiliation(s)
- Jianming Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology -Beijing, Ding 11#, Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Chunrong Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology -Beijing, Ding 11#, Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Xiaoyan Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology -Beijing, Ding 11#, Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Qi Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology -Beijing, Ding 11#, Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Rongfei Feng
- School of Chemical and Environmental Engineering, China University of Mining and Technology -Beijing, Ding 11#, Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Xiaocong Wang
- Beijing Drainage Group Co. Ltd (BDG), Beijing, 100022, PR China
| | - Shujun Zhang
- Beijing Drainage Group Co. Ltd (BDG), Beijing, 100022, PR China
| | - Jianbin Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology -Beijing, Ding 11#, Xueyuan Road, Haidian District, Beijing 100083, PR China
| |
Collapse
|
2
|
Yang W, Cheng L, Liang H, Xu A, Li Y, Nabi M, Wang H, Hu J, Gao D. Efficient nitrogen removal from mature landfill leachate by single-stage partial-nitritation anammox using expanded granular sludge bed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118460. [PMID: 37384993 DOI: 10.1016/j.jenvman.2023.118460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023]
Abstract
The effective retention of anaerobic ammonia oxidizing (anammox) bacteria and its high sensitivity to toxic substances and oxygen posed a major challenge to the application of partial nitrification combined with anammox (PN/A) in mature landfill leachate treatment, although it is a promising and efficient nitrogen removal process. In this study, a single-stage PN/A process based on expanded granular sludge bed was proposed to treat the mature landfill leachate. During the last phase, when the NH+ 4-N concentration of mature landfill leachate in influent was 1150.0 mg/L, the nitrogen removal efficiency (NRE) was 83.64% with 1.07 kg N/(m3·d) nitrogen removal rate (NRR). The activity of anammox bacteria (AnAOB) and ammonia oxidizing bacteria (AOB) was 9.21 ± 0.22 mg N/(gVSS·h) and 14.34 ± 0.65 mg N/(gVSS·h), respectively. The bacteria produced a high amount of tightly bound extracellular polymeric substance (TB-EPS) i.e., 4071.79 mg/(g·VSS). This helped to create granular sludge and provided favorable spatial conditions for the distribution of functional bacteria that were adapted to different environments. Due to the efficient retention of functional bacteria by the granular sludge, the relative abundance of Ca.Brocadia and Ca.Kuneneia was 1.71% and 0.31%, respectively. Redundancy analysis (RDA) and microbial correlation network diagram showed that the relative abundance of Ca. Kuenenia, Nitrosomonas and Truepera had a stronger positive correlation with the increase of the proportion of mature landfill leachate added to the influent. Overall, the PN/A process based on granular sludge provides an effective method for autotrophic biological nitrogen removal from mature landfill leachate.
Collapse
Affiliation(s)
- Wenbo Yang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lang Cheng
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Ao Xu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yuqi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Mohammad Nabi
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Huan Wang
- Shanghai SUS Environmental Remediation Co., LTD, Shanghai, 201703, China
| | - Jiachen Hu
- Shanghai SUS Environmental Remediation Co., LTD, Shanghai, 201703, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
3
|
Yan X, Liu D, Klok JBM, de Smit SM, Buisman CJN, ter Heijne A. Enhancement of Ammonium Oxidation at Microoxic Bioanodes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11561-11571. [PMID: 37498945 PMCID: PMC10413939 DOI: 10.1021/acs.est.3c02227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Bioelectrochemical systems (BESs) are considered to be energy-efficient to convert ammonium, which is present in wastewater. The application of BESs as a technology to treat wastewater on an industrial scale is hindered by the slow removal rate and lack of understanding of the underlying ammonium conversion pathways. This study shows ammonium oxidation rates up to 228 ± 0.4 g-N m-3 d-1 under microoxic conditions (dissolved oxygen at 0.02-0.2 mg-O2/L), which is a significant improvement compared to anoxic conditions (120 ± 21 g-N m-3 d-1). We found that this enhancement was related to the formation of hydroxylamine (NH2OH), which is rate limiting in ammonium oxidation by ammonia-oxidizing microorganisms. NH2OH was intermediate in both the absence and presence of oxygen. The dominant end-product of ammonium oxidation was dinitrogen gas, with about 75% conversion efficiency in the presence of a microoxic level of dissolved oxygen and 100% conversion efficiency in the absence of oxygen. This work elucidates the dominant pathways under microoxic and anoxic conditions which is a step toward the application of BESs for ammonium removal in wastewater treatment.
Collapse
Affiliation(s)
- Xiaofang Yan
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Dandan Liu
- Paqell
B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands
| | - Johannes B. M. Klok
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Sanne M. de Smit
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Cees J. N. Buisman
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Annemiek ter Heijne
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
4
|
Tan C, Zhang W, Wei Y, Zhao N, Li J. Insights into nitrogen removal and microbial response of marine anammox bacteria-based consortia treating saline wastewater: From high to moderate and low salinities. BIORESOURCE TECHNOLOGY 2023; 382:129220. [PMID: 37217147 DOI: 10.1016/j.biortech.2023.129220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Marine anammox bacteria (MAB) have promising nitrogen removal performance in high saline wastewater treatment. Nevertheless, the impact resulting from moderate and low salinities on MAB is still unclear. Herein, MAB were applied to treat saline wastewater from high to moderate and low salinities for the first time. Independent of salinities (35-3.5 g/L), MAB consistently exhibited good nitrogen removal performance, and maximum total nitrogen removal rate (0.97 kg/(m3·d)) occurred at 10.5 g/L salts. More extracellular polymeric substances (EPSs) were secreted by MAB-based consortia to resist hypotonic surroundings. However, a sharp EPS decrease was accompanied by the collapse of MAB-driven anammox process, and MAB granules disintegrated due to long-term exposure to salt-free environment. The relative abundance of MAB varied from 10.7% to 15.9% and 3.8% as salinity decreased from 35 to 10.5 and 0 g/L salts. These findings will provide practical implementation of MAB-driven anammox process treating wastewater with different salinities.
Collapse
Affiliation(s)
- Chen Tan
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Weidong Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yunna Wei
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Na Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
5
|
Bovio-Winkler P, Guerrero LD, Erijman L, Oyarzúa P, Suárez-Ojeda ME, Cabezas A, Etchebehere C. Genome-centric metagenomic insights into the role of Chloroflexi in anammox, activated sludge and methanogenic reactors. BMC Microbiol 2023; 23:45. [PMID: 36809975 PMCID: PMC9942424 DOI: 10.1186/s12866-023-02765-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/10/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND The phylum Chloroflexi is highly abundant in a wide variety of wastewater treatment bioreactors. It has been suggested that they play relevant roles in these ecosystems, particularly in degrading carbon compounds and on structuring flocs or granules. Nevertheless, their function is not yet well understood as most species have not been isolated in axenic cultures. Here we used a metagenomic approach to investigate Chloroflexi diversity and their metabolic potential in three environmentally different bioreactors: a methanogenic full-scale reactor, a full-scale activated sludge reactor and a lab scale anammox reactor. RESULTS Differential coverage binning approach was used to assemble the genomes of 17 new Chloroflexi species, two of which are proposed as new Candidatus genus. In addition, we recovered the first representative genome belonging to the genus 'Ca. Villigracilis'. Even though samples analyzed were collected from bioreactors operating under different environmental conditions, the assembled genomes share several metabolic features: anaerobic metabolism, fermentative pathways and several genes coding for hydrolytic enzymes. Interestingly, genome analysis from the anammox reactor indicated a putative role of Chloroflexi in nitrogen conversion. Genes related to adhesiveness and exopolysaccharides production were also detected. Complementing sequencing analysis, filamentous morphology was detected by Fluorescent in situ hybridization. CONCLUSION Our results suggest that Chloroflexi participate in organic matter degradation, nitrogen removal and biofilm aggregation, playing different roles according to the environmental conditions.
Collapse
Affiliation(s)
- Patricia Bovio-Winkler
- Microbial Ecology Laboratory, Department of Microbial Biochemistry and Genomic, Biological Research Institute "Clemente Estable", Avenida Italia 3318, CP: 11600, Montevideo, Uruguay
| | - Leandro D Guerrero
- Instituto de Investigaciones en Ingeniería Genética Y Biología Molecular "Dr Héctor N. Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Leonardo Erijman
- Instituto de Investigaciones en Ingeniería Genética Y Biología Molecular "Dr Héctor N. Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Pía Oyarzúa
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - María Eugenia Suárez-Ojeda
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Angela Cabezas
- Instituto Tecnológico Regional Centro Sur, Universidad Tecnológica, Francisco Antonio Maciel S/N, CP: 97000, Durazno, Uruguay
| | - Claudia Etchebehere
- Microbial Ecology Laboratory, Department of Microbial Biochemistry and Genomic, Biological Research Institute "Clemente Estable", Avenida Italia 3318, CP: 11600, Montevideo, Uruguay.
| |
Collapse
|
6
|
Cheenakula D, Griebel K, Montag D, Grömping M. Concept development of a mainstream deammonification and comparison with conventional process in terms of energy, performance and economical construction perspectives. Front Microbiol 2023; 14:1155235. [PMID: 37113237 PMCID: PMC10126410 DOI: 10.3389/fmicb.2023.1155235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Deammonification for nitrogen removal in municipal wastewater in temperate and cold climate zones is currently limited to the side stream of municipal wastewater treatment plants (MWWTP). This study developed a conceptual model of a mainstream deammonification plant, designed for 30,000 P.E., considering possible solutions corresponding to the challenging mainstream conditions in Germany. In addition, the energy-saving potential, nitrogen elimination performance and construction-related costs of mainstream deammonification were compared to a conventional plant model, having a single-stage activated sludge process with upstream denitrification. The results revealed that an additional treatment step by combining chemical precipitation and ultra-fine screening is advantageous prior the mainstream deammonification. Hereby chemical oxygen demand (COD) can be reduced by 80% so that the COD:N ratio can be reduced from 12 to 2.5. Laboratory experiments testing mainstream conditions of temperature (8-20°C), pH (6-9) and COD:N ratio (1-6) showed an achievable volumetric nitrogen removal rate (VNRR) of at least 50 gN/(m3∙d) for various deammonifying sludges from side stream deammonification systems in the state of North Rhine-Westphalia, Germany, where m3 denotes reactor volume. Assuming a retained Norganic content of 0.0035 kgNorg./(P.E.∙d) from the daily loads of N at carbon removal stage and a VNRR of 50 gN/(m3∙d) under mainstream conditions, a resident-specific reactor volume of 0.115 m3/(P.E.) is required for mainstream deammonification. This is in the same order of magnitude as the conventional activated sludge process, i.e., 0.173 m3/(P.E.) for an MWWTP of size class of 4. The conventional plant model yielded a total specific electricity demand of 35 kWh/(P.E.∙a) for the operation of the whole MWWTP and an energy recovery potential of 15.8 kWh/(P.E.∙a) through anaerobic digestion. In contrast, the developed mainstream deammonification model plant would require only a 21.5 kWh/(P.E.∙a) energy demand and result in 24 kWh/(P.E.∙a) energy recovery potential, enabling the mainstream deammonification model plant to be self-sufficient. The retrofitting costs for the implementation of mainstream deammonification in existing conventional MWWTPs are nearly negligible as the existing units like activated sludge reactors, aerators and monitoring technology are reusable. However, the mainstream deammonification must meet the performance requirement of VNRR of about 50 gN/(m3∙d) in this case.
