1
|
Ahuja V, Chauhan S, Purewal SS, Mehariya S, Patel AK, Kumar G, Megharaj M, Yang YH, Bhatia SK. Microbial alchemy: upcycling of brewery spent grains into high-value products through fermentation. Crit Rev Biotechnol 2024; 44:1367-1385. [PMID: 38163946 DOI: 10.1080/07388551.2023.2286430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
Spent grains are one of the lignocellulosic biomasses available in abundance, discarded by breweries as waste. The brewing process generates around 25-30% of waste in different forms and spent grains alone account for 80-85% of that waste, resulting in a significant global waste volume. Despite containing essential nutrients, i.e., carbohydrates, fibers, proteins, fatty acids, lipids, minerals, and vitamins, efficient and economically viable valorization of these grains is lacking. Microbial fermentation enables the valorization of spent grain biomass into numerous commercially valuable products used in energy, food, healthcare, and biomaterials. However, the process still needs more investigation to overcome challenges, such as transportation, cost-effective pretreatment, and fermentation strategy. to lower the product cost and to achieve market feasibility and customer affordability. This review summarizes the potential of spent grains valorization via microbial fermentation and associated challenges.
Collapse
Affiliation(s)
- Vishal Ahuja
- University Institute of Biotechnology, Chandigarh University, Mohali, India
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | - Shikha Chauhan
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Sukhvinder Singh Purewal
- University Institute of Biotechnology, Chandigarh University, Mohali, India
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | | | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Norway
| | - Mallavarapu Megharaj
- Global Centre for Environmental remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, Australia
| | - Yung-Hun Yang
- Institute for Ubiquitous Information Technology and Applications, Seoul, Republic of Korea
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Shashi Kant Bhatia
- Institute for Ubiquitous Information Technology and Applications, Seoul, Republic of Korea
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Emmanuel JK, Nganyira PD, Shao GN. Evaluating the potential applications of brewers' spent grain in biogas generation, food and biotechnology industry: A review. Heliyon 2022; 8:e11140. [PMCID: PMC9626929 DOI: 10.1016/j.heliyon.2022.e11140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/22/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Breweries, as the major users of fossil fuels, are constantly under economic and environmental pressure to minimize energy consumption and residual management costs. Biogas generation from brewing wastes is a realistic solution for significantly reducing fossil fuel use. Brewers' spent grain (BSG) forms about eighty per cent of the total wastes from a brewing plant. BSG has a high cellulose and non-cellulosic polysaccharides content which makes it potential for biogas production. This paper reviews the potential applications of BSG as an alternative substrate for production of biogas and the recent achievements which have been attained in anaerobic digestion (AD) technology. The usability of BSG in diverse technologies including production of animal and human food and as a medium for growing microorganisms and enzymes is reviewed. The chemical processes involved in producing biogas from BSG are discussed.
Collapse
|
3
|
Puligundla P, Mok C. Recent advances in biotechnological valorization of brewers' spent grain. Food Sci Biotechnol 2021; 30:341-353. [PMID: 33868745 DOI: 10.1007/s10068-021-00900-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022] Open
Abstract
Brewers' spent grain (BSG) is the most abundant by-product of beer-brewing. BSG is rich in nutrients such as protein, fiber, minerals, and vitamins, and therefore it is conventionally used as low-cost animal feed. On the other hand, alternative utilization of BSG has gained increased attention during recent years due to technological progress in its processing and the emergence of the concept of circular economy. The valorization of BSG through biotechnological approaches is environmentally friendly and sustainable. This review was focused on recent advancements in the conversion of BSG into value-added products, including bioenergy (ethanol, butanol, hydrogen, biodiesel, and biogas), organic acids, enzymes, xylitol, oligosaccharides, and single cell protein, via biotechnological approaches. In addition, the potential applications of BSG as immobilization matrices in bioprocesses have been reviewed.
Collapse
Affiliation(s)
- Pradeep Puligundla
- Department of Food Science and Biotechnology, Gachon University, Seongnam-si, Republic of Korea
| | - Chulkyoon Mok
- Department of Food Science and Biotechnology, Gachon University, Seongnam-si, Republic of Korea
| |
Collapse
|
4
|
Feasibility Analysis of Brewers’ Spent Grain for Energy Use: Waste and Experimental Pellets. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Waste production is increasing every day as a consequence of human activities; thus, its valorization is becoming more important. For this purpose, the usage of wastes as biofuels is one of the most important aspects of sustainable strategies. This is the case of the main waste generated in brewing industries: brewers’ spent grain (BSG). In this sector, microbreweries are not able to properly manage the wastes that they generate due to lack of space. Consequently, the transformation of BSG to a high-quality biofuel might be an interesting option for this kind of small industry. In this work, we carried out a physical-energy characterization of BSG, as well as pellets from this waste. The initial characterization showed slightly unfavorable results concerning N and ash, with values of 3.76% and 3.37% db, respectively. Nevertheless, the physical characterization of the pellets was very good, with acceptable bulk density (662.96 kg·m−3 wb) and low heating value (LHV; 17.65 MJ·kg−1 wb), among others. This situation is very favorable for any of the intended uses (for energy use or animal feed, among others).
