1
|
Ferdowsi M, Khabiri B, Buelna G, Jones JP, Heitz M. Air biofilters for a mixture of organic gaseous pollutants: an approach for industrial applications. Crit Rev Biotechnol 2023; 43:1019-1034. [PMID: 36001040 DOI: 10.1080/07388551.2022.2100735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/28/2022] [Indexed: 11/03/2022]
Abstract
Hazardous airborne pollutants are frequently emitted to the atmosphere in the form of a gaseous mixture. Air biofilters as the primary biotechnological choice for waste gas treatment (low inlet concentration and high gas flow rate) should run properly when the feed contains multiple pollutants. Simultaneous removal of pollutants in biofilters has been extensively studied over the last 10 years. In this review, the results and findings of the mentioned studies including different groups of pollutants, such as methane (CH4) and volatile organic compounds (VOCs) are discussed. As the number of pollutants in a mixture increases, their elimination might become more complicated due to interactions between the pollutants. Parallel batch studies might be helpful to better understand these interaction effects in the absence of mass transfer limitations. Setting optimum operating conditions for removal of mixtures in biofilters is challenging because of opposing properties of pollutants. In biofilters, concerns, such as inlet gas composition variation and stability while dealing with abrupt inlet load and concentration changes, must be managed especially at industrial scales. Biofilters designed with multi-layer beds, allow tracking the fate of each pollutant as well as analyzing the diversity of microbial culture across the filter bed. Certain strategies are recommended to improve the performance of biofilters treating mixtures. For example, addition of (bio)surfactants as well as a second liquid phase in biotrickling filters might be considered for the elimination of multiple pollutants especially when hydrophobic pollutants are involved.
Collapse
Affiliation(s)
- Milad Ferdowsi
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Bahman Khabiri
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gerardo Buelna
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - J Peter Jones
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Michèle Heitz
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
2
|
Giang HM, Huyen Nga NT, Rene ER, Ha HN, Varjani S. Performance and neural modeling of a compost-based biofilter treating a gas-phase mixture of benzene and xylene. ENVIRONMENTAL RESEARCH 2023; 217:114788. [PMID: 36403652 DOI: 10.1016/j.envres.2022.114788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Biofilter (BF) has been regarded as a versatile gas treatment technology for removing volatile organic compounds (VOCs) from contaminated gas streams. In order for BF to be utilized in the industrial setting, it is essential to conduct research aimed at removing VOC mixtures under different inlet loading conditions, i.e. as a function of the gas flow rate and inlet VOC concentrations. The main aim of this study was to apply artificial neural networks (ANN) and determine the relationship between flow rate (FR), pressure drop (PD), inlet concentration (C), and removal efficiency (RE) in the BF treating gas-phase benzene and xylene mixtures. The ANN model was trained and tested to assess the removal efficiency of benzene (REB) and xylene (REX) under the influence of different FR, PD and C. The model's performance was assessed using a cross-validation method. The REb varied from 20% to >60%, while the REx varied from 10% to 70% during the different experimental phases of BF operation. The causal index (CI) technique was used to determine the sensitivity of the input parameters on the output variables. The ANN model with a topology of 4-4-2 performed the best in terms of predicting the RE profiles of both the pollutants. Furthermore, the effect was more pronounced for xylene because an increase in the benzene concentration reduced xylene removal (CI = -25.7170) more severely than benzene removal. An increase in the xylene concentration had a marginally positive effect on the benzene removal (CI = +0.1178).
Collapse
Affiliation(s)
- Hoang Minh Giang
- Faculty of Environmental Engineering, Hanoi University of Civil Engineering, 55 Giai Phong Road, Hai Ba Trung District, Hanoi, 113021, Viet Nam.
| | - Nguyen Thi Huyen Nga
- Faculty of Environmental Engineering, Hanoi University of Civil Engineering, 55 Giai Phong Road, Hai Ba Trung District, Hanoi, 113021, Viet Nam
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Hoang Ngoc Ha
- Faculty of Environmental Engineering, Hanoi University of Civil Engineering, 55 Giai Phong Road, Hai Ba Trung District, Hanoi, 113021, Viet Nam
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India
| |
Collapse
|
3
|
Manzoor MF, Tariq T, Fatima B, Sahar A, Tariq F, Munir S, Khan S, Nawaz Ranjha MMA, Sameen A, Zeng XA, Ibrahim SA. An insight into bisphenol A, food exposure and its adverse effects on health: A review. Front Nutr 2022; 9:1047827. [PMID: 36407508 PMCID: PMC9671506 DOI: 10.3389/fnut.2022.1047827] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/12/2022] [Indexed: 08/13/2023] Open
Abstract
Bisphenol A (BPA) is a synthetic chemical widely employed to synthesize epoxy resins, polymer materials, and polycarbonate plastics. BPA is abundant in the environment, i.e., in food containers, water bottles, thermal papers, toys, medical devices, etc., and is incorporated into soil/water through leaching. Being a potent endocrine disrupter, and has the potential to alter several body mechanisms. Studies confirmed its anti-androgen action and estrogen-like effects, which impart many negative health impacts, especially on the immune system, neuroendocrine process, and reproductive mechanism. Moreover, it can also induce mutagenesis and carcinogenesis, as per recent scientific research. This review focuses on BPA's presence and concentrations in different environments, food sources and the basic mechanisms of BPA-induced toxicity and health disruptions. It is a unique review of its type because it focuses on the association of cancer, hormonal disruption, immunosuppression, and infertility with BPA. These issues are widespread today, and BPA significantly contributes to their incidence because of its wide usage in daily life utensils and other accessories. The review also discusses researched-based measures to cope with the toxic chemical.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Tayyaba Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Birjees Fatima
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Farwa Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Seemal Munir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Sipper Khan
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | | | - Aysha Sameen
- Department of Food Science and Technology, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| |
Collapse
|
4
|
Simultaneous acidic air biofiltration of toluene and styrene mixture in the presence of rhamnolipids: Performance evaluation and neural model analysis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Xue J, Shi L, Wang P, Cheng W, Long M, Sheng M, Bi Q. Efficient Degradation of VOCs using Semi-coke Activated Carbon Loaded 2D Z-Scheme g-C3N4-Bi2WO6 Photocatalysts Composites under Visible Light Irradiation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Yang B, Wang J, Wu M, Shang Q, Zhang H. Effect of rhamnolipids on the biodegradation of m-dichlorobenzene in biotrickling filters: Performance and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115951. [PMID: 36056502 DOI: 10.1016/j.jenvman.2022.115951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
In this study, the effect of rhamnolipids (RL) on m-dichlorobenzene (m-DCB) removal and biofilm was investigated in two biotrickling filters (BTF) (BTF1: blank control; BTF2: RL addition). The critical micelle concentration (CMC) value of RL was 75.6 mg L-1, and the RL could significantly improve the solubilization of m-DCB. The results showed that the optimal concentration of RL was 180 mg L-1. The removal efficiency (RE) of m-DCB dropped by 42.4% for BTF1 no fed with RL and only 28.2% for BTF2 fed with RL when the inlet concentration increased from 200 to 1400 mg m-3 at an empty bed time (EBRT) of 60 s. RL increased the secretion of extracellular polymers (EPS) and the ratio of Protein/Polysaccharide, which improved the mass transfer of m-DCB to the biofilm. RL also had a facilitating effect on catechol-1,2-dioxygenase (C12O) enzyme activity. Furthermore, RL increased Zeta potential and facilitated microorganisms to form biofilm. The dominant microorganisms of microbial community were increased and the application of RL promoted the enrichment of them.