Collapse
Affiliation(s)
- Dheeraja Cheenakula
- Institute NOWUM-Energy, FH Aachen, University of Applied Sciences, Jülich, Germany
- *Correspondence: Dheeraja Cheenakula,
| | - Kai Griebel
- Institute of Environmental Engineering, RWTH Aachen, Aachen, Germany
| | - David Montag
- Institute of Environmental Engineering, RWTH Aachen, Aachen, Germany
| | - Markus Grömping
- Institute NOWUM-Energy, FH Aachen, University of Applied Sciences, Jülich, Germany
| |
Collapse
|
7
|
Ismail IN, Taufik M, Umor NA, Norulhuda MR, Zulkarnaini Z, Ismail S. Anammox process for aquaculture wastewater treatment: operational condition, mechanism, and future prospective. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:3093-3112. [PMID: 36579872 DOI: 10.2166/wst.2022.403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Treatment of ammonia- and nitrate-rich wastewater, such as that generated in the aquaculture industry, is important to prevent environmental pollution. The anaerobic ammonium oxidation (anammox) process has been reported as a great alternative in reducing ammoniacal nitrogen concentration in aquaculture wastewater treatment compared to conventional treatment systems. This paper will highlight the impact of the anammox process on aquaculture wastewater, particularly in the regulation of ammonia and nitrogen compounds. The state of the art for anammox treatment systems is discussed in comparison to other available treatment methods. While the anammox process is viable for the treatment of aquaculture wastewater, the efficiency of nitrogen removal could be further improved through the proper use of anammox bacteria, operating conditions, and microbial diversity. In conclusion, a new model of the anammox process is proposed in this review.
Collapse
Affiliation(s)
- Ismafatin Nabilah Ismail
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia E-mail:
| | - Muhammad Taufik
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia E-mail:
| | - N A Umor
- School of Biological Sciences, Faculty of Applied Sciences, Universiti Teknologi MARA, Negeri Sembilan, Malaysia
| | - Mohamed Ramli Norulhuda
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Zulkarnaini Zulkarnaini
- Department of Environmental Engineering, Faculty of Engineering, Universitas Andalas, Indonesia
| | - Shahrul Ismail
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia E-mail:
| |
Collapse
|
8
|
Chen J, Hai Y, Zhang W, Zhou X. Insights into deterioration and reactivation of a mainstream anammox biofilm reactor response to C/N ratio. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115780. [PMID: 35944318 DOI: 10.1016/j.jenvman.2022.115780] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
In-depth knowledge of the deterioration and reactivation of the anaerobic ammonium oxidation (anammox) induced by carbon-to-nitrogen (C/N) is still lacking. Herein, the anammox performance was investigated in an anaerobic sequence biofilm batch reactor fed with low-strength partial nitration effluent in the range of C/N ratio from 0.5 to 3. The anammox was hardly deteriorated at C/N lower than 1.5, while became worsen if C/N was above 2.0. The specific anammox activity (SAA) experiments showed an 85% decrease of SAA at C/N of 3.0 compared with the maximum value (C/N:0). However, anammox capacity was rapidly recovered once influent C/N was adjusted back to zero. Moreover, C/N also highly affected the composition, structure and function of extracellular polymeric substance of the anammox biofilm. High-throughput sequencing revealed a close correlation between C/N change and microbial structure shift. Finally, the potential inhibition and restoration mechanism of the C/N-dependent anammox were proposed based on metagenomic analysis. This research provides some insights into the reinstatement of a mainstream anammox biofilm process after it is interrupted by high C/N influent.
Collapse
Affiliation(s)
- Jiabo Chen
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China; Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Yan Hai
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China
| | - Wei Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China
| | - Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China.
| |
Collapse
|
9
|
Yang T, Hao Q, Qiao Y, Fu Z. Low-strength influence on nitrogen removal performance and bacterial community structure of the anammox process. ENVIRONMENTAL TECHNOLOGY 2022; 43:2730-2742. [PMID: 33683170 DOI: 10.1080/09593330.2021.1899291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The effect of low strength on anaerobic ammonium oxidation (anammox) was investigated in an anaerobic moving bed biofilm reactor (AMBBR) treating artificial wastewater. Influent NH4+-N concentration with 10.74 ± 2.73 mg L-1 adversely impacted nitrogen removal permanence, the total nitrogen removal efficiency was significantly increased from 61.4% to 80.0%, when influent nitrogen increased to 22.36 ± 5.83 mg·L-1. NH4+-N removal efficiency decreased obviously while that of NO2--N was basically unaffected by the influent nitrogen concentration decrease. Illumina high-throughput sequencing results revealed that the predominant bacterial (64.71%) phylum was Proteobacteria and the dominant functional microorganisms were Nitrosospira, Nitrospira, and Candidatus Brocadia. Simple model simulation results showed that the inhibition effect of the low substrate was most likely due to the increase of bulk DO, which comes from influent and gas-liquid transfer. The reversible inhibition effect of low strength on nitrogen removal performance in an anammox reactor was demonstrated, and strictly regulation of the bulk DO was presumed to be critical to achieve a successful and stable operating performance under low strength.
Collapse
Affiliation(s)
- Ting Yang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, People's Republic of China
- Inner Mongolia Coal Chemical Industry Wastewater Treatment and Reuse Engineering Technology Research Center, Inner Mongolia University, Hohhot, People's Republic of China
| | - Qian Hao
- School of Ecology and Environment, Inner Mongolia University, Hohhot, People's Republic of China
- Inner Mongolia Coal Chemical Industry Wastewater Treatment and Reuse Engineering Technology Research Center, Inner Mongolia University, Hohhot, People's Republic of China
| | - Yajie Qiao
- School of Ecology and Environment, Inner Mongolia University, Hohhot, People's Republic of China
- Inner Mongolia Coal Chemical Industry Wastewater Treatment and Reuse Engineering Technology Research Center, Inner Mongolia University, Hohhot, People's Republic of China
| | - Zhimin Fu
- School of Ecology and Environment, Inner Mongolia University, Hohhot, People's Republic of China
- Inner Mongolia Coal Chemical Industry Wastewater Treatment and Reuse Engineering Technology Research Center, Inner Mongolia University, Hohhot, People's Republic of China
| |
Collapse
|
10
|
Qin Y, Wei Q, Zhang Y, Li H, Jiang Y, Zheng J. Nitrogen removal from ammonium- and sulfate-rich wastewater in an upflow anaerobic sludge bed reactor: performance and microbial community structure. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1719-1730. [PMID: 33792797 DOI: 10.1007/s10646-020-02333-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Autotrophic ammonium removal by sulfate-dependent anaerobic ammonium oxidation (S-Anammox) process was studied in an upflow anaerobic sludge bed reactor inoculated with Anammox sludge. Over an operation period of 371 days, the reactor with a hydraulic retention time of 16 h was fed with influent in which NH4+ concentration was fixed at 70 mg N L-1, and the molar ratio of NO2-:NO3-:SO42- was 1:0.2:0.2, 0.5:0.1:0.3 and 0:0:0.5 in stages I, II and III, respectively. As the NO2- in influent was entirely replaced by SO42-, the NH4+ removal rate was 31.02 mg N L-1 d-1, and the conversion rate of SO42- was 8.18 mg S L-1 d-1. On grounds of the high NH4+:SO42- removal ratio (8.67:1), the S2- accumulation and pH drop in effluent, as well as the analysis results of microbial community structure, the S-Anammox process was speculated to play a dominant role in stage III. The NH4+ over-transformation was presumably as a consequence of the cyclic regeneration of SO42-. Concerning the microbial characteristics in the system, the Anammox bacteria (Candidatus Brocadia), sulfate-reducing bacteria (SRB) (Desulfatiglans and Desulfurivibrio) and sulfur-oxidizing bacteria (SOB) (Thiobacillus) in biomass was enriched in the case of without addition of NO2- in influent. Sulfate reduction driven ammonium anaerobic oxidation was probably attributed to the coordinated metabolism of nitrogen- and sulfur-utilizing bacteria consortium, in which Anammox bacteria dominates the nitrogen removal, and the SRB and SOB participates in the sulfur cycle as well as accepts required electrons from Anammox bacteria through a direct inter-species electron transfer (DIET) pathway.