Collapse
|
5
|
Protein production from brewer’s spent grain via wet fractionation: process optimization and techno-economic analysis. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Kavalopoulos M, Stoumpou V, Christofi A, Mai S, Barampouti EM, Moustakas K, Malamis D, Loizidou M. Sustainable valorisation pathways mitigating environmental pollution from brewers' spent grains. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116069. [PMID: 33338956 DOI: 10.1016/j.envpol.2020.116069] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/30/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
In this work, valorisation pathways of brewers' spent grains (BSG) towards biofuels production under the biorefinery concept were studied utilizing experimental data that provide a common base for straightforward comparison. The dehydration and the recovery of used oil, bioethanol and biogas from BSG were studied. The process units involved were thoroughly investigated and optimized. The oil extraction efficiency reached up to 70% using solid-liquid extraction process with hexane as solvent. The optimal ethanol yield achieved was 45% after the application of acid pretreatment, enzymatic hydrolysis with CellicCTec2 and fermentation with S. Cerevisiae. As far as biogas potential is concerned, the raw BSG, defatted BSG and stillage presented values equal to 379 ± 19, 235 ± 21 and 168 ± 39 mL biogas/g for respectively. Through the combination of the proposed schemes, three biorefinery scenarios were set up able to produce biodiesel, bioethanol and/or biogas. Material flow diagrams were set up in order to assess these schemes. Given that BSG could ensure 'green' energy production in the range of 4.5-7.0 million MJ/y if the European BSG potential is fully valorised, BSG could substantially contribute to the biofuel energy strategy.
Collapse
Affiliation(s)
- Michael Kavalopoulos
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science Technology, 9 Heroon Polytechniou Str., Zographou Campus, Athens, GR-15780, Greece
| | - Vasileia Stoumpou
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science Technology, 9 Heroon Polytechniou Str., Zographou Campus, Athens, GR-15780, Greece
| | - Andreas Christofi
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science Technology, 9 Heroon Polytechniou Str., Zographou Campus, Athens, GR-15780, Greece
| | - Sofia Mai
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science Technology, 9 Heroon Polytechniou Str., Zographou Campus, Athens, GR-15780, Greece
| | - Elli Maria Barampouti
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science Technology, 9 Heroon Polytechniou Str., Zographou Campus, Athens, GR-15780, Greece
| | - Konstantinos Moustakas
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science Technology, 9 Heroon Polytechniou Str., Zographou Campus, Athens, GR-15780, Greece
| | - Dimitris Malamis
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science Technology, 9 Heroon Polytechniou Str., Zographou Campus, Athens, GR-15780, Greece
| | - Maria Loizidou
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science Technology, 9 Heroon Polytechniou Str., Zographou Campus, Athens, GR-15780, Greece.
| |
Collapse
|
7
|
|
8
|
Sarkar O, Rova U, Christakopoulos P, Matsakas L. Influence of initial uncontrolled pH on acidogenic fermentation of brewery spent grains to biohydrogen and volatile fatty acids production: Optimization and scale-up. BIORESOURCE TECHNOLOGY 2021; 319:124233. [PMID: 33254458 DOI: 10.1016/j.biortech.2020.124233] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 05/27/2023]
Abstract
This two-phase, two-stage study analyzed production of biohydrogen and volatile fatty acids by acidogenic fermentation of brewery spent grains. Phase-1 served to optimize the effect of pH (4-10) on acidogenic fermentation; whereas phase-2 validated the optimized conditions by scaling up the process to 2 L, 5 L, and 10 L. Alkaline conditions (pH 9) yielded excellent cumulative H2 production (834 mL) and volatile fatty acid recovery (8936 mg/L) in phase-1. Extended fermentation time (from 5 to 10 days) upgraded the accumulated short-chain fatty acids (C2-C4) to medium-chain fatty acids (C5-C6). Enrichment for acidogens in modified mixed culture improved fatty acid production; while their consumption by methanogens in unmodified culture led to methane formation. Increased CH4 but decreased H2 content enabled biohythane generation. Scaling up confirmed the role of pH and culture type in production of renewable fuels and platform molecules from brewery spent grains.
