1
|
Xiong L, Wang YT, Zhou MH, Takagi H, Qin J, Zhao XQ. Overexpression of arginase gene CAR1 renders yeast Saccharomyces cerevisiae acetic acid tolerance. Synth Syst Biotechnol 2024; 9:723-732. [PMID: 38882181 PMCID: PMC11178985 DOI: 10.1016/j.synbio.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/12/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Acetic acid is a common inhibitor present in lignocellulose hydrolysate, which inhibits the ethanol production by yeast strains. Therefore, the cellulosic ethanol industry requires yeast strains that can tolerate acetic acid stress. Here we demonstrate that overexpressing a yeast native arginase-encoding gene, CAR1, renders Saccharomyces cerevisiae acetic acid tolerance. Specifically, ethanol yield increased by 27.3% in the CAR1-overexpressing strain compared to the control strain under 5.0 g/L acetic acid stress. The global intracellular amino acid level and compositions were further analyzed, and we found that CAR1 overexpression reduced the total amino acid content in response to acetic acid stress. Moreover, the CAR1 overexpressing strain showed increased ATP level and improved cell membrane integrity. Notably, we demonstrated that the effect of CAR1 overexpression was independent of the spermidine and proline metabolism, which indicates novel mechanisms for enhancing yeast stress tolerance. Our studies also suggest that CAR1 is a novel genetic element to be used in synthetic biology of yeast for efficient production of fuel ethanol.
Collapse
Affiliation(s)
- Liang Xiong
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Ya-Ting Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Science, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming-Hai Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Science, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hiroshi Takagi
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Jiufu Qin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Science, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Li M, Zhu W, Fan J, Gao M, Wang X, Wu C, Wang Y, Lu Y. Carbon catabolite repression during the simultaneous utilization of lignocellulose-derived sugars in lactic acid production: Influencing factors and mitigation strategies. ENVIRONMENTAL RESEARCH 2024; 266:120484. [PMID: 39617153 DOI: 10.1016/j.envres.2024.120484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Lignocellulose is the most abundant, sustainable, and comparatively economical renewable biomass containing ample fermentable sugars for bio-based chemical production, such as lactic acid (LA). LA is a versatile chemical with substantial global demand. However, the concurrent utilization of mixed sugars derived from lignocellulose, including glucose, xylose, and arabinose, remains a formidable challenge because of the metabolic regulation of carbon catabolite repression (CCR), in which glucose is preferentially utilized over non-glucose sugars, resulting in the loss of carbon resources and a decrease in biorefinery efficacy. Most current studies on CCR have concentrated on elucidating the principles and their impact on specific bacterial species using mixed carbon sources. However, there remains a notable dearth of comprehensive reviews summarizing the underlying principles and corresponding mitigation strategies across other bacterial strains encountering similar challenges. In light of this, this article delineates the possible factors that lead to CCR, including signal transduction and metabolic pathways. Additionally, the fermentation conditions and nutrients are described. Finally, this study proposes appropriate mitigation strategies to overcome the aforementioned obstacles and presents new insights into the rapid and simultaneous consumption of mixed sugars to bolster the production yields of biofuels and chemicals in the future.
Collapse
Affiliation(s)
- Mingxi Li
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Wenbin Zhu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, Guangdong, China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiamei Fan
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ying Wang
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China; Chengdu Environmental Investment Group Co., LTD, Chengdu, 610042, Sichuan, China.
| | - Yuan Lu
- Chengdu Environmental Investment Group Co., LTD, Chengdu, 610042, Sichuan, China.
| |
Collapse
|
3
|
Zhang MM, Yuan B, Wang YT, Zhang FL, Liu CG, Zhao XQ. Differential Protein Expression in Set5p-Mediated Acetic Acid Stress Response and Novel Targets for Engineering Yeast Stress Tolerance. J Proteome Res 2024; 23:2986-2998. [PMID: 38396335 DOI: 10.1021/acs.jproteome.3c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Acetic acid is a prevalent inhibitor in lignocellulosic hydrolysate, which represses microbial growth and bioproduction. Histone modification and chromatin remodeling have been revealed to be critical for regulating eukaryotic metabolism. However, related studies in chronic acetic acid stress responses remain unclear. Our previous studies revealed that overexpression of the histone H4 methyltransferase Set5p enhanced acetic acid stress tolerance of the budding yeast Saccharomyces cerevisiae. In this study, we examined the role of Set5p in acetic acid stress by analyzing global protein expression. Significant activation of intracellular protein expression under the stress was discovered, and the functions of the differential proteins were mainly involved in chromatin modification, signal transduction, and carbohydrate metabolism. Notably, a substantial increase of Set5p expression was observed in response to acetic acid stress. Functional studies demonstrated that the restriction of the telomere capping protein Rtc3p, as well as Ies3p and Taf14p, which are related to chromatin regulation, was critical for yeast stress response. This study enriches the understanding of the epigenetic regulatory mechanisms underlying yeast stress response mediated by histone-modifying enzymes. The results also benefit the development of robust yeast strains for lignocellulosic bioconversion.