Collapse
Affiliation(s)
- Yongli Qin
- College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Qiaoyan Wei
- College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Yuanyuan Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yongrong Jiang
- College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, 541004, China.
| | - Junjian Zheng
- College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, 541004, China.
| |
Collapse
|
11
|
Weralupitiya C, Wanigatunge R, Joseph S, Athapattu BCL, Lee TH, Kumar Biswas J, Ginige MP, Shiung Lam S, Senthil Kumar P, Vithanage M. Anammox bacteria in treating ammonium rich wastewater: Recent perspective and appraisal. BIORESOURCE TECHNOLOGY 2021; 334:125240. [PMID: 33964811 DOI: 10.1016/j.biortech.2021.125240] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
The discovery of anammox process has provided eco-friendly and low-cost means of treating ammonia rich wastewater with remarkable efficiency. Furthermore, recent studies have shown that the possibility of operating the anammox process under low temperatures and high organic matter contents broadening the application of the anammox process. However, short doubling time and extensive levels of sensitivity towards nutrients and environmental alterations such as salinity and temperature are the limitations in practical applications of the anammox process. This review article provides the recent yet comprehensive viewpoint on anammox bacteria and the key perspectives in applying them as an efficient strategy for wastewater treatment.
Collapse
Affiliation(s)
- Chanusha Weralupitiya
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; Department of Plant and Molecular Biology, University of Kelaniya, Kelaniya, Sri Lanka
| | - Rasika Wanigatunge
- Department of Plant and Molecular Biology, University of Kelaniya, Kelaniya, Sri Lanka
| | - Sarangi Joseph
- Department of Civil Engineering, The Open University of Sri Lanka, Nawala, Sri Lanka
| | | | - Tae-Ho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan, South Korea
| | - Jayanta Kumar Biswas
- Department of Ecological Studies, and International Centre for Ecological Engineering, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | | | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| |
Collapse
|
12
|
Sobotka D, Zhai J, Makinia J. Generalized temperature dependence model for anammox process kinetics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145760. [PMID: 33631594 DOI: 10.1016/j.scitotenv.2021.145760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Temperature is a key operational factor influencing the anammox process kinetics. In particular, at temperatures below 15 °C, the specific anammox activity (SAA) considerably decreases. This study aimed to describe the temperature dependence of the anammox process kinetics in the temperature range from 10 to 55 °C, including the specific characteristics of "cold anammox". The commonly used Arrhenius and extended and modified Ratkowsky equations were examined. The Ratkowsky equations yielded a strong correlation (coefficient of determination, R2 = 0.93-0.96) between the measured and predicted data over the analyzed temperature range (10-55 °C). However, these equations could not correctly reflect the anammox temperature dependence at temperatures below 15 °C (R2 = 0.36-0.48). Therefore, a new generalized temperature model was proposed. The generalized temperature equation (GTE) considered the division of the analyzed temperature range into three temperature ranges: 10-15 °C, 15-35 °C and 35-55 °C. The ranges correspond to "cold anammox", "(low) mesophilic anammox" and "thermophilic anammox". The applied approach yielded a strong correlation between the measured and predicted SAA (R2 = 0.97) over the temperature range from 10 to 55 °C and over the low-temperature range from 10 to 15 °C (R2 = 0.99). Overall, the GTE could enhance the predictions of the temperature dependence of the anammox process kinetics. The GTE can help examine anammox-based bioaugmentation systems operating at both high temperatures (sidestream reactors) and low temperatures (mainstream reactors).
Collapse
Affiliation(s)
- D Sobotka
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - J Zhai
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, School of Urban Construction and Environmental Engineering - Chongqing University, 400045 Chongqing, PR China
| | - J Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
13
|
Wang F, Xu S, Liu L, Wang S, Ji M. One-stage partial nitrification and anammox process in a sequencing batch biofilm reactor: Start-up, nitrogen removal performance and bacterial community dynamics in response to temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145529. [PMID: 33581528 DOI: 10.1016/j.scitotenv.2021.145529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/06/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
A one-stage partial nitrification and anammox (PN/A) process was started up and operated under varying temperatures in a lab-scale sequencing batch biofilm reactor. The start‑up phase took 110 days with an intermittent aeration strategy, and the removal efficiencies of ammonia‑nitrogen and total nitrogen were found to be 92.22% and 76.07%, respectively. The total nitrogen removal efficiency (NRE) increased by 9.49% when temperature decreased from 30 °C to 25 °C, but declined by 83.84% from 25 °C to 20 °C. The PN process was inhibited and subsequently limited the nitrogen removal performance at 20 °C. When temperature returned to 28 °C, the NRE recovered to 67.27%, but it was still lower than the value before the decrease in temperature (79.40%). Microbial community analysis showed that the predominant ammonia oxidation bacteria and anammox bacteria were Nitrosomonas and Candidatus Kuenenia, respectively. Nitrosomonas grew, while the relative abundance of Candidatus Kuenenia increased as temperature decreased and vice versa.
Collapse
Affiliation(s)
- Fen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Sihan Xu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Lingjie Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Siyu Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; China Urban Construction Design & Research Institute Co., Ltd, Beijing 100120, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
14
|
Start-up Strategies for Anaerobic Ammonia Oxidation (Anammox) in In-Situ Nitrogen Removal from Polluted Groundwater in Rare Earth Mining Areas. SUSTAINABILITY 2021. [DOI: 10.3390/su13084591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The tremendous input of ammonium and rare earth element (REE) ions released by the enormous consumption of (NH4)2SO4 in in situ leaching for ion-adsorption RE mining caused serious ground and surface water contamination. Anaerobic ammonium oxidation (anammox) was a sustainable in situ technology that can reduce this nitrogen pollution. In this research, in situ, semi in situ, and ex situ method of inoculation that included low-concentration (0.02 mg·L−1) and high-concentration (0.10 mg·L−1) lanthanum (La)(III) were adopted to explore effective start-up strategies for starting up anammox reactors seeded with activated sludge and anammox sludge. The reactors were refrigerated for 30 days at 4 °C to investigate the effects of La(III) during a period of low-temperature. The results showed that the in situ and semi in situ enrichment strategies with the addition of La(III) at a low-concentration La(III) addition (0.02 mg·L−1) reduced the length of time required to reactivate the sludge until it reached a state of stable anammox activity and high nitrogen removal efficiency by 60–71 days. The addition of La(III) promoted the formation of sludge floc with a compact structure that enabled it to resist the adverse effects of low temperature and so to maintain a high abundance of AnAOB and microbacterial community diversity of sludge during refrigeration period. The addition of La(III) at a high concentration caused the cellular percentage of AnAOB to decrease from 54.60 ± 6.19% to 17.35 ± 6.69% during the enrichment and reduced nitrogen removal efficiency to an unrecoverable level to post-refrigeration.
Collapse
|
15
|
Xing L, Liu M, Zhang Y, Zhang W, Wang Z. Analyzing the effect of organic carbon on partial nitrification-anammox process based on metagenomics and quorum sensing. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:254-262. [PMID: 32656911 DOI: 10.1002/wer.1398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
The effects of adding organic carbon on the performance of different partial nitrification-anammox (PNA) process (the activated sludge process and biofilm process) were studied, especially nitrogen removal, functional microbial activity, and microbial community structure. The potential influences of quorum sensing (QS) on the nitrogen metabolism were also analyzed. The results showed that the addition of organic carbon in biofilm systems could reduce total nitrogen (TN) removal percentages, while in activated systems it could increase TN removal percentages. The TN removal percentages in SBBR-CN (the biofilm system with addition of organic carbon) and SBR-CN (the activated sludge system with addition of organic carbon) were 15% and 45%, respectively, and those in SBBR-N (the biofilm system without addition of organic carbon) and SBR-N (the activated sludge system without addition of organic carbon) were 75% and 21%, respectively. Batch experiments have proved that organic carbon inhibited the activities of nitrite-oxidizing bacteria (NOB) and anaerobic ammonia oxidation (anammox) bacteria, and organic carbon could promote the activity of denitrifying bacteria in activated sludge systems. Compared with activated sludge systems, biofilm systems could protect the activity of anammox bacteria. The relative abundances of ammonia oxidizing bacteria (AOB) and anammox bacteria were decreased, while the relative abundances of denitrifying bacteria (Thauera) were increased with the addition of organic carbon. The biofilm systems were more conducive to the growth of anammox bacteria. Metagenomics revealed that the same bacteria might be involved in different nitrogen metabolism, and nitrogen metabolism was achieved through the complex cooperation among functional bacteria. Besides, functional bacteria involving in the nitrogen metabolism had genes related to QS, indicating that QS might affect the nitrogen metabolism by regulating the functional bacteria activity. PRACTITIONER POINTS: PNA was achieved through SBBR and complete nitrification was achieved through SBR under the low ammonia nitrogen concentration condition. The effect of organic carbon on biofilm and activated sludge PNA process was different under the low ammonia nitrogen concentration condition. QS and QQ may affect the nitrogen removal performance by regulating the expression of nitrogen metabolism-related genes.
Collapse
Affiliation(s)
- Lizhen Xing
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong, China
| | - Minglei Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong, China
| | - Yanhao Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong, China
| | - Weikang Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong, China
| | - Zifan Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong, China
| |
Collapse
|
16
|
Zhou S, Song Z, Sun Z, Shi X, Zhang Z. The effects of undulating seasonal temperature on the performance and microbial community characteristics of simultaneous anammox and denitrification (SAD) process. BIORESOURCE TECHNOLOGY 2021; 321:124493. [PMID: 33310385 DOI: 10.1016/j.biortech.2020.124493] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
The effects of undulating seasonal temperature change (USTC) (10.1 °C-31.8 °C) on the N and carbon removal efficiency of simultaneous anammox and denitrification (SAD) were investigated, and the recovery performance of SAD was simulated. Results showed that 15 °C was the critical temperature of SAD for N and carbon removal under USTC from summer to winter. The removal efficiency of NH4+-N was improved in the final stage after temperature rise, but still lower than that in summer after long-term low temperature inhibition. The contribution of anammox to N removal was more than denitrification. The abundance of anammox bacteria (AnAOB) in SAD reactor was 8.8%-11.7% from summer to autumn. Candidatus Kuenenia replaced Candidatus Brocadia as the main AnAOB gradually. Finally, AnAOB abundance increased from 4.2% to 6.6% after recovery, and the abundance of denitrifying bacteria (DB) became the highest, which mainly includes Thauera and Hydrogenophaga.