Collapse
Affiliation(s)
- Omprakash Sarkar
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87 Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87 Luleå, Sweden.
| |
Collapse
|
9
|
Physicochemical Characterization and SEM-EDX Analysis of Brewer’s Spent Grain from the Craft Brewery Industry. SUSTAINABILITY 2020. [DOI: 10.3390/su12187744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The brewing industry generates, as the primary coproduct, brewers’ spent grain (BSG). In Mexicali, Baja California, Mexico, there are 17 companies that generated 282 tons of BSG by 2016. Cattle feeding is the most common type of disposal for this waste. However, it can be valorized for the production of bioenergy or as a source of added-value products. Therefore, the objective of the present work was to assess the physicochemical properties of the brewers’ spent grain from a local craft brewery, to choose the most appropriate exploitation route. Chemical and morphological analyses were carried out by energy dispersive X-ray fluorescence spectroscopy (EDX), scanning electron microscopy, and the higher heating value determination. The results of the proximate analyses were 72.32% moisture, 78.47% volatile matter, 17.48% fixed carbon, and 4.05% ash. The results of the chemical analysis for extractables were 5.23% using organic solvent and 50.25% using hot water. The content determination were 17.13% lignin, 26.80% cellulose, and 37.17% hemicellulose. The results of the ultimate analysis were 43.59% C, 6.18% H, 3.46% N, and 37.22% O. The higher heating value experimentally obtained was 18.70 MJ/kg. Moreover, in the EDX analysis, Ca, P, K, and S were mainly found. It is recommendable to valorize the BSG through the xylitol, bioethanol or biogas production, because of its high moisture, hemicellulose and cellulose content.
Collapse
|
10
|
Abstract
This review was based on updated research on how to use brewer’s spent grains (BSG). The use of BSG was considered both in food, as an ingredient or using value-added components derived from brewer’s spent grain, or in non-food products such as pharmaceuticals, cosmetics, construction, or food packaging. BSG is a valuable source of individual components due to its high nutritional value and low cost that is worth exploiting more to reduce food waste but also to improve human health and the environment. From the bioeconomy point of view, biological resources are transformed into bioenergetically viable and economically valuable products. The pretreatment stage of BSG biomass plays an important role in the efficiency of the extraction process and the yield obtained. The pretreatments presented in this review are both conventional and modern extraction methods, such as solvent extractions or microwave-assisted extractions, ultrasonic-assisted extractions, etc.
Collapse
|
11
|
Zhang J, Kong C, Yang M, Zang L. Comparison of Calcium Oxide and Calcium Peroxide Pretreatments of Wheat Straw for Improving Biohydrogen Production. ACS OMEGA 2020; 5:9151-9161. [PMID: 32363267 PMCID: PMC7191593 DOI: 10.1021/acsomega.9b04368] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Wheat straw was pretreated with either CaO2 or CaO to improve biohydrogen production. Both CaO and CaO2 pretreatments improved the biodegradability of the wheat straw. CaO pretreatment raised the H2 yield by between 48.8 and 163.9% at CaO contents ranging from 2 to 4%. The highest H2 yield [144 mL/g total solid (TS)] was obtained at 121 °C and 6% CaO. In addition, the highest H2 yield from wheat straw pretreated at the same temperature and dosage of CaO2 was 71.8 mL/g TS, which was higher than that of the control group (43.2 mL/g TS), with hot water (121 °C) treatment. Considering pretreatment costs and H2 production potential, CaO was a better pretreatment agent than CaO2.
Collapse
|
12
|
|
13
|
Ravindran R, Jaiswal S, Abu-Ghannam N, Jaiswal AK. A comparative analysis of pretreatment strategies on the properties and hydrolysis of brewers' spent grain. BIORESOURCE TECHNOLOGY 2018; 248:272-279. [PMID: 28648256 DOI: 10.1016/j.biortech.2017.06.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 05/25/2023]
Abstract
In this study, brewer's spent grain (BSG) was subjected to a range pretreatments to study the effect on reducing sugar yield. Glucose and xylose were found to be the predominant sugars in BSG. Brewers spent grain was high in cellulose (19.21g/100g of BSG) and lignin content (30.84g/100g of BSG). Microwave assisted alkali (MAA) pretreatment was found to be the most effective pretreatment for BSG, where the pretreatment was conducted at 400W for 60s. A maximum reducing yield was observed with high biomass loading (1g/10ml), cellulase (158.76μl/10ml), hemicellulase (153.3μl/10ml), pH (5.4) and an incubation time (120h). Upon enzymatic hydrolysis, MAA pretreated BSG yielded 228.25mg of reducing sugar/g of BSG which was 2.86-fold higher compared to native BSG (79.67mg/g of BSG); simultaneously BSG was de-lignified significantly. The changes in functional groups, crystallinity and thermal behaviour was studies by means of FTIR, XRD and DSC, respectively.
Collapse
Affiliation(s)
- Rajeev Ravindran
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland
| | - Swarna Jaiswal
- Centre for Research in Engineering and Surface Technology, FOCAS Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - Nissreen Abu-Ghannam
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland.
| |
Collapse
|
14
|
Development of an Energy Biorefinery Model for Chestnut (Castanea sativa Mill.) Shells. ENERGIES 2017. [DOI: 10.3390/en10101504] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|