Collapse
Affiliation(s)
- Ming-Ming Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bing Yuan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ya-Ting Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng-Li Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Zeng DW, Yang YQ, Wang Q, Zhang FL, Zhang MD, Liao S, Liu ZQ, Fan YC, Liu CG, Zhang L, Zhao XQ. Transcriptome analysis of Kluyveromyces marxianus under succinic acid stress and development of robust strains. Appl Microbiol Biotechnol 2024; 108:293. [PMID: 38592508 PMCID: PMC11003901 DOI: 10.1007/s00253-024-13097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Kluyveromyces marxianus has become an attractive non-conventional yeast cell factory due to its advantageous properties such as high thermal tolerance and rapid growth. Succinic acid (SA) is an important platform molecule that has been applied in various industries such as food, material, cosmetics, and pharmaceuticals. SA bioproduction may be compromised by its toxicity. Besides, metabolite-responsive promoters are known to be important for dynamic control of gene transcription. Therefore, studies on global gene transcription under various SA concentrations are of great importance. Here, comparative transcriptome changes of K. marxianus exposed to various concentrations of SA were analyzed. Enrichment and analysis of gene clusters revealed repression of the tricarboxylic acid cycle and glyoxylate cycle, also activation of the glycolysis pathway and genes related to ergosterol synthesis. Based on the analyses, potential SA-responsive promoters were investigated, among which the promoter strength of IMTCP2 and KLMA_50231 increased 43.4% and 154.7% in response to 15 g/L SA. In addition, overexpression of the transcription factors Gcr1, Upc2, and Ndt80 significantly increased growth under SA stress. Our results benefit understanding SA toxicity mechanisms and the development of robust yeast for organic acid production. KEY POINTS: • Global gene transcription of K. marxianus is changed by succinic acid (SA) • Promoter activities of IMTCP2 and KLMA_50123 are regulated by SA • Overexpression of Gcr1, Upc2, and Ndt80 enhanced SA tolerance.
Collapse
Affiliation(s)
- Du-Wen Zeng
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong-Qiang Yang
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Qi Wang
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Feng-Li Zhang
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mao-Dong Zhang
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sha Liao
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian, 116045, China
| | - Zhi-Qiang Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Ya-Chao Fan
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian, 116045, China
| | - Chen-Guang Liu
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lin Zhang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian, 116045, China.
| | - Xin-Qing Zhao
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Wang XQ, Yuan B, Zhang FL, Liu CG, Auesukaree C, Zhao XQ. Novel Roles of the Greatwall Kinase Rim15 in Yeast Oxidative Stress Tolerance through Mediating Antioxidant Systems and Transcriptional Regulation. Antioxidants (Basel) 2024; 13:260. [PMID: 38539794 PMCID: PMC10967648 DOI: 10.3390/antiox13030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 11/11/2024] Open
Abstract
The Greatwall-family protein kinase Rim15 is associated with the nutrient starvation response, whereas its role in oxidative stress responses remains unclear. Here, acetic acid and peroxide were used as two oxidative stress elicitors. The antioxidant indicator assay under acetic acid stress revealed the impaired growth in rim15Δ related to the regulation of antioxidant systems. Comparative transcriptome analysis revealed that differentially expressed genes (DEGs) are predicted to be mostly regulated by oxidative stress-responsive transcriptional factor Yap1. Among the DEGs, acetic acid stress-induced genes were found, and YAP1 disruption also inhibited their induction. The deletion of Rim15 or the Rim15 kinase domain in yap1Δ did not further decrease the gene expression, suggesting that Rim15 functions together with Yap1 in regulating acetic acid stress-induced genes, which requires Rim15 kinase activity. Additionally, Rim15 regulated H2O2 stress tolerance through partially similar but special mechanisms in that Rim15 kinase activity impacted acetic acid and H2O2 stress tolerance in different degrees, indicating the different mechanisms underlying Rim15-mediated redox regulation against different stressors. These results benefit the better understanding of stress signaling pathways related to Rim15. Given that Rim15 and some of its target genes are conserved across eukaryotes, these results also provide a basis for studies of oxidative stress-related processes in other organisms.
