1
|
Ultrasonic Processing of Food Waste to Generate Value-Added Products. Foods 2022; 11:foods11142035. [PMID: 35885279 PMCID: PMC9319240 DOI: 10.3390/foods11142035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Ultrasonic processing has a great potential to transform waste from the food and agriculture industry into value-added products. In this review article, we discuss the use of ultrasound for the valorisation of food and agricultural waste. Ultrasonic processing is considered a green technology as compared to the conventional chemical extraction/processing methods. The influence of ultrasound pre-treatment on the soluble chemical oxygen demand (SCOD), particle size, and cell wall content of food waste is first discussed. The use of ultrasonic processing to produce/extract bioactives such as oil, polyphenolic, polysaccharides, fatty acids, organic acids, protein, lipids, and enzymes is highlighted. Moreover, ultrasonic processing in bioenergy production from food waste such as green methane, hydrogen, biodiesel, and ethanol through anaerobic digestion is also reviewed. The conversion of waste oils into biofuels with the use of ultrasound is presented. The latest developments and future prospective on the use of ultrasound in developing energy-efficient methods to convert food and agricultural waste into value-added products are summarised.
Collapse
|
2
|
Sun H, Liu L, Liu W, Liu Q, Zheng Z, Fan Y, Ouyang J. Removal of inhibitory furan aldehydes in lignocellulosic hydrolysates via chitosan-chitin nanofiber hybrid hydrogel beads. BIORESOURCE TECHNOLOGY 2022; 346:126563. [PMID: 34910969 DOI: 10.1016/j.biortech.2021.126563] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 05/26/2023]
Abstract
To obtain fermentable sugars from lignocellulose, various inhibitors, especially furan aldehydes, are usually generated during the pretreatment process. These inhibitors are harmful to subsequent microbial growth and fermentation. In this study, a novel detoxification strategy was proposed to remove 5-hydroxymethylfurfural (HMF) and furfural while retaining glucose and xylose using self-prepared chitosan-chitin nanofiber hybrid hydrogel beads (C-CNBs). After C-CNBs treatment, the removal rates of HMF and furfural from sugarcane bagasse hydrolysates reached 63.1% and 68.4%, while the loss rates of glucose and xylose were only 6.3% and 8.2%, respectively. Two typical industrial strains grew well in monosaccharide-rich detoxified hydrolysates, with a specific growth rate at least 4.1 times that of undetoxified hydrolysates. Furthermore, adsorption mechanism analysis revealed that the Schiff base reaction and mesopore filling were involved in furan aldehyde adsorption. In total, C-CNBs provide an efficient and practical approach for the removal of furan aldehydes from lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Huimin Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Liang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Wen Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Qing Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
3
|
Reshmy R, Philip E, Madhavan A, Sirohi R, Pugazhendhi A, Binod P, Kumar Awasthi M, Vivek N, Kumar V, Sindhu R. Lignocellulose in future biorefineries: Strategies for cost-effective production of biomaterials and bioenergy. BIORESOURCE TECHNOLOGY 2022; 344:126241. [PMID: 34756981 DOI: 10.1016/j.biortech.2021.126241] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Lignocellulosic biomass has been emerging as a biorefinery precursor for variety of biofuels, platform chemicals and biomaterials because of its specific surface morphology, exceptional physical, chemical and biological characteristics. The selection of proper raw materials, integration of nano biotechnological aspects, and designing of viable processes are important to attain a cost-effective route for the development of valuable end products. Lignocellulose-based materials can prove to be outstanding in terms of techno-economic viability, as well as being environmentally friendly and reducing effluent load. This review should facilitate the identification of better lignocellulosic sources, advanced pretreatments, and production of value-added products in order to boost the future industries in a cleaner and safer way.
Collapse
Affiliation(s)
- R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Eapen Philip
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram 695 014, Kerala, India
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - Narisetty Vivek
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India.
| |
Collapse
|
4
|
Prasanth SM, Kumar PS, Harish S, Rishikesh M, Nanda S, Vo DVN. Application of biomass derived products in mid-size automotive industries: A review. CHEMOSPHERE 2021; 280:130723. [PMID: 34162084 DOI: 10.1016/j.chemosphere.2021.130723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 06/13/2023]
Abstract
The automotive industry is directly affected by the shortage of fossil fuels and the excessive pollution resulting from crude oil-based fuels has many adverse effects on the environment. The search for a greener and sustainable source of materials and fuels to power automobiles has ultimately led to the usage of biomass and biobased sources as the main precursor due to its graft availability and renewability. Biobased fuels developed have been shown to easily blend in with the existing automobile engines and to provide sustainable performance. Similarly, the usage of various biobased polymers, plastics, and composite materials as the structural materials for the construction of automobiles instead of crude oil sources have shown to be invaluable. The powering of automobiles with electricity is the future of the transportation industry to address the greenhouse gas emissions caused by fossil fuels. Hence, biobased lithium-ion batteries and supercapacitors have started to enter the mid-sized automotive industry. However, extensive commercialization of biobased products application in the automotive sector is underdeveloped. Hence it is customary to assess the various drawbacks of using biobased materials and identify the correct pathway for new research and development in this field. Therefore, this review covers various applications of biobased products in the automotive industries and mentions the active researches going on in this field to replace petroleum and crude oil-based sources with biobased sources.