Collapse
Affiliation(s)
- Shun Zhou
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Zhuangzhuang Song
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhulong Sun
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xingdong Shi
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
17
|
Liu L, Ji M, Wang F, Tian Z, Yan Z, Wang S. N-acyl- l-homoserine lactones release and microbial community changes in response to operation temperature in an anammox biofilm reactor. CHEMOSPHERE 2021; 262:127602. [PMID: 32750589 DOI: 10.1016/j.chemosphere.2020.127602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
A 1 L lab-scale anaerobic ammonium oxidation (anammox) biofilm reactor with nitrogen loading rate of 0.11 g/L d was run for 110 days with the operation temperature declining from 36 °C to 15 °C. The total inorganic nitrogen removal efficiency showed a reduction from 80% to 66%, when the temperature declined from 36 °C to 15 °C. N-acyl-l-homoserine lactones (AHLs) concentrations, especially C8-HSL and C6-HSL, declined in both water and biomass phases, and this decline indicated that the quorum sensing weakened. Microbial community analysis revealed that Candidatus Kuenenia was the predominant anammox bacteria during the entire operating period. The abundance of Candidatus Kuenenia increased from 1.43% to 22.89% when the temperature decreasing from 36 °C to 15 °C. The correlation between microbial genus and AHLs was complicated. Overall, the temperature decrease weakened the quorum sensing so that the nitrogen removal performance deteriorated, and increasing the anammox activity might be an efficient way to improve performance.
Collapse
Affiliation(s)
- Lingjie Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Fen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Zhongke Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhao Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Shuya Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
18
|
Ma WJ, Li GF, Huang BC, Jin RC. Advances and challenges of mainstream nitrogen removal from municipal wastewater with anammox-based processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1899-1909. [PMID: 32306497 DOI: 10.1002/wer.1342] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/03/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a novel process of deammonification that exhibits superior ecological and economic potential compared to that of traditional heterotrophic processes. Although this process has been successfully implemented in treating high-strength nitrogen-contaminated wastewater, it still faces many challenges in treating mainstream municipal wastewater. This review aims to provide an overview of the status and challenges of mainstream anammox-based processes. The different configurations and crucial factors are discussed in this review. Finally, the future needs for feasible application are stated. PRACTITIONER POINTS: Factors restricting mainstream application of anammox-based processes are reviewed. Control strategies for selecting and maintaining anammox bacteria are discussed. Recent advances in nitrite production via partial nitrification or denitrification are summarized. Future needs for the feasible application of anammox-based nitrogen removal technology for mainstream municipal wastewater treatment are outlined.
Collapse
Affiliation(s)
- Wen-Jie Ma
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Gui-Feng Li
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Bao-Cheng Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
19
|
Yang Y, Lu H, Shao Z, Liu S, Zhang Y, Jiang D, Gu L, He Q, Chai H. Electron buffer formation through coupling thiosulfate-dependent denitratation with anammox in a single-stage sequencing batch reactor. BIORESOURCE TECHNOLOGY 2020; 312:123560. [PMID: 32473471 DOI: 10.1016/j.biortech.2020.123560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
The combination of thiosulfate-dependent denitratation and anammox in a single-stage reactor provides a feasible way to improve total nitrogen removal. The molar ratios of NH4+/NO3- and S2O32-/NO3- were confirmed to be two key factors affecting the reactor performance. The optimal total nitrogen removal efficiency of 99.4% was achieved at NH4+/NO3- of 0.75 and S2O32-/NO3- of 0.85. The multiple thiosulfate oxidation pathways contribute to electron buffers generated in the system. A novel isotope labeling method using 15N was applied to reveal N transformation pathways and a 3-step model was proposed. The nitrate was first converted to nitrite or nitric oxide (NO) by sulfur-oxidizing bacteria. In the second step, both nitrite and NO were utilized by anammox bacteria. Finally, the nitrate generated from anammox could be removed using sulfur deposits as electron donors. The findings provide a potential solution for mainstream nitrogen removal.
Collapse
Affiliation(s)
- Yan Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Zhiyu Shao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Shiyi Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Yuxin Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Debin Jiang
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Hongxiang Chai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
20
|
Gong X, Wang B, Qiao X, Gong Q, Liu X, Peng Y. Performance of the anammox process treating low-strength municipal wastewater under low temperatures: Effect of undulating seasonal temperature variation. BIORESOURCE TECHNOLOGY 2020; 312:123590. [PMID: 32504950 DOI: 10.1016/j.biortech.2020.123590] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
In the anammox process treating low-strength municipal wastewater, the effect of common seasonal temperature variation (15.1 °C-22.2 °C) on performance was studied. In autumn and winter, the nitrogen removal rate (NRR) decrement of 0.038kgN/(m3·d) (17.9 °C → 15.1 °C) was nearly threefold higher than 0.014kgN/(m3·d) (22.2 °C → 17.9 °C), which showed that lower temperature laid more negative impact on nitrogen removal. 15N isotope tracing tests confirmed that the contribution of denitrification to nitrogen removal was far less than anammox, and anammox contributed more at 15.1 °C (91.7%) than 21.9 °C (78.9%). Anammox bacteria could adapt to lower temperature after short-term acclimatization, especially the dominant genus Ca. Brocadia increased from 1.8% to 2.5% and its abundance was significantly correlated with nitrogen consumption (p < 0.05). Above findings suggest that the adaptability of Ca. Brocadia could provide the possibility to maintain nitrogen removal performance at lower temperature. In spring, the improved maximum anammox activity from 2.85 to 3.23mgNH4+-N/(gVSS·h) indicated the recovered removal capacity.
Collapse
Affiliation(s)
- Xiaofei Gong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xin Qiao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qingteng Gong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xuefan Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
21
|
Wang S, Li J, Wang D, Wang C, Zheng J, Qiu C, Yu J. Start-up of single-stage partial nitritation-anammox micro-granules system: Performance and microbial community dynamics. ENVIRONMENTAL RESEARCH 2020; 186:109581. [PMID: 32668544 DOI: 10.1016/j.envres.2020.109581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
By manipulating influent nitrogen load and DO concentration in bulk liquid, the start-up and performance of a new micro-granule based partial nitritation-anammox process was investigated in a continuous stirred tank reactor (CSTR). Under the condition of nitrogen loadings from 0.3 to 1.4 kgN /m³/d and DO <0.21mg/L, the single-stage partial nitritation-anammox (SPNA) system was successfully started, with a nitrogen removal of 76.2%. Meanwhile, the oxygen utilization efficiency by ammonium oxidizing bacteria (AOB) increased in the system with the increase of influent ammonia loading rate. Micro-granules with an average diameter of 0.25 mm were formed. Sludge granulation was promoted by increasing influent nitrogen load, and there was a positive correlation between nitrogen load, extracellular polymeric substances (EPS) content and sludge particle size. Ca. Kuenenia became the dominant anaerobic ammonium oxidizing bacteria (AnAOB) in the SPNA system. As the dominant AOB genera, Nitrosomonas coexist with Ca. Kuenenia in the micro-granules.
Collapse
Affiliation(s)
- Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China.
| | - Jianyu Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Dong Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Chenchen Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Jianfeng Zheng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - ChunSheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| |
Collapse
|
22
|
Liu L, Ji M, Wang F, Wang S, Qin G. Insight into the influence of microbial aggregate types on nitrogen removal performance and microbial community in the anammox process - A review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136571. [PMID: 31986383 DOI: 10.1016/j.scitotenv.2020.136571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/25/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process has been paid close attention in the wastewater treatment field because of its energy-saving advantages. Different microbial aggregates have been used in the anammox process, and there is an urgent need to evaluate the comparative efficiencies of the widely used types of microbial aggregates with respect to their nitrogen removal performance as well as microbial community. To address this, 1724 published papers concentrating on three types of microbial aggregates, namely granules, biofilm, and flocs were compiled. A quantitative meta-analysis was carried out to compare the standard error of nitrogen removal efficiencies among these three microbial aggregates. The data sources of this meta-analysis comprised articles on granules (42%), followed by those on biofilm (33%) and flocs (25%). The granular sludge appeared to be competent in achieving the highest average nitrogen removal efficiencies of 81.1%, followed by biofilm (80.8%). Flocs provided comparatively poor removal of nitrogen pollutants with the lowest removal efficiency of 74.1%. Biofilm had the highest abundance of functional microbial communities with 43.4% on Candidatus Kuenenia and 11.2% on Candidatus Brocadia, which were detected in the anammox system as common genera. This meta-analysis suggested that the microbial aggregate types of granules and biofilm had a relatively low heterogeneity and high total nitrogen removal efficiencies for the anammox process and were the recommended microbial aggregates for anammox bacteria cultivation and operation of the anammox process.
Collapse
Affiliation(s)
- Lingjie Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Fen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Shuya Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Geng Qin
- School of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, China
| |
Collapse
|
23
|
Vandekerckhove TGL, Props R, Carvajal-Arroyo JM, Boon N, Vlaeminck SE. Adaptation and characterization of thermophilic anammox in bioreactors. WATER RESEARCH 2020; 172:115462. [PMID: 31958594 DOI: 10.1016/j.watres.2019.115462] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Anammox, the oxidation of ammonium with nitrite, is a key microbial process in the nitrogen cycle. Under mesophilic conditions (below 40 °C), it is widely implemented to remove nitrogen from wastewaters lacking organic carbon. Despite evidence of the presence of anammox bacteria in high-temperature environments, reports on the cultivation of thermophilic anammox bacteria are limited to a short-term experiment of 2 weeks. This study showcases the adaptation of a mesophilic inoculum to thermophilic conditions, and its characterization. First, an attached growth technology was chosen to obtain the process. In an anoxic fixed-bed biofilm bioreactor (FBBR), a slow linear temperature increase from 38 to over 48 °C (0.05-0.07 °C d-1) was imposed to the community over 220 days, after which the reactor was operated at 48 °C for over 200 days. Maximum total nitrogen removal rates reached up to 0.62 g N L-1 d-1. Given this promising performance, a suspended growth system was tested. The obtained enrichment culture served as inoculum for membrane bioreactors (MBR) operated at 50 °C, reaching a maximum total nitrogen removal rate of 1.7 g N L-1 d-1 after 35 days. The biomass in the MBR had a maximum specific anammox activity of 1.1 ± 0.1 g NH4+-N g-1 VSS d-1, and the growth rate was estimated at 0.075-0.19 d-1. The thermophilic cultures displayed nitrogen stoichiometry ratios typical for mesophilic anammox: 0.93-1.42 g NO2--Nremoved g-1 NH4+-Nremoved and 0.16-0.35 g NO3--Nproduced g-1 NH4+-Nremoved. Amplicon and Sanger sequencing of the 16S rRNA genes revealed a disappearance of the original "Ca. Brocadia" and "Ca. Jettenia" taxa, yielding Planctomycetes members with only 94-95% similarity to "Ca. Brocadia anammoxidans" and "Ca. B. caroliniensis", accounting for 45% of the bacterial FBBR community. The long-term operation of thermophilic anammox reactors and snapshot views on the nitrogen stoichiometry, kinetics and microbial community open up the development path of thermophilic partial nitritation/anammox. A first economic assessment highlighted that treatment of sludge reject water from thermophilic anaerobic digestion of sewage sludge may become attractive.