Collapse
Affiliation(s)
- Bairen Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Jiajie Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Menglei Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Qingqing Shang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Hao Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
7
|
Dewidar AA, Sorial GA. Effect of rhamnolipids on the fungal elimination of toluene vapor in a biotrickling filter under stressed operational conditions. ENVIRONMENTAL RESEARCH 2022; 204:111973. [PMID: 34464615 DOI: 10.1016/j.envres.2021.111973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/04/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The application of rhamnolipids in a fungal-cultured biotrickling filter (BTF) has a significant impact on toluene removal. Two BTFs were used; BTF-A, a control bed, and BTF-B fed with rhamnolipids. The effect of empty bed residence times (EBRTs) on toluene bioavailability was investigated. Removal of toluene was carried out at EBRTs of 30 and 60 s and inlet loading rates (LRs) of 23-184 g m-3 h-1. At 30 s EBRT, when inlet LR was increased from 23 to 184 g m-3 h-1, the removal efficiency (RE) decreased from 93% to 50% for the control bed, and from 94% to 87% for BTF-B. Increasing the EBRT simultaneously with inlet LRs, confirms that BTF-A was diffusion-limited by registering a RE of 62% for toluene inlet LR of 184 g m-3 h-1, whereas BTF-B, achieved RE > 96%, confirming a significant improvement in toluene biodegradability. Overall, the best performance was observed at 60 s EBRT and inlet LR of 184 g m-3 h-1, providing a maximum elimination capacity (EC) of 176.8 g m-3 h-1 under steady-state conditions. While a maximum EC of 114 g m-3 h-1 was observed under the same conditions in the absence of rhamnolipids (BTF-A). Measurements of critical micelle concentration showed that 150 mg L-1 of rhamnolipids demonstrated the lowest aqueous surface tension and maximum formation of micelles, while 175 mg L-1 was the optimum dose for fungal growth. Production rate of carbon dioxide, and dissolved oxygen contents highlighted the positive influence of rhamnolipids on adhesive forces, improved toluene mineralization, and promotion of microbial motility over mobility.
Collapse
Affiliation(s)
- Assem A Dewidar
- Department of Chemical and Environmental Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - George A Sorial
- Department of Chemical and Environmental Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
8
|
Wongbunmak A, Panthongkham Y, Suphantharika M, Pongtharangkul T. A fixed-film bioscrubber of Microbacterium esteraromaticum SBS1-7 for toluene/styrene biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126287. [PMID: 34126384 DOI: 10.1016/j.jhazmat.2021.126287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/22/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
In the present study, a fixed-film bioscrubber (FFBS) of BTEX-degrading bacterium Microbacterium esteraromaticum SBS1-7 with 'AQUAPOROUSGEL® or APG' supporting material was continuously fed with toluene- or styrene-contaminated gas stream for 172 days. Response Surface Methodology (RSM) was used to optimize the biofilm formation on APG as well as the toluene biodegradation in mineral salt medium (MM). The results suggested that 1000 ppm of yeast extract (YE) was necessary for biofilm formation of SBS1-7. The optimized combination of YE and toluene concentration exhibiting the highest biofilm formation and toluene removal was further employed in an up-scale FFBS operation. The maximum Elimination Capacity (ECmax) of 203 g·m-3·h-1 was obtained at the toluene Inlet Loading Rate (ILR) of 295 g·m-3·h-1. FFBS of SBS1-7 was able to withstand a 5-day shutdown and required only 24 h to recover. Moreover, when the inlet Volatile Organic Compound was shifted to styrene, FFBS required only 24 h for adaptation and the system was able to efficiently remove ~95% of styrene after that. Finally, the performance of the bioscrubber when operated in 2 different modes of operation (FFBS vs Biotricking Filter or BTF) were compared. This study evidently demonstrated the robustness and stability of FFBS with M. esteraromaticum SBS1-7.
Collapse
Affiliation(s)
- Akanit Wongbunmak
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Yanisa Panthongkham
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Manop Suphantharika
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
9
|
Hessou EP, Bédé LA, Jabraoui H, Semmeq A, Badawi M, Valtchev V. Adsorption of Toluene and Water over Cationic-Exchanged Y Zeolites: A DFT Exploration. Molecules 2021; 26:5486. [PMID: 34576957 PMCID: PMC8466149 DOI: 10.3390/molecules26185486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, density functional theory (DFT) calculations have been performed to investigate the adsorption mechanisms of toluene and water onto various cationic forms of Y zeolite (LiY, NaY, KY, CsY, CuY and AgY). Our computational investigation revealed that toluene is mainly adsorbed via π-interactions on alkalis exchanged Y zeolites, where the adsorbed toluene moiety interacts with a single cation for all cases with the exception of CsY, where two cations can simultaneously contribute to the adsorption of the toluene, hence leading to the highest interaction observed among the series. Furthermore, we find that the interaction energies of toluene increase while moving down in the alkaline series where interaction energies are 87.8, 105.5, 97.8, and 114.4 kJ/mol for LiY, NaY, KY and CsY, respectively. For zeolites based on transition metals (CuY and AgY), our calculations reveal a different adsorption mode where only one cation interacts with toluene through two carbon atoms of the aromatic ring with interaction energies of 147.0 and 131.5 kJ/mol for CuY and AgY, respectively. More importantly, we show that water presents no inhibitory effect on the adsorption of toluene, where interaction energies of this latter were 10 kJ/mol (LiY) to 47 kJ/mol (CsY) higher than those of water. Our results point out that LiY would be less efficient for the toluene/water separation while CuY, AgY and CsY would be the ideal candidates for this application.