Collapse
Affiliation(s)
- S M Prasanth
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India.
| | - S Harish
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - M Rishikesh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - Sonil Nanda
- Department of Chemical and Biological Engineering University of Saskatchewan, Saskatchewan, S7N 5A9, Canada
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
5
|
Moodley P, Rorke DCS, Gueguim Kana EB. Development of artificial neural network tools for predicting sugar yields from inorganic salt-based pretreatment of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2019; 273:682-686. [PMID: 30459117 DOI: 10.1016/j.biortech.2018.11.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 05/26/2023]
Abstract
This study developed two Artificial Neural Network (ANN) tools for predicting sugar yields from inorganic salt-based pretreatment of lignocellulosic biomass. Pretreatment data from 90 experimental runs with 8 different input conditions were used to develop a microwave-based and a steam-based model. Both models exhibited high coefficients of determination (R2) of 0.97. Knowledge extraction revealed reducing sugar yields from the steam- and microwave-based models exhibited high sensitivity to both salt and alkali concentration. These models may be employed as initial screening tools in lignocellulosic bioprocesses, thereby potentially enhancing the economic and productivity of lignocellulosic-based bioprocesses.
Collapse
Affiliation(s)
- Preshanthan Moodley
- University of KwaZulu-Natal, School of Life Sciences, Pietermaritzburg, South Africa
| | - Daneal C S Rorke
- University of KwaZulu-Natal, School of Life Sciences, Pietermaritzburg, South Africa
| | | |
Collapse
|
6
|
Wang S, Sun X, Yuan Q. Strategies for enhancing microbial tolerance to inhibitors for biofuel production: A review. BIORESOURCE TECHNOLOGY 2018; 258:302-309. [PMID: 29567023 DOI: 10.1016/j.biortech.2018.03.064] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 05/05/2023]
Abstract
Using lignocellulosic biomass for the production of renewable biofuel provides a sustainable and promising solution to the crisis of energy and environment. However, the processes of biomass pretreatment and biofuel fermentation bring a variety of inhibitors to microbial strains. These inhibitors repress microbial growth, decrease biofuel yields and increase fermentation costs. The production of biofuels from renewable lignocellulosic biomass relies on the development of tolerant and robust microbial strains. In recent years, the advancement of tolerance engineering and evolutionary engineering provides powerful platform for obtaining host strains with desired tolerance for further metabolic engineering of biofuel pathways. In this review, we summarized the inhibitors derived from biomass pretreatment and biofuel fermentation, the mechanisms of inhibitor toxicity, and the strategies for enhancing microbial tolerance.
Collapse
Affiliation(s)
- Shizeng Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China.
| |
Collapse
|
7
|
Bundhoo ZMA, Mohee R. Ultrasound-assisted biological conversion of biomass and waste materials to biofuels: A review. ULTRASONICS SONOCHEMISTRY 2018; 40:298-313. [PMID: 28946428 DOI: 10.1016/j.ultsonch.2017.07.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 05/25/2023]
Abstract
Ultrasound irradiation has been gaining increasing interests over the years to assist biological conversion of lignocellulosic biomass and waste materials to biofuels. As such, this study reviewed the different effects of sonication on pre-treatment of lignocellulosic biomass and waste materials prior to biofuel production. The mechanisms of ultrasound irradiation as a pre-treatment technique were initially described and the impacts of sonication on disruption of lignocellulosic materials, alteration of the crystalline lattice structure of cellulose molecules, solubilisation of organic matter, reducing sugar production and enzymatic hydrolysis were then reviewed. Subsequently, the influences of ultrasound irradiation on bio-methane, bio-hydrogen and bio-ethanol production were re-evaluated, with most studies reporting enhanced biofuel production from anaerobic digestion or fermentation processes. Nonetheless, despite its positive impacts on biofuel production, sonication was found to be energetically inefficient based on the lab-scale studies reviewed. To conclude, this study reviewed some of the challenges of ultrasound irradiation for enhanced biofuel production while outlining some areas for further research.