Collapse
Affiliation(s)
- Tom G L Vandekerckhove
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Ruben Props
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - José M Carvajal-Arroyo
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Siegfried E Vlaeminck
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium; Research Group of Sustainable Energy, Air and Water Technology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium.
| |
Collapse
|
24
|
Performance of Anammox Processes for Wastewater Treatment: A Critical Review on Effects of Operational Conditions and Environmental Stresses. WATER 2019. [DOI: 10.3390/w12010020] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process is well-known as a low-energy consuming and eco-friendly technology for treating nitrogen-rich wastewater. Although the anammox reaction was widely investigated in terms of its application in many wastewater treatment processes, practical anammox application at the pilot and industrial scales is limited because nitrogen removal efficiency and anammox activity are dependent on many operational factors such as temperature, pH, dissolved oxygen concentration, nitrogen loading, and organic matter content. In practical application, anammox bacteria are possibly vulnerable to non-essential compounds such as sulfides, toxic metal elements, alcohols, phenols, and antibiotics that are potential inhibitors owing to the complexity of the wastewater stream. This review systematically summarizes up-to-date studies on the effect of various operational factors on nitrogen removal performance along with reactor type, mode of operation (batch or continuous), and cultured anammox bacterial species. The effect of potential anammox inhibition factors such as high nitrite concentration, high salinity, sulfides, toxic metal elements, and toxic organic compounds is listed with a thorough interpretation of the synergistic and antagonistic toxicity of these inhibitors. Finally, the strategy for optimization of anammox processes for wastewater treatment is suggested, and the importance of future studies on anammox applications is indicated.
Collapse
|
25
|
Li MC, Song Y, Shen W, Wang C, Qi WK, Peng Y, Li YY. The performance of an anaerobic ammonium oxidation upflow anaerobic sludge blanket reactor during natural periodic temperature variations. BIORESOURCE TECHNOLOGY 2019; 293:122039. [PMID: 31476562 DOI: 10.1016/j.biortech.2019.122039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
An anaerobic ammonium oxidation-upflow anaerobic sludge blanket (anammox-UASB) reactor was operated without temperature control during the four seasons and was therefore subjected to natural periodic temperature variations between 9 and 28 ℃. The anammox reactor had a high nitrogen removal ability at intermediate and low temperatures. The total nitrogen (TN) concentration of the influent increased from 200 to 1200 mg/L, the nitrogen removal efficiency was maintained at 90%, and the nitrogen removal rate (NRR) increased to 9.15 ± 0.35 kg N/m3/d. The enrichment of anammox bacteria in the UASB granular sludge reached 53.8%, and the dominant bacteria changed from Candidatus Brocadia to Candidatus Kuenenia after several seasons of cultivation. Dynamics analysis revealed that the maximum reaction rate of the anammox-UASB sludge was 62.5 kg N/m3/d, reflecting the high potential nitrogen removal ability of the reactor.
Collapse
Affiliation(s)
- Ming-Cong Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; School of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ying Song
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Wei Shen
- China Waterborne Transport Research Institute, Beijing 100088, China
| | - Cong Wang
- Beijing Drainage Technology Co. Ltd., Beijing 100022, China
| | - Wei-Kang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; School of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
26
|
Yang J, Li J, Zheng Z, Hou L, Liang D, Sun Y, Ma X. Effect of organic matters on anammox coupled denitrification system: when nitrite was sufficient. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190771. [PMID: 31827829 PMCID: PMC6894598 DOI: 10.1098/rsos.190771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic ammonia oxidation (anammox) and denitrification can work together to weaken the influence of organic matter on anaerobic ammonia oxidation bacteria (AAOB) and improve nitrogen removal performance. As the common substrate of anammox and denitrification, nitrite will also affect nitrogen removal performance when it is insufficient, which is not conducive to reflect the endurance of anammox reactor to organic matter. The UASB continuous flow experiment was carried out to investigate the effect of the concentration of glucose and sodium acetate on nitrogen removal performance of anammox reactor under the condition of sufficient nitrite. With glucose as the organic matter, when the chemical oxygen demand (COD) concentration increased to 200 mg l-1, nitrogen removal performance of the system began to deteriorate significantly, and the anammox activity was significantly inhibited. With sodium acetate as the organic substance, the anammox activity was affected when the COD was 20 mg l-1. Adequate nitrite could relieve the inhibition of the coupling system by a low concentration (COD < 200 mg l-1) of glucose organic matter. However, it could not relieve the inhibitory effect of sodium acetate. With the increase of organic concentration, the biological density of AAOB in granular sludge gradually decreased, while the biological density of denitrifying bacteria increased gradually.
Collapse
Affiliation(s)
| | - Jun Li
- Author for correspondence: Jun Li e-mail:
| | | | | | | | | | | |
Collapse
|
27
|
Ren J, Cheng W, Wan T, Wang M, Meng T, Lv T. Characteristics of the extracellular polymeric substance composition in an up-flow biological aerated filter reactor: The impacts of different aeration rates and filter medium heights. BIORESOURCE TECHNOLOGY 2019; 289:121664. [PMID: 31229858 DOI: 10.1016/j.biortech.2019.121664] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
In this study, the compositional characteristics of extracellular polymeric substances (EPS) were systematically explored to reveal their relationship with microbial community under different conditions in an up-flow biological aerated filter reactor. The aeration rates had a significant positive correlation (0.898 ≤ R ≤ 0.979) with the tightly bound (TB)-EPS contents, but basically showed an opposite trend (R < -0.631) with the loosely bound (LB)-EPS. Moreover, the filter medium heights also affected EPS distribution. The microbial biofilm produced more LB-EPS and TB-EPS to withdraw from the extreme environment. Five fluorescent substances were identified in the EPS by EEM-PARAFAC modeling; namely, two protein-like components (protein-like C1 and tryptophan-like C2) and three humic-like components (UVA marine humic-like C3, hydrophobic humic acid-like C4, and humic acid-like C5). Under different conditions, the relative abundance of Proteobacteria and Nitrospirae had a significant positive correlation with C5 and C4, respectively. These results demonstrated that microbial community distribution could affect EPS composition.
Collapse
Affiliation(s)
- Jiehui Ren
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO. 5, South Jinhua Road, Xi'an, Shaanxi 710048, PR China
| | - Wen Cheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO. 5, South Jinhua Road, Xi'an, Shaanxi 710048, PR China.
| | - Tian Wan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO. 5, South Jinhua Road, Xi'an, Shaanxi 710048, PR China
| | - Min Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO. 5, South Jinhua Road, Xi'an, Shaanxi 710048, PR China
| | - Ting Meng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO. 5, South Jinhua Road, Xi'an, Shaanxi 710048, PR China
| | - Taotao Lv
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO. 5, South Jinhua Road, Xi'an, Shaanxi 710048, PR China
| |
Collapse
|
28
|
Meng Y, Zhou Z, Meng F. Impacts of diel temperature variations on nitrogen removal and metacommunity of anammox biofilm reactors. WATER RESEARCH 2019; 160:1-9. [PMID: 31129376 DOI: 10.1016/j.watres.2019.05.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
The influence of diel temperature variations (DTVs) on nitrogen removal and bacterial communities was investigated in two parallel anammox reactors (i.e., control and DTV reactors). The control reactor was operated at a constant temperature of 30 °C, whereas the DTV reactor was operated in a temperature fluctuation mode with a cycle of 12/12 h of high/low temperatures. Nine water temperature variations for the day/night periods were set from 30/30 °C (i.e., Δ0 °C) to 38/22 °C (i.e., Δ16 °C). An increase in DTVs from Δ8 °C (34/26 °C) to Δ16 °C (38/22 °C) caused a significant decline in reactor performance and a shift in bacterial diversity. Compared to the control reactor, for instance, nitrogen removal efficiency decreased (P < 0.05) when temperature fluctuations exceeded Δ8 °C in the DTV reactor with a decreasing ΔNO3-/ΔNH4+ ratio (from 0.21 ± 0.15 to 0.16 ± 0.04). The results of 16S rRNA gene sequencing showed that the initial disturbance of temperature variations led to increased levels of bacterial diversity (i.e., alpha diversity) and decreased community levels of anammox consortia whereas they slightly recovered at the end of each DTV phase. Notably, Candidatus Jettenia was more sensitive to strong water temperature fluctuations, with the lower relative abundance at Δ14 °C (17.11 ± 5.01%) and Δ16 °C (17.83 ± 7.22%) than at Δ4 °C (39.82 ± 0.01%). In contrast, Ca. Brocadia and Ca. Kuenenia had higher relative abundance at Δ14 °C (i.e., 0.24 ± 0.07% and 0.09 ± 0.02%, respectively) and Δ16 °C (i.e., 0.28 ± 0.05% and 0.12 ± 0.03%, respectively) compared to that at Δ4 °C (i.e., 0.15 ± 0.04% and 0.04 ± 0.01%, respectively). Nitrifiers (i.e., unidentified_Nitrospiraceae and Nitrosomonas) and denitrifiers (i.e., Denitratisoma) were also capable of tolerating high temperature perturbations. Overall this study furthers our knowledge of responses of the microbial ecology of anammox bacteria to DTVs in anammox processes, which could aid us in optimizing anammox-related wastewater treatment systems and in understanding the nitrogen cycles of natural ecosystems.