Collapse
Affiliation(s)
- Xue-Qing Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| | - Bing Yuan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| | - Feng-Li Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| | - Choowong Auesukaree
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| |
Collapse
|
6
|
Zhang FL, Zhang L, Zeng DW, Liao S, Fan Y, Champreda V, Runguphan W, Zhao XQ. Engineering yeast cell factories to produce biodegradable plastics and their monomers: Current status and prospects. Biotechnol Adv 2023; 68:108222. [PMID: 37516259 DOI: 10.1016/j.biotechadv.2023.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Traditional plastic products have caused serious environmental pollution due to difficulty to be degraded in the natural environment. In the recent years, biodegradable plastics are receiving increasing attention due to advantages in natural degradability and environmental friendliness. Biodegradable plastics have potential to be used in food, agriculture, industry, medicine and other fields. However, the high production cost of such plastics is the bottleneck that limits their commercialization and application. Yeasts, including budding yeast and non-conventional yeasts, are widely studied to produce biodegradable plastics and their organic acid monomers. Compared to bacteria, yeast strains are more tolerable to multiple stress conditions including low pH and high temperature, and also have other advantages such as generally regarded as safe, and no phage infection. In addition, synthetic biology and metabolic engineering of yeast have enabled its rapid and efficient engineering for bioproduction using various renewable feedstocks, especially lignocellulosic biomass. This review focuses on the recent progress in biosynthesis technology and strategies of monomeric organic acids for biodegradable polymers, including polylactic acid (PLA), polyhydroxyalkanoate (PHA), polybutylene succinate (PBS), and polybutylene adipate terephthalate (PBAT) using yeast cell factories. Improving the performance of yeast as a cell factory and strategies to improve yeast acid stress tolerance are also discussed. In addition, the critical challenges and future prospects for the production of biodegradable plastic monomer using yeast are also discussed.
Collapse
Affiliation(s)
- Feng-Li Zhang
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Zhang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian 116045, China
| | - Du-Wen Zeng
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sha Liao
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian 116045, China
| | - Yachao Fan
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian 116045, China
| | - Verawat Champreda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Xin-Qing Zhao
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
7
|
Liu M, Hu M, Zhou H, Dong Z, Chen X. High-level production of Aspergillus niger prolyl endopeptidase from agricultural residue and its application in beer brewing. Microb Cell Fact 2023; 22:93. [PMID: 37143012 PMCID: PMC10161650 DOI: 10.1186/s12934-023-02087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Prolyl endopeptidase from Aspergillus niger (AN-PEP) is a prominent serine proteinase with various potential applications in the food and pharmaceutical industries. However, the availability of efficient and low-cost AN-PEP remains a challenge owing to its low yield and high fermentation cost. RESULTS Here, AN-PEP was recombinantly expressed in Trichoderma reesei (rAN-PEP) under the control of the cbh1 promoter and its secretion signal. After 4 days of shaking flask cultivation with the model cellulose Avicel PH101 as the sole carbon source, the extracellular prolyl endopeptidase activity reached up to 16.148 U/mL, which is the highest titer reported to date and the secretion of the enzyme is faster in T. reesei than in other eukaryotic expression systems including A. niger and Komagataella phaffii. Most importantly, when cultivated on the low-cost agricultural residue corn cob, the recombinant strain was found to secret a remarkable amount of rAN-PEP (37.125 U/mL) that is twice the activity under the pure cellulose condition. Furthermore, treatment with rAN-PEP during beer brewing lowered the content of gluten below the ELISA kit detection limit (< 10 mg/kg) and thereby, reduced turbidity, which would be beneficial for improving the non-biological stability of beer. CONCLUSION Our research provides a promising approach for industrial production of AN-PEP and other enzymes (proteins) from renewable lignocellulosic biomass, which provides a new idea with relevant researchers for the utilization of agricultural residues.