Collapse
Affiliation(s)
- Etienne P. Hessou
- Laboratoire de Physique et Chimie Théoriques, Faculté des Sciences et Technologies, CNRS, Université de Lorraine, Boulevard des Aiguillettes, 54500 Vandoeuvre-lès-Nancy, France; (A.S.); (M.B.)
| | - Lucie A. Bédé
- Laboratoire de Constitution et Réaction de la Matière, Université Felix Houphouët-Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire;
| | - Hicham Jabraoui
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France;
| | - Abderrahmane Semmeq
- Laboratoire de Physique et Chimie Théoriques, Faculté des Sciences et Technologies, CNRS, Université de Lorraine, Boulevard des Aiguillettes, 54500 Vandoeuvre-lès-Nancy, France; (A.S.); (M.B.)
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques, Faculté des Sciences et Technologies, CNRS, Université de Lorraine, Boulevard des Aiguillettes, 54500 Vandoeuvre-lès-Nancy, France; (A.S.); (M.B.)
| | - Valentin Valtchev
- Laboratoire Catalyse et Spectrochimie, Normandie Université, ENSICAEN, CNRS, 6 Boulevard Maréchal Juin, 14050 Caen, France;
| |
Collapse
|
10
|
Liu H, Dai L, Yao J, Mei Y, Hrynsphan D, Tatsiana S, Chen J. Efficient biotransformation of sulfide in anaerobic sequencing batch reactor by composite microbial agent: performance optimization and microbial community analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48718-48727. [PMID: 33913111 DOI: 10.1007/s11356-021-12717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Sulfur-containing wastewater is very common as an industrial waste, yet a high-efficiency composite microbial agent for sulfur-containing wastewater treatment is still lacking. In this work, three novel and efficient desulfurizing bacteria were isolated from the sewage treatment tank of Zhejiang Satellite Energy Co., Ltd. They were identified as Brucella melitensis (S1), Ochrobactrum oryzae (S8), and Achromobacter xylosoxidans (S9). These three strains of bacteria were responsible for the oxidative metabolism of sodium sulfide via a similar polythionate pathway, which could be expressed as follows: S2-→S2O32-/S0→SO32-→SO42-. Activated carbon, wheat bran, and diatomite at 1:1:1 ratio are used as carriers to construct a composite microbial agent containing the three bacteria. The desulfurization efficiency of 95% was predicted by response surface methodology under the following optimum conditions: the dosage of the inoculum was 3 g/L, pH 7.86, and temperature of 39 °C. Additionally, the impact resistance was studied in the anaerobic sequencing batch reactor. The removal capacity of microbial agent reached 98%. High-throughput analysis showed that composite microbial agent increased bacterial evenness and diversity, and the relative abundance of Brucellaceae increased from 5.04 to 8.79% in the reactor. In the process of industrial wastewater transformation, the transformation rate of sulfide by composite microbial agent was maintained between 70 and 81%. The composite microbial agent had potential for the treatment of sulfur-containing wastewater.
Collapse
Affiliation(s)
- Huan Liu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Luyao Dai
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Jiachao Yao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 30021, People's Republic of China
| | - Yu Mei
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 30021, People's Republic of China
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Blearusian State University, 220030, Minsk, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Blearusian State University, 220030, Minsk, Belarus
| | - Jun Chen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 30021, People's Republic of China.
| |
Collapse
|
11
|
Zhang Y, Liu J, Chen Y, Li J. Screening and study of the degradation characteristics of efficient toluene degrading bacteria combinations. ENVIRONMENTAL TECHNOLOGY 2021; 42:3403-3410. [PMID: 32070244 DOI: 10.1080/09593330.2020.1732477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
In this paper, three effective toluene-degrading bacteria were obtained through acclimation and screening by using landfill leachate as the initial liquid strain. The three obtained bacteria were denoted as J1, J2 and J3, and identified as Pseudomonas, Bacillus and Staphylococcus, respectively. We then identified the optimal combination of these toluene-degrading bacteria in the laboratory. The combination of J1 + J3 (1:1) exhibited the highest toluene removal efficiency (RE). A vertical bio-trickling filter (BTF) packed with ceramsite was started by inoculation with the effective combination. The performance of the BTF in treating toluene under various operating conditions was investigated. After 17 days of operation, the toluene RE reached about 90% and the maximum elimination capacity reached 42.0 g m-3 h-1. The scanning electron microscope (SEM) showed that after the successful start-up of the BTF, the biofilm on the packing surface primarily consisted of Bacillus and Staphylococcus. During the stable state, the RE of the BTF was maintained above 80%, the shortest empty bed residence time was 34 s and toluene concentrations ranged between 300 and 800 mg m-3. The results indicate that the BTF started using the effective combination of bacteria described here is robust. This paper also provides a preliminary analysis of the mechanism of microbial degradation of pollutants in the BTF.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, People's Republic of China
| | - Jia Liu
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, People's Republic of China
| | - Ying Chen
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, People's Republic of China
| | - Jian Li
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, People's Republic of China
| |
Collapse
|
12
|
Wei H, Yang XY, van der Mei HC, Busscher HJ. X-Ray Photoelectron Spectroscopy on Microbial Cell Surfaces: A Forgotten Method for the Characterization of Microorganisms Encapsulated With Surface-Engineered Shells. Front Chem 2021; 9:666159. [PMID: 33968904 PMCID: PMC8100684 DOI: 10.3389/fchem.2021.666159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