Collapse
Affiliation(s)
- Yabing Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Zhongbo Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China.
| |
Collapse
|
29
|
Saborimanesh N, Walsh D, Yerushalmi L, Arriagada EC, Mulligan CN. Pilot-scale application of a single-stage hybrid airlift BioCAST bioreactor for treatment of ammonium from nitrite-limited wastewater by a partial nitrification/anammox process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25573-25582. [PMID: 31267396 DOI: 10.1007/s11356-019-05754-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
This paper presents the treatment of a nitrite-limited wastewater by partial nitrification/anammox process under different dissolved oxygen (DO) concentrations of < 1.2 mg/L, < 0.5 mg/L, and 0 mg/L, and at temperatures of 35 to 27 °C in a pilot-scale single-stage hybrid bioreactor (BioCAST). The effect of operational parameters on microbial community structure and composition has also been investigated during the 1-year experimental period. Ammonium removal efficiencies of 73 ± 19% at 35-32 °C and 87 ± 9% at 29-27 °C were obtained from a synthetic nitrite-limited wastewater with ammonium concentration of 350-500 mg/L (175-250 g m-3 d-1). The adaptation of bacteria to a lower temperature (27 °C) and lower free ammonia concentrations at 27 °C was showed to be key factors leading to the optimal nitrite production by aerobic ammonium-oxidizing bacteria (AOB). No nitrite accumulation was observed due to the effective distribution and transfer of nitrite produced by the AOB in the aerobic zone to the microaerophilic/anoxic zones. The fast enrichment of Candidatus species in the suspended biomass in the anoxic zone at temperatures of 35-30 °C and in the attached biofilm in the microaerophilic zone (DO < 0.5 mg/L) at 29-27 °C suggests that the growth media (e.g., suspended biomass vs attached biofilm) had a minor effect on the diversity of microbial community in this bioreactor. This study supports the effective treatment of nitrite-limited wastewater with ammonium concentrations of < 500 mg/L by partial nitrification/anammox process at 35-27 °C in a single-stage hybrid bioreactor by adjusting the DO concentration to < 0.5 mg/L and by providing longer retention times for aerobic (AOB) and anammox bacteria in the biofilm, which resulted in the long-term suppression of nitrite-oxidizing bacteria (NOB).
Collapse
Affiliation(s)
- Nayereh Saborimanesh
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - David Walsh
- Department of Biology, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Laleh Yerushalmi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Esteban Castillo Arriagada
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Catherine N Mulligan
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada.
| |
Collapse
|
30
|
Wang C, Liu Y, Lv W, Xia S, Han J, Wang Z, Yu X, Cai L. Enhancement of nitrogen removal by supplementing fluidized-carriers into the aerobic tank in a full-scale A 2/O system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:817-825. [PMID: 30743967 DOI: 10.1016/j.scitotenv.2019.01.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Fluidized-carriers were supplemented into the aerobic tank of a full-scale wastewater treatment plant (WWTP) using an anaerobic/anoxic/aerobic (A2/O) system to improve the nitrogen removal efficiency in effluents. The effects of carrier supplementation on denitrification ability and the bacterial community structures were investigated over 10 months. The results showed that the average effluent concentration of total nitrogen (TN) was maintained at 9.46 ± 1.14 mg/L, which was lower than 15.17 ± 2.00 mg/L in the effluent without carrier supplementation, indicating that adding fluidized-carriers into the aerobic tank contributed to nitrogen removal efficiency. A thick biofilm was formed after 4 months, which provided a good anoxic-aerobic microenvironment to the microbes. Illumina sequencing analysis showed a higher bacterial diversity in the biofilm. The relative abundance of nitrifying bacteria, denitrifying bacteria, and aerobic denitrifying bacteria in the biofilms was 13.68-39%, 11.56-12.17%, and 9.76-12.50%, respectively, which was beneficial for nitrogen removal in the system. The most prevalent genera were Nitrospira, Bacillus, Thauera, Hyphomicrobium, Acinetobacter, Zoogloea, Pseudomonas, and Paracoccus, which can metabolize nitrogenous or aromatic compounds and were the major functional bacterial genera, suggesting that these organisms play key roles in biodegradation processes in the carrier-added A2/O wastewater treatment system.
Collapse
Affiliation(s)
- Cong Wang
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China
| | - Ying Liu
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China; State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wenzhou Lv
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China.
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Juncheng Han
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China
| | - Ziyun Wang
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China
| | - Xinxian Yu
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China
| | - Luhao Cai
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China
| |
Collapse
|
31
|
Miao L, Yang G, Tao T, Peng Y. Recent advances in nitrogen removal from landfill leachate using biological treatments - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 235:178-185. [PMID: 30682670 DOI: 10.1016/j.jenvman.2019.01.057] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/07/2019] [Accepted: 01/17/2019] [Indexed: 05/21/2023]
Abstract
Landfill leachate, generated from the wastes in a landfill, is a type of wastewater with high concentrations of ammonia and organics, causing a serious environmental pollution. Because of its complex and changing characteristics, it is difficult to remove nitrogen from landfill leachate economically and effectively. Hence, nitrogen removal is a significant research priority of landfill leachate treatment in recent years. Biological processes are known to be effective in nitrogen removal. In this work, the biological nitrogen removal treatments were divided into the following processes: conventional nitrification-denitrification process, nitritation-denitritation process, endogenous denitritation process, and anaerobic ammonium oxidation (Anammox) process. This manuscript summarized the theories and applications of these approaches in detail, and concluded that appropriate processes should be selected in accordance with different characteristics of landfill leachate, in order to effectively remove nitrogen from all stages of landfill leachate and reduce disposal costs. Finally, perspective on the challenges and opportunities of biological nitrogen removal from landfill leachate was also presented.
Collapse
Affiliation(s)
- Lei Miao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China
| | - Gangqing Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China
| | - Tao Tao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China.
| |
Collapse
|
32
|
Zhang F, Peng Y, Wang S, Wang Z, Jiang H. Efficient step-feed partial nitrification, simultaneous Anammox and denitrification (SPNAD) equipped with real-time control parameters treating raw mature landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:163-172. [PMID: 30359955 DOI: 10.1016/j.jhazmat.2018.09.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/01/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
An innovative step-feed partial nitrification, simultaneous Anammox and denitrification (SPNAD), equipped with real-time control parameters, achieved efficient nitrogen removal from raw mature landfill leachate. The variables pH and ORP served as real time on-line parameters to flexibly control the durations of aerobic and anoxic. A nitrogen removal efficiency (NRE) of 98.7% and nitrogen removal rate (NRR) of 0.23 kg m-3d-1 were obtained at the influent NH4+ -N, SCOD and total nitrogen (TN) of 1000 ± 250 mg L-1, 1100 ± 200 mg L-1, and 1300 ± 75 mg L-1, respectively. Mass balance research demonstrated that Anammox contributed 69.3% to nitrogen removal and denitrification contributed 15.7%. A significant change in the Anammox community structure occurred (ca. Brocadia from 0.26% to 2.13%, ca. Kuenenia from 0.29% to 0.02%). This change is mainly attributed to different kinetic strategies (R-strategist of ca. Brocadia and K-strategist of ca. Kuenenia). Further study revealed the co-existence of functional microorganisms Nitrosomonas (3.0%), Cadidatus-Brocadia (2.13%), and Thauera (25.3%).
Collapse
Affiliation(s)
- Fangzhai Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China.
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhong Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
33
|
Nitrogen Removal Characteristics and Comparison of the Microbial Community Structure in Different Anaerobic Ammonia Oxidation Reactors. WATER 2019. [DOI: 10.3390/w11020230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitrogen removal characteristics and the comparison of the microbial community structure were investigated in different anaerobic ammonia oxidation (Anammox) reactors: an anaerobic sequencing batch reactor (ASBR) and a biofilter reactor. The Anammox systems were inoculated with sludge from the second settling tank of a wastewater treatment plant in Guangzhou, China. After successful start up of Anammox, the microbial community structure of different Anammox reactors were studied through high-throughput sequencing. The results showed that anaerobic ammonium oxidation in the ASBR reactor could successfully start up after 134 days, while Anammox in the biofilter could start up after 114 days. In both systems, total nitrogen removal was at 80% after more than 200 days of operation. The diversity of denitrifying microorganisms was high in both reactors, with Planctomycetes as the main taxa. Anammox bacteria belonging to the genera Candidatus Anammoxoglobus and Kuenenia, were dominant in the ASBR, while all three genera of Candidatus, Anammoxoglobus, Kuenenia, and Brocadia, could be detected in the biofilter reactor. Therefore, the biofilter starts up faster than the ASBR, and contains richer species, which makes it more suitable to domesticate Anammox bacteria.
Collapse
|
34
|
Zhang B, Zhao J, Zuo J, Shi X, Gong J, Ren H. Realizing stable operation of anaerobic ammonia oxidation at low temperatures treating low strength synthetic wastewater. J Environ Sci (China) 2019; 75:193-200. [PMID: 30473284 DOI: 10.1016/j.jes.2018.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 06/09/2023]
Abstract
The low activity of Anammox bacteria at low temperatures and competition from nitrite oxidation bacteria (NOB) when treating low strength wastewater have been major bottlenecks in implementing Anammox in mainstream wastewater treatment. By intermittent high strength feeding (IHSF) and stepwise temperature reduction, stable operation of a granular Anammox reactor was realized at low temperatures (down to 15°C) for 28days when treating low strength synthetic wastewater. The nitrogen loading rate reached 1.23-1.34kgN/m3/day, and the total nitrogen removal rate reached 0.71-0.98kgN/m3/day. The IHSF enriched the Anammox sludge in high strength cycles and compensated for sludge loss in low strength cycles, and the high concentration of ammonium in high strength cycles inhibited NOB. The 16SrRNA gene sequencing results revealed that Candidatus Kuenenia was predominant in the reactor at low temperatures.