Collapse
Affiliation(s)
- Minglu Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiuzhen Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
8
|
Geng B, Jia X, Peng X, Han Y. Biosynthesis of value-added bioproducts from hemicellulose of biomass through microbial metabolic engineering. Metab Eng Commun 2022; 15:e00211. [PMID: 36311477 PMCID: PMC9597109 DOI: 10.1016/j.mec.2022.e00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Hemicellulose is the second most abundant carbohydrate in lignocellulosic biomass and has extensive applications. In conventional biomass refinery, hemicellulose is easily converted to unwanted by-products in pretreatment and therefore can't be fully utilized. The present study aims to summarize the most recent development of lignocellulosic polysaccharide degradation and fully convert it to value-added bioproducts through microbial and enzymatic catalysis. Firstly, bioprocess and microbial metabolic engineering for enhanced utilization of lignocellulosic carbohydrates were discussed. The bioprocess for degradation and conversion of natural lignocellulose to monosaccharides and organic acids using anaerobic thermophilic bacteria and thermostable glycoside hydrolases were summarized. Xylose transmembrane transporting systems in natural microorganisms and the latest strategies for promoting the transporting capacity by metabolic engineering were summarized. The carbon catabolite repression effect restricting xylose utilization in microorganisms, and metabolic engineering strategies developed for co-utilization of glucose and xylose were discussed. Secondly, the metabolic pathways of xylose catabolism in microorganisms were comparatively analyzed. Microbial metabolic engineering for converting xylose to value-added bioproducts based on redox pathways, non-redox pathways, pentose phosphate pathway, and improving inhibitors resistance were summarized. Thirdly, strategies for degrading lignocellulosic polysaccharides and fully converting hemicellulose to value-added bioproducts through microbial metabolic engineering were proposed.
Collapse
Affiliation(s)
- Biao Geng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojing Jia
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaowei Peng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Chen HQ, Xing Q, Cheng C, Zhang MM, Liu CG, Champreda V, Zhao XQ. Identification of Kic1p and Cdc42p as Novel Targets to Engineer Yeast Acetic Acid Stress Tolerance. Front Bioeng Biotechnol 2022; 10:837813. [PMID: 35402407 PMCID: PMC8992792 DOI: 10.3389/fbioe.2022.837813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Robust yeast strains that are tolerant to multiple stress environments are desired for an efficient biorefinery. Our previous studies revealed that zinc sulfate serves as an important nutrient for stress tolerance of budding yeast Saccharomyces cerevisiae. Acetic acid is a common inhibitor in cellulosic hydrolysate, and the development of acetic acid-tolerant strains is beneficial for lignocellulosic biorefineries. In this study, comparative proteomic studies were performed using S. cerevisiae cultured under acetic acid stress with or without zinc sulfate addition, and novel zinc-responsive proteins were identified. Among the differentially expressed proteins, the protein kinase Kic1p and the small rho-like GTPase Cdc42p, which is required for cell integrity and regulation of cell polarity, respectively, were selected for further studies. Overexpression of KIC1 and CDC42 endowed S. cerevisiae with faster growth and ethanol fermentation under the stresses of acetic acid and mixed inhibitors, as well as in corncob hydrolysate. Notably, the engineered yeast strains showed a 12 h shorter lag phase under the three tested conditions, leading to up to 52.99% higher ethanol productivity than that of the control strain. Further studies showed that the transcription of genes related to stress response was significantly upregulated in the engineered strains under the stress condition. Our results in this study provide novel insights in exploring zinc-responsive proteins for applications of synthetic biology in developing a robust industrial yeast.
Collapse
Affiliation(s)
- Hong-Qi Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Xing
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Cheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Ming Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Verawat Champreda
- National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Li Y, Li T, Guo J, Wang G, Chen G. Expression and characterization of a novel lytic polysaccharide monooxygenase, PdLPMO9A, from the edible fungus Pleurotus djamor and its synergistic interactions with cellulase in corn straw biomass saccharification. BIORESOURCE TECHNOLOGY 2022; 348:126792. [PMID: 35121098 DOI: 10.1016/j.biortech.2022.126792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Lytic polysaccharide monooxygenases play a unique role in biomass saccharification. A novel gene, PdLPMO9A, from Pleurotus djamor, was reported to be upregulated during the degradation of corn straw in our previous research. However, very little information is available on PdLPMO9A. Therefore, PdLPMO9A was heterologously expressed in Pichia pastoris, and biophysical characterisitics of the recombinant protein PdLPMO9A were investigated; it was shown to have superior thermostability and pH stability. PdLPMO9A markedly improved the cellulase-mediated saccharification of corn straw, when the dosage of PdLPMO9A was 0.66 mg/g corn straw and hydrolysis time was 48 h. When CuSO4 was added at a concentration of 0.1 mM, glucose yield rose by a further 28.16%. In light of these findings, it was concluded that PdLPMO9A has the potential to function as an essential component of a cellulase cocktail capable of ensuring the saccharification of corn straw biomass.