Encapsulation of single microbial cells by surface-engineered shells has great potential for the protection of yeasts and bacteria against harsh environmental conditions, such as elevated temperatures, UV light, extreme pH values, and antimicrobials. Encapsulation with functionalized shells can also alter the surface characteristics of cells in a way that can make them more suitable to perform their function in complex environments, including bio-reactors, bio-fuel production, biosensors, and the human body. Surface-engineered shells bear as an advantage above genetically-engineered microorganisms that the protection and functionalization added are temporary and disappear upon microbial growth, ultimately breaking a shell. Therewith, the danger of creating a "super-bug," resistant to all known antimicrobial measures does not exist for surface-engineered shells. Encapsulating shells around single microorganisms are predominantly characterized by electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, particulate micro-electrophoresis, nitrogen adsorption-desorption isotherms, and X-ray diffraction. It is amazing that X-ray Photoelectron Spectroscopy (XPS) is forgotten as a method to characterize encapsulated yeasts and bacteria. XPS was introduced several decades ago to characterize the elemental composition of microbial cell surfaces. Microbial sample preparation requires freeze-drying which leaves microorganisms intact. Freeze-dried microorganisms form a powder that can be easily pressed in small cups, suitable for insertion in the high vacuum of an XPS machine and obtaining high resolution spectra. Typically, XPS measures carbon, nitrogen, oxygen and phosphorus as the most common elements in microbial cell surfaces. Models exist to transform these compositions into well-known, biochemical cell surface components, including proteins, polysaccharides, chitin, glucan, teichoic acid, peptidoglycan, and hydrocarbon like components. Moreover, elemental surface compositions of many different microbial strains and species in freeze-dried conditions, related with zeta potentials of microbial cells, measured in a hydrated state. Relationships between elemental surface compositions measured using XPS in vacuum with characteristics measured in a hydrated state have been taken as a validation of microbial cell surface XPS. Despite the merits of microbial cell surface XPS, XPS has seldom been applied to characterize the many different types of surface-engineered shells around yeasts and bacteria currently described in the literature. In this review, we aim to advocate the use of XPS as a forgotten method for microbial cell surface characterization, for use on surface-engineered shells encapsulating microorganisms.
Collapse
Affiliation(s)
- Hao Wei
- University of Groningen and University Medical Center of Groningen, Department of Biomedical Engineering, Groningen, Netherlands
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- School of Engineering and Applied Science, Harvard University, Cambridge, MA, United States
| | - Henny C. van der Mei
- University of Groningen and University Medical Center of Groningen, Department of Biomedical Engineering, Groningen, Netherlands
| | - Henk J. Busscher
- University of Groningen and University Medical Center of Groningen, Department of Biomedical Engineering, Groningen, Netherlands
| |
Collapse
|
13
|
Liu J, Yue P, Huang L, Zhao M, Kang X, Liu X. Styrene removal with an acidic biofilter with four packing materials: Performance and fungal bioaerosol emissions. ENVIRONMENTAL RESEARCH 2020; 191:110154. [PMID: 32877704 DOI: 10.1016/j.envres.2020.110154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/16/2020] [Accepted: 08/22/2020] [Indexed: 05/17/2023]
Abstract
The packing material used in acidic biofilters (ABFs) has a significant impact on styrene removal. The bioaerosol emission was rarely considered when evaluating the packing materials in the ABFs. Four ABFs packed with ceramsite, compost, lava and polyurethane (PU) were developed and compared for their styrene removal and fungal bioaerosol emissions characteristics over 529 days. The removal efficiencies of styrene in the ABFs were higher under the condition of longer empty bed residence time (EBRT) and lower inlet concentration. The maximum styrene elimination capacities of the ABFs with ceramsite, compost, lava and PU were 74.57, 87.81, 67.13 and 101.88 g/m3 h, respectively. A lower pressure drop and the highest fungi count were observed in the ABF packed with PU. The emissions concentrations of fungal bioaerosols at the humidity of 63.5% were lower than those at a humidity of 42.7% and it increased with the air velocity. Additionally, the concentrations of fungal bioaerosols emitted from the ABFs packed with PU were 2168 ± 145-3661 ± 257 CFU/m3, which was 33%-90% lower than those of the other three ABFs. The particle size distributions of the fungal bioaerosols emitted from the ABFs packed with PU and compost were mainly centered around large particles. Considering the removal of styrene and the fungal bioaerosols emissions, PU was the optimal packing material for ABF.
Collapse
Affiliation(s)
- Jianwei Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Peng Yue
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lihua Huang
- School of Resources and Environment, Linyi University, Linyi, 276005, China
| | - Mengfei Zhao
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xinyue Kang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xueli Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
14
|
Sawalha H, Maghalseh M, Qutaina J, Junaidi K, Rene ER. Removal of hydrogen sulfide from biogas using activated carbon synthesized from different locally available biomass wastes - a case study from Palestine. Bioengineered 2020; 11:607-618. [PMID: 32463312 PMCID: PMC8291793 DOI: 10.1080/21655979.2020.1768736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The main aim of this study was to remove hydrogen sulfide (H2S) from biogas by adsorption using synthesized activated carbon prepared using locally available biomass. The effect of the type of precursors, impregnation reagent and bed height was studied in continuous reactors. Three types of biomass wastes (almond shells, eucalyptus and coffee grains) were collected, grinded, sieved, pyrolyzed at 500°C and impregnated with chemical reagents such as potassium hydroxide or zinc chloride. Adsorption tests were performed using a fixed bed filter filled with the produced activated carbon. The highest biochar yield of 36% was obtained eucalyptus followed by almond shells (28.5%) and coffee grains (24%), respectively. The highest adsorption capacity and removal efficiency were obtained with eucalyptus followed by almond shells and coffee grains, respectively. For instance, eucalyptus showed an adsorption capacity of ~690 (mg hydrogen sulfide/g adsorbent) followed by almond (230 mg hydrogen sulfide/g adsorbent) and coffee grains (22 mg hydrogen sulfide/g adsorbent). As an impregnation reagent, potassium hydroxide gave the highest adsorption efficiency and capacity than zinc chloride. Furthermore, the breakthrough time with KOH (180 min) was higher than ZnCl2 (70 min). Increasing the bed height during continuous breakthrough tests increased the adsorption capacity and hydrogen sulfide removal efficiency. The results of this study showed that the adsorption efficiency of the synthesized activated carbon and consequently the hydrogen sulfide removal efficiency could be fine-tuned by selecting an appropriate biomass precursor and proper impregnation reagent.