Collapse
Affiliation(s)
- Bowen Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jian Zhao
- Beijing Enterprises Water Group Limited, Beijing 100102, China
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xuchuan Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiayi Gong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; SUEZ NWS Company Limited, Hong Kong 999077, China
| | - Haiteng Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Li Q, Wang S, Zhang P, Yu J, Qiu C, Zheng J. Influence of temperature on an Anammox sequencing batch reactor (SBR) system under lower nitrogen load. BIORESOURCE TECHNOLOGY 2018; 269:50-56. [PMID: 30149254 DOI: 10.1016/j.biortech.2018.08.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
The nitrogen removal performance and microbial communities of an Anammox sequencing batch reactor (SBR) was studied under varied temperatures with a lower nitrogen loading rate (NLR) about 0.28 kgN/m3/d. Results showed that the temperature could influence the nitrogen removal performance and the community structure in the Anammox SBR system. Under lower temperatures, both the nitrogen removal efficiencies and Anammox activity were in lower levels. When temperature was raised again, the Anammox activity recovered accordingly. When the temperature dropped from 33 ± 1 °C to15 °C, the dominant Anammox bacteria shifted from Ca. Brocadia to Ca. Kuenenia in the sludge. When the temperature returned over, the abundance of Ca. Brocadia recovered, while the Ca. Kuenenia was still the dominant Anammox bacteria. This indicated that Ca. Kuenenia is more adaptable to low temperature environment than Ca. Brocadia under low NLR with temperature variation.
Collapse
Affiliation(s)
- Quan Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 26# Jinjing Road, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, 26# Jinjing Road, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 26# Jinjing Road, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, 26# Jinjing Road, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Pengda Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 26# Jinjing Road, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, 26# Jinjing Road, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 26# Jinjing Road, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, 26# Jinjing Road, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 26# Jinjing Road, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, 26# Jinjing Road, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Jianfeng Zheng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 26# Jinjing Road, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, 26# Jinjing Road, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
36
|
Gu Z, Li Y, Yang Y, Xia S, Hermanowicz SW, Alvarez-Cohen L. Inhibition of anammox by sludge thermal hydrolysis and metagenomic insights. BIORESOURCE TECHNOLOGY 2018; 270:46-54. [PMID: 30212773 DOI: 10.1016/j.biortech.2018.08.132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Anaerobic ammonium oxidation (anammox) would be a feasible treatment method for thermal hydrolysis processed sidestream (THPS). Short-term study revealed that the 1/20 diluted THPS caused a 28% decrease of specific anammox activity. The MBR achieved a volumetric nitrogen loading rate of 3.64 kg/(m3·d) with undiluted regular sidestream (RS) fed, while the reactor crashed with 70% diluted THPS as feed. The ratio of produced NO3--N to consumed NH4+-N also decreased compared with RS feeding. Candidatus brocadia was the major anammox bacteria species with the average abundance of 33.3% (synthetic wastewater), 6.42% (RS) and 2.51% (THPS). The abundances of metagenome bins for dissimilatory nitrate reduction to ammonium (DNRA) increased in the system with THPS compared with RS. The reason for the inhibition of anammox by THPS could be the high content of organic carbon in THPS, which caused the over-population of heterotrophic bacteria, i.e. DNRA bacteria, leading to anammox bacteria washout.
Collapse
Affiliation(s)
- Zaoli Gu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA
| | - Yuan Li
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA; Tsinghua-Berkeley Shenzhen Institute, University of California, Berkeley, CA 94720, USA
| | - Yifeng Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| | - Slawomir W Hermanowicz
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA; Tsinghua-Berkeley Shenzhen Institute, University of California, Berkeley, CA 94720, USA
| | - Lisa Alvarez-Cohen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
37
|
Wu Y, Wang Y, De Costa YG, Tong Z, Cheng JJ, Zhou L, Zhuang WQ, Yu K. The co-existence of anammox genera in an expanded granular sludge bed reactor with biomass carriers for nitrogen removal. Appl Microbiol Biotechnol 2018; 103:1231-1242. [DOI: 10.1007/s00253-018-9494-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/22/2018] [Accepted: 10/31/2018] [Indexed: 11/29/2022]
|
38
|
Tang CC, Tian Y, He ZW, Zuo W, Zhang J. Performance and mechanism of a novel algal-bacterial symbiosis system based on sequencing batch suspended biofilm reactor treating domestic wastewater. BIORESOURCE TECHNOLOGY 2018; 265:422-431. [PMID: 29933190 DOI: 10.1016/j.biortech.2018.06.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
A novel algal-bacterial symbiosis system based on sequencing batch suspended biofilm reactor (A-SBSBR) was developed for simultaneously enhanced nitrogen (N) and phosphorus (P) removal from domestic wastewater. Results showed that the total N (TN) and P (TP) removal efficiencies in A-SBSBR increased to 69.91% and 94.78%, respectively. The mechanism analysis indicated that TN removal mainly occurred at non-aeration stage, and TP removal happened during the whole cycle in A-SBSBR. Compared to control SBSBR, TN removal by denitrification and anabolism and TP removal by anabolism in A-SBSBR increased by 12.70%, 7.64% and 50.13%, respectively. The Chlorophyll a accumulation in biofilm increased to 4.80 ± 0.08 mg/g. Algae related to Chlorella and Scenedesmus and bacteria related to Flavobacterium, Micropruina and Comamonadaceae were enriched in A-SBSBR and responsible for the enhanced nutrients removal effect. This study may provide a new solution to achieve nutrients removal enhancement from wastewater.
Collapse
Affiliation(s)
- Cong-Cong Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhang-Wei He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
39
|
Effect of Aeration Rates and Filter Media Heights on the Performance of Pollutant Removal in an Up-Flow Biological Aerated Filter. WATER 2018. [DOI: 10.3390/w10091244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The biological aerated filter (BAF) is an effective biological treatment technology which removes the pollutants in municipal wastewater secondary treatment. However, we still know little about the interaction between the pollutants removal and microbes within the BAF. In this study, we used an up-flow BAF (UBAF) reactor to investigate the relationships between the pollutants removal and microbial community structure at different aeration rates and filter media heights. The microbial community of biofilm was analyzed by Illumina pyrosequencing. Our results showed that the UBAF achieved a better removal efficiency of chemical oxygen demand (COD), NH4+-N, NO3−-N, and total phosphorus (TP) at an aeration rate of 65 L/h. In addition, the COD and NH4+-N removal mainly occurred at 0–25 cm height of filter media. The microbial community structure in the UBAF demonstrated that the relative abundance of the Planctomycetes and Comamonadaceae at 10 cm height of filter media were 11% and 48.1%, respectively, proportions significantly higher than those under others treatments. Finally, the changes in relative abundance of Proteobacteria, Planctomycetes, and Nitrospirae likely explained the mechanism of nitrogen and phosphorus removal. Our results showed that suitable conditions could enhance the microbial community structure to achieve a high pollutants removal in the UBAF.
Collapse
|
40
|
Yue X, Yu G, Liu Z, Tang J, Liu J. Fast start-up of the CANON process with a SABF and the effects of pH and temperature on nitrogen removal and microbial activity. BIORESOURCE TECHNOLOGY 2018; 254:157-165. [PMID: 29413917 DOI: 10.1016/j.biortech.2018.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 06/08/2023]
Abstract
The long start-up time of the completely autotrophic nitrogen removal over nitrite (CANON) process is one of the main disadvantages of this system. In this paper, the CANON process with a submerged aerated biological filter (SABF) was rapidly started up within 26 days. It gave an average ammonium nitrogen removal rate (ANR) and a total nitrogen removal rate (TNR) of 94.2% and 81.3%, respectively. The phyla Proteobacteria and Planctomycetes were confirmed as the ammonia oxidizing bacteria (AOB) and anaerobic ammonium oxidation bacteria (AnAOB). The genus Candidatus Brocadia was the major contributor of nitrogen removal. pH and temperature affect the performance of the CANON process. This experimental results showed that the optimum pH and temperature were 8.0 and 30 °C, respectively, which gave the highest average ANR and TNR values of 94.6% and 85.1%, respectively. This research could promote the nitrogen removal ability of CANON process in the future.
Collapse
Affiliation(s)
- Xiu Yue
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China.
| | - Guangping Yu
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China
| | - Zhuhan Liu
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China
| | - Jiali Tang
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China
| | - Jian Liu
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China
| |
Collapse
|
41
|
Gonzalez-Martinez A, Muñoz-Palazon B, Rodriguez-Sanchez A, Gonzalez-Lopez J. New concepts in anammox processes for wastewater nitrogen removal: recent advances and future prospects. FEMS Microbiol Lett 2018; 365:4847881. [DOI: 10.1093/femsle/fny031] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/07/2018] [Indexed: 01/26/2023] Open
Affiliation(s)
| | - Barbara Muñoz-Palazon
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| | | | - Jesus Gonzalez-Lopez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| |
Collapse
|
42
|
Miao L, Zhang Q, Wang S, Li B, Wang Z, Zhang S, Zhang M, Peng Y. Characterization of EPS compositions and microbial community in an Anammox SBBR system treating landfill leachate. BIORESOURCE TECHNOLOGY 2018; 249:108-116. [PMID: 29040843 DOI: 10.1016/j.biortech.2017.09.151] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
The biofilm system is beneficial for Anammox process designed to treat landfill leachate. In this study, the composition of extracellular polymeric substances (EPS) and the microbial community in an Anammox biofilm system were analyzed to determine the functions driving the biofilm's ability to treat landfill leachate. The results demonstrated that increasing influent carbon oxygen demand (COD) could stimulate EPS production. EPS helped enrich Anammox bacteria and supplied them with nutrients and enzymes, facilitating effective nitrogen removal (approximately 95%). The variation in Anammox bacteria was similar to the variation in EPS composition. In the tested Anammox Sequencing Biofilm Batch Reactor (SBBR) system, Candidatus Kuenenia was dominant among known Anammox genus, because of its high substrate affinity and because it adapts better to landfill leachate. The relative abundance of Candidatus Kuenenia in the biofilm rose from 3.26% to 12.38%, illustrating the protection and enrichment offered by the biofilm in carrying out Anammox.