Collapse
Affiliation(s)
- Zumar M A Bundhoo
- Department of Chemical & Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, Mauritius.
| | - Romeela Mohee
- Department of Chemical & Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, Mauritius
| |
Collapse
|
8
|
Sewsynker-Sukai Y, Gueguim Kana EB. Optimization of a novel sequential alkalic and metal salt pretreatment for enhanced delignification and enzymatic saccharification of corn cobs. BIORESOURCE TECHNOLOGY 2017; 243:785-792. [PMID: 28711808 DOI: 10.1016/j.biortech.2017.06.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 05/08/2023]
Abstract
This study presents a sequential sodium phosphate dodecahydrate (Na3PO4·12H2O) and zinc chloride (ZnCl2) pretreatment to enhance delignification and enzymatic saccharification of corn cobs. The effects of process parameters of Na3PO4·12H2O concentration (5-15%), ZnCl2 concentration (1-5%) and solid to liquid ratio (5-15%) on reducing sugar yield from corn cobs were investigated. The sequential pretreatment model was developed and optimized with a high coefficient of determination value (0.94). Maximum reducing sugar yield of 1.10±0.01g/g was obtained with 14.02% Na3PO4·12H2O, 3.65% ZnCl2 and 5% solid to liquid ratio. Scanning electron microscopy (SEM) and Fourier Transform Infrared analysis (FTIR) showed major lignocellulosic structural changes after the optimized sequential pretreatment with 63.61% delignification. In addition, a 10-fold increase in the sugar yield was observed compared to previous reports on the same substrate. This sequential pretreatment strategy was efficient for enhancing enzymatic saccharification of corn cobs.
Collapse
Affiliation(s)
| | - E B Gueguim Kana
- University of KwaZulu-Natal, School of Life Sciences, Pietermaritzburg, South Africa.
| |
Collapse
|
9
|
Sahoo D, Ummalyma SB, Okram AK, Sukumaran RK, George E, Pandey A. Potential of Brachiaria mutica (Para grass) for bioethanol production from Loktak Lake. BIORESOURCE TECHNOLOGY 2017; 242:133-138. [PMID: 28341381 DOI: 10.1016/j.biortech.2017.03.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 05/17/2023]
Abstract
The aim of present study was to evaluate feasibility of using the Para grass as feedstock for production of bioethanol. Process involved the pretreatment with dilute acid or alkali and followed by enzymatic saccharification with commercial cellulase. Maximum sugar release of 696mg/g was obtained from 10% biomass loading and 0.5% w/v of alkali whereas in the case of acid pretreatment maximum sugar of 660mg/g was obtained from 20% biomass loading and 2% w/v acid loading. Results showed that Para grass utilization as a biorefinery feedstock can be a potential strategy to address the sustainable utilization of this invasive grass thereby keeping its population in check in the Loktak Lake.
Collapse
Affiliation(s)
- Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development (IBSD), National Institute Under Department of Biotechnology Govt. of India, Takyelpat, Imphal 795001, Manipur, India.
| | - Sabeela Beevi Ummalyma
- Institute of Bioresources and Sustainable Development (IBSD), National Institute Under Department of Biotechnology Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Aswini Kumar Okram
- Institute of Bioresources and Sustainable Development (IBSD), National Institute Under Department of Biotechnology Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Rajeev K Sukumaran
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate PO, Trivandrum 19, India
| | - Emrin George
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate PO, Trivandrum 19, India
| | - Ashok Pandey
- Center of Innovative and Applied Bioprocessing (CIAB), Mohali 160 071, India
| |
Collapse
|
10
|
Sindhu R, Binod P, Mathew AK, Abraham A, Gnansounou E, Ummalyma SB, Thomas L, Pandey A. Development of a novel ultrasound-assisted alkali pretreatment strategy for the production of bioethanol and xylanases from chili post harvest residue. BIORESOURCE TECHNOLOGY 2017; 242:146-151. [PMID: 28286012 DOI: 10.1016/j.biortech.2017.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 05/20/2023]
Abstract
A novel ultrasound-assisted alkali pretreatment strategy was developed which could effectively remove lignin and hemicelluloses and improve the sugar yield from chili post harvest residue. Operational parameters that affect the pretreatment efficiency were studied and optimized. Inhibitor analysis of the hydrolyzate revealed that major fermentation inhibitors like furfural, 5-hydroxymethyl furfural as well as organic acids like citric acid, succinic acid and propionic acid were absent. Hence fermentation can be carried out without detoxification of the hydrolyzate. Changes in structural properties of the biomass were studied in relation to the pretreatment process using Scanning Electron Microscopy (SEM) and the changes in chemical composition were also monitored. The biomass pretreated with the optimized novel method could yield 0.428g/g of reducing sugars upon enzymatic hydrolysis. The hydrolyzate obtained by this novel pretreatment strategy was found to be suitable for bioethanol and xylanase production.