Collapse
Affiliation(s)
- Hassan Sawalha
- Renewable Energy and Environment Research Unit, Mechanical Engineering Department, Palestine Polytechnic University , Hebron, Palestine
| | - Maher Maghalseh
- Renewable Energy and Environment Research Unit, Electrical Engineering Department, Palestine Polytechnic University , Hebron, Palestine
| | - Janna Qutaina
- Renewable Energy and Environment Research Unit, Mechanical Engineering Department, Palestine Polytechnic University , Hebron, Palestine
| | - Kholoud Junaidi
- Renewable Energy and Environment Research Unit, Mechanical Engineering Department, Palestine Polytechnic University , Hebron, Palestine
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education , Delft, The Netherlands
| |
Collapse
|
15
|
Kaoien P, Dechapanya W, Khamwichit A, Suwannahong K. Natural rubber modification as a pre-vulcanized latex impregnated with TiO 2 for photo-catalytic degradation of gaseous benzene. Heliyon 2020; 6:e03912. [PMID: 32420484 PMCID: PMC7218017 DOI: 10.1016/j.heliyon.2020.e03912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/08/2020] [Accepted: 04/29/2020] [Indexed: 11/23/2022] Open
Abstract
Photocatalytic oxidation purposes an economical and environmental friendly process to remove benzene from indoor air pollution. However, the process efficiency is primarily dependent on catalytic-film. The main purpose of this study is to synthesize pre-vulcanized latex impregnated with TiO2 (PVL-TiO2 thin film) from natural rubber to be used in photo-catalytic oxidation for benzene removal in a reactor. PVL-TiO2 thin films were synthesized for 3 different dosages of TiO2, which were 5%, 15%, and 25% The outcome of this study offers the new application of modified natural rubber in terms of environmental and health care protection. Morphology of the synthesized films was analyzed by SEM. The results showed that TiO2 particles could be well dispersed all over the surface of the film, in which the best distribution could be found for the PVL-TiO2 15% thin film. Tensile stress of the films was analyzed using ASTM D412. Results showed that the stress of the films got higher with the increasing amount of TiO2 content. This indicates that TiO2 strengthened the PVL-TiO2 film because the uniformly distribution of TiO2 on the inner surface increased the strength of the film. The decomposition of PVL and PVL-TiO2 thin films was analyzed using thermo gravimetric analysis. The maximum weight loss rates in the range of 1.536-1.145 wt%/°C attained at between 380 - 382 °C TiO2 particles enhanced thermal stability of PVL-TiO2 thin films due to the high decomposition temperature of its properties and also acted as barrier for the heat transfer of the films. Specific surface area (SSA) of the films was analyzed using Brunauer-Emmett-Teller. Specific surface area increased as the increasing content of TiO2, which corresponded to the morphology analysis by SEM. The analysis of chemical functional group of thin films was performed using ATR-FTIR. The results of Crystal identification using XRD clearly showed good attachment of rutile TiO2 on the films. Finally, results of absorbance spectrums and band gap energy showed that PVL not only peg TiO2 particles but also reducing band gap energy which induced by S and ZnO. Therefore, PVL-TiO2 thin films could be used under visible light condition. The films were then used in the study of benzene removal in annular reactor. The highest removal efficiency (83%)for the PVL-TiO2 15% thin film was obtained. Comparing to the maximum removal efficiency for PVL film (28%), roughly 60% increase in efficiency was achieved. The PCO kinetics were well fit by a first order Langmuir-Hinshelwood model. The calculation of oxidation rate and percentage of residual intermediates indicated that accumulation of residual intermediates can occur on the active site and the gas phase, resulting in increasing of residual intermediates. The successful synthesis of PVL-TiO2 thin film provides new opportunity to use natural rubber in terms of environmental and health care protection.
Collapse
Affiliation(s)
- Peerapol Kaoien
- School of Engineering and Technology, Walailak University, 222, Thai Buri, Tha Sala District, Nakhon Sri Thammarat Provicne, 80160 Thailand
| | - Wipawee Dechapanya
- School of Engineering and Technology, Walailak University, 222, Thai Buri, Tha Sala District, Nakhon Sri Thammarat Provicne, 80160 Thailand
| | - Attaso Khamwichit
- School of Engineering and Technology, Walailak University, 222, Thai Buri, Tha Sala District, Nakhon Sri Thammarat Provicne, 80160 Thailand
| | - Kowit Suwannahong
- Faculty of Public Health, Burapha University, 169, Saensuk, Mueang Chon Buri District, Chon Buri Province, 20131 Thailand
| |
Collapse
|
16
|
Boojari MA, Zamir SM, Rene ER, Shojaosadati SA. Performance assessment of gas-phase toluene removal in one- and two-liquid phase biotrickling filters using artificial neural networks. CHEMOSPHERE 2019; 234:388-394. [PMID: 31228841 DOI: 10.1016/j.chemosphere.2019.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
The main aim of this work is to study gas-phase toluene removal in one- and two-liquid phase biotrickling filters (O/TLP-BTF) and model the BTF performance using artificial neural networks (ANNs). The TLP-BTF was operated for 60 d in the presence of silicone oil at empty bed residence times (EBRTs) of 120, 60, and 45 s, respectively, and toluene concentrations in the range of 0.9-3.1 g m-3. A t-test analysis indicated that increasing the silicone oil volume ratio from 5 to 10% v/v, did not significantly improve the TLP-BTF performance (p-value = 0.65 > 0.05). The results from ANN modeling showed that toluene removal was more negatively affected by the inlet concentration (casual index, CI = -5.63) due to the kinetic limitation. The CI values for inlet concentration (+4.01) and liquid trickling rate (-2.45) indicated that the diffusion-limited regime controlled the removal process in the OLP-BTF.