Collapse
Affiliation(s)
- Lei Miao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China
| | - Baikun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China; Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT, USA
| | - Zhong Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China
| | - Sujian Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China
| | - Man Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China.
| |
Collapse
|
43
|
Tomaszewski M, Cema G, Ziembińska-Buczyńska A. Influence of temperature and pH on the anammox process: A review and meta-analysis. CHEMOSPHERE 2017; 182:203-214. [PMID: 28499181 DOI: 10.1016/j.chemosphere.2017.05.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/31/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
The anammox (anaerobic ammonium oxidation) process was considered a very efficient and economic wastewater treatment technology immediately after its discovery in 1995, thus research in this field was intensified. The anammox process is characterised by a high temperature optimum and is very sensitive to both temperature and pH fluctuations. The process can also be inhibited by many factors, including by its substrates, i.e. nitrite and ammonium (or its unionised forms: free ammonia and free nitrous acid). This paper presents a comprehensive study of the most important and recent findings on the influence of two parameters that are crucial in wastewater treatment, i.e. temperature and pH. Because both parameters may influence the anammox process simultaneously, a meta-analysis was conducted of the data from the literature. Although meta-analysis is commonly used in medical research, mathematical analysis of the literature data has become an interesting and important step in the environmental sciences. This paper presents information on the influence of both temperature and pH on process efficiency and microbial composition. Additionally, the responses of different operating systems on both temperature and pH changes are described. Moreover, the role of both adaptation to changed conditions and of pH control as well as indicated areas of process operation are discussed.
Collapse
Affiliation(s)
- Mariusz Tomaszewski
- The Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100, Gliwice, Poland.
| | - Grzegorz Cema
- The Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100, Gliwice, Poland
| | | |
Collapse
|
44
|
Yang Y, Li X, Yang X, He Z. Enhanced nitrogen removal by membrane-aerated nitritation-anammox in a bioelectrochemical system. BIORESOURCE TECHNOLOGY 2017; 238:22-29. [PMID: 28433911 DOI: 10.1016/j.biortech.2017.04.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
A bioelectrochemical system (BES) containing membrane-aerated nitritation-anammox in its cathode has been developed for enhancing nitrogen removal. Long-term performance and microbial community structure were investigated. The BES using loop operation and external voltage achieved the highest total nitrogen removal efficiency of 94.8±7.7%, and COD removal of 98.2±3.3% at hydraulic retention time of 60h and the lumen pressure of 10psi. The energy consumption of the system was 0.90kWhkgN-1 or 0.38kWhkg COD-1. Sequencing analyses revealed that ammonia oxidizing bacteria (0.2-7.4%), anammox bacteria (0.4-10.3%), denitrifying bacteria (5.8-13.1%), and electrogenic bacteria (4.6-12.8%) were in abundance of the microbial community in the cathode chamber, and their distributions were affected by the aeration and physical locations. These results encourage further investigation of membrane-aerated nitritation-anammox in BES for optimization and potential applications with actual wastewater.
Collapse
Affiliation(s)
- Yuli Yang
- School of Civil Engineering, Southeast University, Nanjing 210096, China; Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Xiaojin Li
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Xiaoli Yang
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Zhen He
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
45
|
Wang S, Liu Y, Niu Q, Ji J, Hojo T, Li YY. Nitrogen removal performance and loading capacity of a novel single-stage nitritation-anammox system with syntrophic micro-granules. BIORESOURCE TECHNOLOGY 2017; 236:119-128. [PMID: 28399415 DOI: 10.1016/j.biortech.2017.03.164] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/22/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
The operation performance of a novel micro-granule based syntrophic system of nitritation and anammox was studied by controlling the oxygen concentration and maintaining a constant temperature of 25°C. With the oxygen concentration of around 0.11 (<0.15)mg/L, the single-stage nitritation-anammox system was startup successfully at a nitrogen loading rate (NLR) of 1.5kgN/m3/d. The reactor was successfully operated at volumetric N loadings ranging from 0.5 to 2.5kgN/m3/d with a high nitrogen removal of 82%. The microbial community was composed by ammonia oxidizing bacteria (AOB) and anammox bacteria forming micro-granules with an average diameter of 0.8mm and good settleability. Results from pyrosequencing analysis revealed that Ca. Kuenenia and Nitrosomonas were selected and enriched in the community over the startup period, and these were identified as the dominant anammox bacteria and AOB species, respectively.
Collapse
Affiliation(s)
- Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 26# Jinjing Road, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, 26# Jinjing Road, Tianjin 300384, China
| | - Yuan Liu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qigui Niu
- School of Environmental Science and Engineering, Shandong University, 27# Shanda South Road, Jinan 250100, China
| | - Jiayuan Ji
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Toshimasa Hojo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
46
|
Pereira AD, Cabezas A, Etchebehere C, Chernicharo CADL, de Araújo JC. Microbial communities in anammox reactors: a review. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/21622515.2017.1304457] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Alyne Duarte Pereira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Angela Cabezas
- Microbial Ecology Laboratory, Microbial Biochemistry and Genomics Department, Biological Research Institute ‘Clemente Estable’, Montevideo, Uruguay
| | - Claudia Etchebehere
- Microbial Ecology Laboratory, Microbial Biochemistry and Genomics Department, Biological Research Institute ‘Clemente Estable’, Montevideo, Uruguay
| | | | - Juliana Calábria de Araújo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
47
|
Gonzalez-Silva BM, Rønning AJ, Andreassen IK, Bakke I, Cervantes FJ, Østgaard K, Vadstein O. Changes in the microbial community of an anammox consortium during adaptation to marine conditions revealed by 454 pyrosequencing. Appl Microbiol Biotechnol 2017; 101:5149-5162. [DOI: 10.1007/s00253-017-8160-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/22/2017] [Accepted: 01/26/2017] [Indexed: 12/22/2022]
|
48
|
Wang X, Shu D, Yue H. Taxonomical and functional microbial community dynamics in an Anammox-ASBR system under different Fe (III) supplementation. Appl Microbiol Biotechnol 2016; 100:10147-10163. [DOI: 10.1007/s00253-016-7865-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 08/30/2016] [Accepted: 09/13/2016] [Indexed: 11/29/2022]
|
49
|
Tao C, Peng T, Feng C, Chen N, Hu Q, Hao C. The feasibility of an up-flow partially aerated biological filter (U-PABF) for nitrogen and COD removal from domestic wastewater. BIORESOURCE TECHNOLOGY 2016; 218:307-317. [PMID: 27372011 DOI: 10.1016/j.biortech.2016.06.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/20/2016] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
An up-flow partially aerated biological filter (U-PABF) was developed to study the removal of nitrogen and chemical oxygen demand (COD) from synthetic domestic wastewater. The removal of NH4(+)-N was primarily attributed to adsorption in the zeolite U-PABF and to bioprocesses in the ceramic U-PABF. When the hydraulic retention time (HRT) was 5.2h, the ceramic U-PABF achieved a good performance and the NH4(+)-N, total nitrogen (TN), and COD removal efficiency reached 99.08±8.79%, 72.83±0.68%, and 89.38±1.04%, respectively. The analysis of NH4(+)-N, NO3(-)-N, NO2(-)-N, and TN at different depths revealed the simultaneous existence of nitrification-denitrification, and anaerobic ammonium oxidation (anammox) in ceramic U-PABF. Illumina pyrosequencing confirmed the existence of Planctomycetes, which are responsible for anammox. The results indicated that the nitrification-denitrification and anammox all contributed to the high removal of NH4(+)-N, TN, and COD in the U-PABF.
Collapse
Affiliation(s)
- Chen Tao
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China; Department of Geography and Environmental Management, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Tong Peng
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chuanping Feng
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Nan Chen
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Qili Hu
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chunbo Hao
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
50
|
Miao L, Wang S, Li B, Cao T, Zhang F, Wang Z, Peng Y. Effect of carbon source type on intracellular stored polymers during endogenous denitritation (ED) treating landfill leachate. WATER RESEARCH 2016; 100:405-412. [PMID: 27232984 DOI: 10.1016/j.watres.2016.05.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
Glycogen accumulating organisms (GAOs) capable of storing organic compounds as polyhydroxyalkanoate (PHA) have been used for endogenous denitritation (ED), but the effect of carbon sources type on nitrogen removal performance of GAOs treating landfill leachate is unclear. In this study, a successful ED system treating landfill leachate (COD/NH4(+)-N (C/N): 4) without external carbon source addition was applied. The mature leachate with C/N of 1 was used as the feeding base solution, with acetate, propionate, and glucose examined as the carbon sources, and their effects on yields and compositions of PHA produced by GAOs were determined and associated with nitrogen removal performance. In the case of sole carbon source, acetate was much easier to be stored than propionate and glucose, which led to a higher nitrogen removal efficiency. Glucose had the lowest amount of PHA storage and led to the lowest performance. In the case of composite carbon sources (two scenarios: acetate + propionate; acetate + propionate + glucose), GAOs stored sufficient PHA and exhibited similar nitrogen removal efficiencies. Moreover, type of carbon source influenced the compositions of PHA. The polyhydroxybutyrate (PHB) fraction in PHA was far more than polyhydroxyvalerate (PHV) in all tests. PHV was synthesized only when acetate existed in carbon source. The microbial diversity analysis revealed that Proteobacteria was the most abundant phylum. Among the 108 genera detected in this ED system, the genera responsible for denitritation were Thauera, Paracoccus, Ottowia and Comamonadaceae_unclassified, accounting for 46.21% of total bacteria. Especially, Paracoccus and Comamonadaceae_unclassified transformed the carbon source into PHA for denitritation, and carried out endogenous denitritation.
Collapse
Affiliation(s)
- Lei Miao
- Engineering Research Center of Beijing, Beijing University of Technology, Beijing, China.
| | - Shuying Wang
- Engineering Research Center of Beijing, Beijing University of Technology, Beijing, China
| | - Baikun Li
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT, USA
| | - Tianhao Cao
- Engineering Research Center of Beijing, Beijing University of Technology, Beijing, China
| | - Fangzhai Zhang
- Engineering Research Center of Beijing, Beijing University of Technology, Beijing, China
| | - Zhong Wang
- Engineering Research Center of Beijing, Beijing University of Technology, Beijing, China
| | - Yongzhen Peng
- Engineering Research Center of Beijing, Beijing University of Technology, Beijing, China.
| |
Collapse
|