Collapse
Affiliation(s)
- Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India.
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Anil Kuruvilla Mathew
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Amith Abraham
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Edgard Gnansounou
- Ecole Polytechnique Federale de Lausanne, Institute of Urban and Regional Sciences, GC A3, Station 18, CH-1015 Lausanne, Switzerland
| | - Sabeela Beevi Ummalyma
- Institute of Bioresources and Sustainable Development (IBSD), Imphal 795001, Manipur, India
| | - Leya Thomas
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Ashok Pandey
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Center of Innovative and Applied Bioprocessing, C-127, II Floor, Phase 8, Industrial Area, SAS Nagar, Mohali 160 071, Punjab, India
| |
Collapse
|
11
|
Moodley P, Kana EBG. Microwave-assisted inorganic salt pretreatment of sugarcane leaf waste: Effect on physiochemical structure and enzymatic saccharification. BIORESOURCE TECHNOLOGY 2017; 235:35-42. [PMID: 28360018 DOI: 10.1016/j.biortech.2017.03.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 05/12/2023]
Abstract
This paper presents a method to pretreat sugarcane leaf waste using microwave-assisted (MA) inorganic salt to enhance enzymatic saccharification. The effects of process parameters of salt concentration, microwave power intensity and pretreatment time on reducing sugar yield from sugarcane leaf waste were investigated. Pretreatment models based on MA-NaCl, MA-ZnCl2 and MA-FeCl3 were developed with high coefficients of determination (R2 >0.8) and optimized. Maximum reducing sugar yield of 0.406g/g was obtained with 2M FeCl3 at 700W for 3.5min. Scanning electron microscopy (SEM), Fourier Transform Infrared analysis (FTIR) and X-ray diffraction (XRD) showed major changes in lignocellulosic structure after MA-FeCl3 pretreatment with 71.5% hemicellulose solubilization. This regime was further assessed on sorghum leaves and Napier grass under optimal MA-FeCl3 conditions. A 2-fold and 3.1-fold increase in sugar yield respectively were observed compared to previous reports. This pretreatment was highly effective for enhancing enzymatic saccharification of lignocellulosic biomass.
Collapse
Affiliation(s)
- Preshanthan Moodley
- University of KwaZulu-Natal, School of Life Sciences, Pietermaritzburg, South Africa
| | - E B Gueguim Kana
- University of KwaZulu-Natal, School of Life Sciences, Pietermaritzburg, South Africa.
| |
Collapse
|
12
|
Bhatia SK, Kim J, Song HS, Kim HJ, Jeon JM, Sathiyanarayanan G, Yoon JJ, Park K, Kim YG, Yang YH. Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01. BIORESOURCE TECHNOLOGY 2017; 233:99-109. [PMID: 28260667 DOI: 10.1016/j.biortech.2017.02.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
The effect of various biomass derived inhibitors (i.e. furfural, hydroxymethylfurfural (HMF), vanillin, 4-hydroxy benzaldehyde (4-HB) and acetate) was investigated for fatty acid accumulation in Rhodococcus sp. YHY 01. Rhodococcus sp. YHY01 was able to utilize acetate, vanillin, and 4-HB for biomass production and fatty acid accumulation. The IC50 value for furfural (3.1mM), HMF (3.2mM), vanillin (2.0mM), 4-HB (2.7mM) and acetate (3.7mM) was calculated. HMF and vanillin affect fatty acid composition and increase saturated fatty acid content. Rhodococcus sp. YHY 01 cultured with empty fruit bunch hydrolysate (EFBH) as the main carbon source resulted in enhanced biomass (20%) and fatty acid productivity (37%), in compression to glucose as a carbon source. Overall, this study showed the beneficial effects of inhibitory molecules on growth and fatty acid production, and support the idea of biomass hydrolysate utilization for biodiesel production by avoiding complex efforts to remove inhibitory compounds.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 143-701, South Korea; Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 143-701, South Korea
| | - Junyoung Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 143-701, South Korea
| | - Hun-Seok Song
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 143-701, South Korea
| | - Hyun Joong Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 143-701, South Korea
| | - Jong-Min Jeon
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 143-701, South Korea
| | - Ganesan Sathiyanarayanan
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 143-701, South Korea
| | - Jeong-Jun Yoon
- IT Convergence Materials R&BD Group, Chungcheong Regional Division, Korea Institute of Industrial Technology (KITECH), 35-3 Hongchon-ri, Ipjang-myun, Seobuk-gu, Chonan-si, Chungnam 330-825, South Korea
| | - Kyungmoon Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong Ro 2639, Jochiwon, Sejong City 339-701, South Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, 511 Sangdo-dong, Seoul 156-743, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 143-701, South Korea; Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 143-701, South Korea.
| |
Collapse
|