Collapse
Affiliation(s)
- Mohammad Amin Boojari
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University (TMU), Tehran, Iran
| | - Seyed Morteza Zamir
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University (TMU), Tehran, Iran.
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, Westvest 7, 2611, AX Delft, the Netherlands
| | - Seyed Abbas Shojaosadati
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University (TMU), Tehran, Iran
| |
Collapse
|
17
|
Bordoloi A, Gapes DJ, Gostomski PA. The impact of environmental parameters on the conversion of toluene to CO 2 and extracellular polymeric substances in a differential soil biofilter. CHEMOSPHERE 2019; 232:304-314. [PMID: 31154192 DOI: 10.1016/j.chemosphere.2019.05.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
The fraction of pollutant converted to CO2 versus biomass in biofiltration influences the process efficacy and the lifetime of the bed due to pressure drop increases. This work determined the relative quantitative importance and potential interactions between three critical environmental parameters: toluene concentration (Tol), matric potential (ψ) and temperature (T) on % CO2, elimination capacity (EC) and the production rate of non-CO2 products. These parameters are the most variable in typical biofilter operation. The data was fit to a non-linear model of the form y=a(Tol)bTcψd. A rigorous carbon balance (100.5 ± 7.0%) tracked the fate of degraded toluene as CO2 and non-CO2 carbon endpoints. The % CO2 mineralization varied from (34-91%) with environmental parameters: temperature (20-40 °C), matric potential, (-10 to -100 cmH2O) and residual toluene, (20-180 ppm). The highest conversion to CO2 was at the wettest conditions (-10 cmH2O) and lowest residual toluene concentration (18 ppm). Matric potential had twice the impact of toluene concentration on % CO2, while temperature had less impact. The elimination capacity varied from 11 to 50 gC⋅m-3h-1 and was highest at 40 °C, the wettest conditions with limited impact by toluene concentrations. Temperature increased the EC and non-CO2 production rates strongly while matric potential and toluene concentration had less influence (4x - 10x less). This study illustrated the quantitative significance and simultaneous interaction between critical environmental parameters on carbon endpoints and biofilter performance. This kind of multivariable parameter study provides valuable insights which can address performance and clogging issues in biofilters.
Collapse
Affiliation(s)
- Achinta Bordoloi
- Department of Chemical & Process Engineering, University of Canterbury, Private Bag 4800, Christchurch 80411, New Zealand; Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, Stellenbosch, South Africa.
| | | | - Peter A Gostomski
- Department of Chemical & Process Engineering, University of Canterbury, Private Bag 4800, Christchurch 80411, New Zealand
| |
Collapse
|
18
|
Kumar M, Giri BS, Kim KH, Singh RP, Rene ER, López ME, Rai BN, Singh H, Prasad D, Singh RS. Performance of a biofilter with compost and activated carbon based packing material for gas-phase toluene removal under extremely high loading rates. BIORESOURCE TECHNOLOGY 2019; 285:121317. [PMID: 30979643 DOI: 10.1016/j.biortech.2019.121317] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
The main aim of this work was to evaluate the performance of a biofilter packed with a mixture of compost and activated carbon, for gas-phase toluene removal under very high loading rates. Plaster of Paris was used as a binder to improve the mechanical strength and durability of the packing media. The biofilter was operated continuously for a period of ∼110 days and at four different flow rates (0.069, 0.084, 0.126 and 0.186 m-3 h-1), corresponding to toluene loading rates of 160-8759 g m-3 h-1. The maximum elimination capacity (EC) achieved in this study was 6665 g m-3 h-1, while the removal efficiency (RE) varied from ∼70 to >95% depending on the loading rate tested. The biofilter was able to remove >99% of toluene using Pseudomonas sp. RSST (MG 279053) as the dominant toluene degrading biocatalyst.
Collapse
Affiliation(s)
- Munna Kumar
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Balendu Shekher Giri
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India.
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | | | - Eldon R Rene
- UNESCO-IHE Institute for Water Education, P. O. Box 3015, 2601 DA Delft, The Netherlands
| | - M Estefanía López
- IES García Lorca, Fernando de Herrera, 11207 Algeciras, Cádiz, Spain
| | - Birendra Nath Rai
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Harinder Singh
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
| | - Durga Prasad
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Ram Sharan Singh
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
19
|
Cheng Z, Zhang X, Kennes C, Chen J, Chen D, Ye J, Zhang S, Dionysiou DD. Differences of cell surface characteristics between the bacterium Pseudomonas veronii and fungus Ophiostoma stenoceras and their different adsorption properties to hydrophobic organic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2095-2106. [PMID: 30290351 DOI: 10.1016/j.scitotenv.2018.09.337] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/22/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
The first step of microbial biodegradation is the adsorption of pollutants on the microorganisms' surface, which is determined by the microorganism type and pollutant hydrophobicity. One fungus Ophiostoma stenoceras LLC and one bacterium Pseudomonas veronii ZW were chosen for the investigation of cell surface hydrophobicity and adsorption abilities to various organic compounds. Results showed that the fungus could better capture and adsorb organic compounds in liquid and gas phases, and the adsorption was a physical monolayer adsorption process. Much smaller partition coefficient for gas-fungus suggested that direct gaseous adsorption was preferred. The XPS (X-ray photoelectron spectroscopy) characterization further confirmed that several functional groups changed after the adsorption of compounds. The time taken for complete degradation of hexane, tetrahydrofuran and chlorobenzene was shorter with the addition of O. stenoceras LLC. Such findings are useful in exploring the special cell surface of fungus in adsorption and bioenhancement for organic treatment of organic contaminants using bacteria.
Collapse
Affiliation(s)
- Zhuowei Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310009, China; Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH 45221-0012, USA
| | - Xiaomin Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310009, China
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Science, University of La Coruna, 15001, Spain
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310009, China.
| | - Dongzhi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310009, China
| | - Jiexu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou 310009, China
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310009, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH 45221-0012, USA.
| |
Collapse
|
20
|
Das J, Rene ER, Dupont C, Dufourny A, Blin J, van Hullebusch ED. Performance of a compost and biochar packed biofilter for gas-phase hydrogen sulfide removal. BIORESOURCE TECHNOLOGY 2019; 273:581-591. [PMID: 30476867 DOI: 10.1016/j.biortech.2018.11.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
The main aim of this study was to evaluate the performance of an aerobic biofilter packed with compost for the removal of gas-phase hydrogen sulfide (H2S). After 52 d of operation, the biofilter was re-packed by replacing a certain portion (25%, v/v) of the existing compost with biochar and its performance was tested. The steady and transient performance of the biofilter was evaluated by varying the H2S concentrations from 0.1 to 2.9 g m-3 at an empty bed residence time (EBRT) of 119 and 80 s, respectively. The maximum elimination capacity (ECmax) of the compost and compost + biochar biofilter were ∼19 and 33 g m-3 h-1, respectively, with >99% removal efficiency at an EBRT of 119 s. The compost biofilter showed a quick response to shock loads and the critical load to the biofilter during the shock loading step was ∼81 g m-3 h-1.
Collapse
Affiliation(s)
- Jewel Das
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, P. O. Box 3015, 2601 DA Delft, The Netherlands; Bangladesh Council of Scientific and Industrial Research (BCSIR), BCSIR Laboratories Chittagong, Chittagong 4220, Bangladesh
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, P. O. Box 3015, 2601 DA Delft, The Netherlands.
| | - Capucine Dupont
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, P. O. Box 3015, 2601 DA Delft, The Netherlands
| | - Adrien Dufourny
- CIRAD, UPR BioWooEB, F-34398 Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Joël Blin
- CIRAD, UPR BioWooEB, F-34398 Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Eric D van Hullebusch
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, P. O. Box 3015, 2601 DA Delft, The Netherlands
| |
Collapse
|
21
|
Absorption and Biodegradation of Toluene in a Two-Phase Low-Pressure Bioscrubber Using Cutting Oil as the Organic Phase. HEALTH SCOPE 2018. [DOI: 10.5812/jhealthscope.65219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Rene ER, Sergienko N, Goswami T, López ME, Kumar G, Saratale GD, Venkatachalam P, Pakshirajan K, Swaminathan T. Effects of concentration and gas flow rate on the removal of gas-phase toluene and xylene mixture in a compost biofilter. BIORESOURCE TECHNOLOGY 2018; 248:28-35. [PMID: 28844689 DOI: 10.1016/j.biortech.2017.08.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work was to study the performance of a compost/ceramic bead biofilter (6:4 v/v) for the removal of gas-phase toluene and xylene at different inlet loading rates (ILR). The inlet toluene (or) xylene concentrations were varied from 0.1 to 1.5gm-3, at gas flow rates of 0.024, 0.048 and 0.072m3h-1, respectively, corresponding to total ILR varying between 7 and 213gm-3h-1. Although there was mutual inhibition, xylene removal was severely inhibited by the presence of toluene than toluene removal by the presence of xylene. The biofilter was also exposed to transient variations such as prolonged periods of shutdown (30days) and shock loads to envisage the response and recuperating ability of the biofilter. The maximum elimination capacity (EC) for toluene and xylene were 29.2 and 16.4gm-3h-1, respectively, at inlet loads of 53.8 and 43.7gm-3h-1.
Collapse
Affiliation(s)
- Eldon R Rene
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India; Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands.
| | - Natalia Sergienko
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands
| | - Torsha Goswami
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands
| | - M Estefanía López
- Department of Chemical Engineering, Faculty of Sciences, Campus da Zapateira, University of La Coruńa, Rua da Fraga, 10, E-15008 La Coruña, Spain
| | - Gopalakrishnan Kumar
- Center for Materials Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Ganesh D Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Perumal Venkatachalam
- Periyar University, Department of Biotechnology, Plant Genetic Engineering and Molecular Biology Lab, Periyar Palkalai Nagar, Salem 636 011, Tamil Nadu, India
| | - K Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - T Swaminathan
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
23
|
Leili M, Farjadfard S, Sorial GA, Ramavandi B. Simultaneous biofiltration of BTEX and Hg° from a petrochemical waste stream. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 204:531-539. [PMID: 28934676 DOI: 10.1016/j.jenvman.2017.09.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/26/2017] [Accepted: 09/10/2017] [Indexed: 06/07/2023]
Abstract
A biofiltration system was developed to treat benzene, toluene, ethylbenzene, and xylene (BTEX) and Hg° vapour from a petrochemical waste stream during overhaul maintenance. The biofilter compost bed was inoculated with a microbial consortium provided by a petrochemical wastewater treatment plant. The effect of the a BTEX concentration (192.6-973.8 g/m3h) and empty bed residence time (EBRT) of 20-100 s were studied under the conditions of steady state, transient, shock BTEX-loading, and off-restart. The findings revealed that during a biofilter start-up, an increase in the influent BTEX concentration to around 334.3 g/m3h did not notably affect the biofiltration function at an EBRT of 100 s, and the removal efficiency was higher than 98%. Further, the low EBRT of 60 s did not have adverse effects on the BTEX and Hg° biofiltration (the removal efficiency in both was >93%). For the biofiltration system, the BTEX and Hg° critical attenuation capacity were obtained as 663 gBTEX/m3h and 12.6 gHg°/m3h respectively. A maximum attenuation capacity of 774.5 gBTEX/m3h was achieved in the biofilter when the BTEX loading rate was 973.8 gBTEX/m3h. The parameters of km and rmax of the Michaelis-Menten kinetic model were obtained as 0.099 g/m3 and 0.578 g/m3min respectively. Both BTEX and mercury vapours were completely mass balanced during a continuous biofiltration test. In general, the developed treatment system exhibited a good performance in the treatment of the BTEX stream containing Hg° vapour in the off-gas of a petrochemical company.
Collapse
Affiliation(s)
- Mostafa Leili
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Farjadfard
- Department of Environmental Engineering, Graduate School of the Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - George A Sorial
- Environmental Engineering Program, School of Energy, Environmental, Biological and Medical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221-0012, USA
| | - Bahman Ramavandi
- Environmental Health Engineering Department, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
24
|
Yang BR, Sun ZQ, Wang LP, Li ZX, Ding C. Kinetic analysis and degradation pathway for m-dichlorobenzene removal by Brevibacillus agri DH-1 and its performance in a biotrickling filter. BIORESOURCE TECHNOLOGY 2017; 231:19-25. [PMID: 28189989 DOI: 10.1016/j.biortech.2017.01.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
A strain, Brevibacillus agri DH-1, isolated from dry lands was used to remove m-dichlorobenzene. After 48h culturing, the concentrations of m-dichlorobenzene decreased from 26-130 to 7.87-28.87mg/L and dry cell weight for bacterial growth reached 52.43-75.05mg/L. The growth and degradation kinetics were analyzed by the fitting of Haldane-Andrews model and pseudo first-order model. A degradation pathway was proposed according to major intermediates (phenol), chloride ion variation, ring-opening enzyme activity, and high mineralization (0.47gCl-/gm-dichlorobenzene, 0.65 gco2/gm-dichlorobenzene, 0.15 gDCW/gm-dichlorobenzene). In addition, the performance in a biotrickling filter (BTF) was evaluated through removal efficiency and pressure drop values with increasing inlet loading rate from 4.10 to 122.57g/m3/h at three empty bed residence time points (30s, 60s, and 90s). The results demonstrated that strain DH-1 possessed high removal efficiency and stable operation in a BTF.
Collapse
Affiliation(s)
- Bai-Ren Yang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Zhu-Qiu Sun
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Li-Ping Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China.
| | - Zhao-Xia Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| |
Collapse
|
25
|
Potential application of an Aspergillus strain in a pilot biofilter for benzene biodegradation. Sci Rep 2017; 7:46059. [PMID: 28383064 PMCID: PMC5382587 DOI: 10.1038/srep46059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/09/2017] [Indexed: 11/23/2022] Open
Abstract
A biofilter with fungus was developed for efficient degradation of benzene, which can overcome the potential risk of leakage commonly found in such services. Results indicated that the optimum parameter values were temperature 40 °C, pH 6, and 500 mg L−1 of the initial benzene concentration. Besides, the empty bed residence time and inlet load range of biofilter were set to 20 s and 21.23–169.84 g m−3 h−1 respectively. Under these conditions, this biofilter can obtain the maximum removal efficiency of more than 90%, the eliminating capacity could be up to 151.67 g m−3 h−1. Furthermore, scanning electron microscopy was used to investigate three filler materials for packing fungus biofilm. This is the first study introducing an Aspergillus strain for benzene removal and these results highlight that the development of this biofilter has the potential scaling-up application as gas-processing of industrial wastes.
Collapse
|
26
|
Different strategies for transient-state operation of a biotrickling filter treating toluene vapor. Appl Microbiol Biotechnol 2017; 101:3451-3462. [DOI: 10.1007/s00253-016-8075-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 01/06/2023]
|
27
|
Challenges and solutions for biofiltration of hydrophobic volatile organic compounds. Biotechnol Adv 2016; 34:1091-1102. [DOI: 10.1016/j.biotechadv.2016.06.007] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 05/23/2016] [Accepted: 06/28/2016] [Indexed: 11/18/2022]
|
28
|
Cheng Z, Lu L, Kennes C, Ye J, Yu J, Chen D, Chen J. A composite microbial agent containing bacterial and fungal species: Optimization of the preparation process, analysis of characteristics, and use in the purification for volatile organic compounds. BIORESOURCE TECHNOLOGY 2016; 218:751-760. [PMID: 27423036 DOI: 10.1016/j.biortech.2016.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 06/06/2023]
Abstract
Proper preservation of microbial activity over long periods poses a considerable challenge for pollutant biopurification. A composite microbial agent, mainly composed of bacteria and fungi isolated by the current research team, was constructed in this study and its performance in the removal of mixed waste gases (containing α-pinene, n-butyl acetate and o-xylene) was investigated. According to the removal efficiency in the first 24h and the response to starvation, the optimal ratio of selected carriers (activated carbon, wheat bran and sawdust) was found to be 1:2:1. In some cases of storages, the removal capability of the microbial agent was more than twice that of the suspension. Microbial analysis showed that the inoculated bacterial and fungal strains dominated the agent preparation and utilization. These results indicated that the agent has potential for use in biopurification of mixed waste gas, favoring the reduction of environmental passives and longer retention of microbial activity.
Collapse
Affiliation(s)
- Zhuowei Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Lichao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Christian Kennes
- Chemical Engineering Laboratory and Center for Advance Scientific Research (CICA), Faculty of Sciences, University of La Coruña, Spain
| | - Jiexu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jianming Yu
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Dongzhi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
29
|
Zhu Y, Li S, Luo Y, Ma H, Wang Y. A biofilter for treating toluene vapors: performance evaluation and microbial counts behavior. PeerJ 2016; 4:e2045. [PMID: 27231662 PMCID: PMC4878367 DOI: 10.7717/peerj.2045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/26/2016] [Indexed: 12/03/2022] Open
Abstract
A lab-scale biofilter packed with mixed packing materials was used for degradation of toluene. Different empty bed residence times, 148.3, 74.2 and 49.4 s, were tested for inlet concentration ranging from 0.2 to 1.2 g/m3. The maximum elimination capacity of 36.0 g/(m3 h) occurred at an inlet loading rate of 45.9 g/(m3 h). The contribution of the lower layer was higher than other layers and always had the highest elimination capacity. The carbon dioxide production rate and distribution of micro-organisms followed toluene elimination capacities. The results of this study indicated that mixed packing materials could be considered as a potential biofilter carrier, with low pressure drop (less than 84.9 Pa/m), for treating air streams containing VOCs.
Collapse
Affiliation(s)
- Yazhong Zhu
- School of Chemical Engineering and Energy, Zhengzhou University , Zhengzhou , China
| | - Shunyi Li
- School of Chemical Engineering and Energy, Zhengzhou University , Zhengzhou , China
| | - Yimeng Luo
- School of Chemical Engineering and Energy, Zhengzhou University , Zhengzhou , China
| | - Hongye Ma
- School of Chemical Engineering and Energy, Zhengzhou University , Zhengzhou , China
| | - Yan Wang
- School of Chemical Engineering and Energy, Zhengzhou University , Zhengzhou , China
| |
Collapse
|