Collapse
Affiliation(s)
- Yanli Li
- College of Life Science, Jilin Agricultural University, Jilin 130118, China; Key laboratory of straw comprehensive utilization and black soil conservation, Education Ministry of China, Jilin Agricultural University, Jilin 130118, China.
| | - Tongbing Li
- College of Life Science, Jilin Agricultural University, Jilin 130118, China
| | - Juntong Guo
- College of Life Science, Jilin Agricultural University, Jilin 130118, China
| | - Gang Wang
- College of Life Science, Jilin Agricultural University, Jilin 130118, China; Key laboratory of straw comprehensive utilization and black soil conservation, Education Ministry of China, Jilin Agricultural University, Jilin 130118, China
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Jilin 130118, China; Key laboratory of straw comprehensive utilization and black soil conservation, Education Ministry of China, Jilin Agricultural University, Jilin 130118, China
| |
Collapse
|
11
|
Nanomaterial conjugated lignocellulosic waste: cost-effective production of sustainable bioenergy using enzymes. 3 Biotech 2021; 11:480. [PMID: 34790504 DOI: 10.1007/s13205-021-03002-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/26/2021] [Indexed: 01/28/2023] Open
Abstract
The demand for novel and renewable sources of energy has increased as a result of rapid population growth, limited sources of bioenergy, and environmental pollution, caused by excessive use of fossil fuels. The need to meet future energy demands have motivated researchers to search for alternative and sustainable sources of energy. The bioconversion of lignocellulosic waste (agricultural and food waste) into biofuels shows competitive promises. Lignocellulosic waste is easily accessible and has a large enzyme system that can be immobilised onto nano-matrices. Consequently, resulting in higher biofuel production and process efficiency. However, the excessive production cost of the current procedures, which involve physical, chemical, and enzymatic reactions, is limited. The use of nanomaterials has recently been shown to concentrate lignocellulosic waste, therefore, reviewing the quest for efficient production of sustainable and cost-effective development of bioenergy from lignocellulosic wastes. This review paper explores the advanced strategies of using nanobiotechnology to combine enzyme-conjugated nanosystems for the cost-effective production of sustainable bioenergy solutions. This research will help to develop an inexpensive, eco-friendly technology for biofuels production and also help overcome the environmental burden of lignocellulosic waste worldwide.
Collapse
|
12
|
Brandt BA, García-Aparicio MDP, Görgens JF, van Zyl WH. Rational engineering of Saccharomyces cerevisiae towards improved tolerance to multiple inhibitors in lignocellulose fermentations. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:173. [PMID: 34454598 PMCID: PMC8403374 DOI: 10.1186/s13068-021-02021-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The fermentation of lignocellulose hydrolysates to ethanol requires robust xylose-capable Saccharomyces cerevisiae strains able to operate in the presence of microbial inhibitory stresses. This study aimed at developing industrial S. cerevisiae strains with enhanced tolerance towards pretreatment-derived microbial inhibitors, by identifying novel gene combinations that confer resistance to multiple inhibitors (thus cumulative inhibitor resistance phenotype) with minimum impact on the xylose fermentation ability. The strategy consisted of multiple sequential delta-integrations of double-gene cassettes containing one gene conferring broad inhibitor tolerance (ARI1, PAD1 or TAL1) coupled with an inhibitor-specific gene (ADH6, FDH1 or ICT1). The performances of the transformants were compared with the parental strain in terms of biomass growth, ethanol yields and productivity, as well as detoxification capacities in a synthetic inhibitor cocktail, sugarcane bagasse hydrolysate as well as hardwood spent sulphite liquor. RESULTS The first and second round of delta-integrated transformants exhibited a trade-off between biomass and ethanol yield. Transformants showed increased inhibitor resistance phenotypes relative to parental controls specifically in fermentations with concentrated spent sulphite liquors at 40% and 80% v/v concentrations in 2% SC media. Unexpectedly, the xylose fermentation capacity of the transformants was reduced compared to the parental control, but certain combinations of genes had a minor impact (e.g. TAL1 + FDH1). The TAL1 + ICT1 combination negatively impacted on both biomass growth and ethanol yield, which could be linked to the ICT1 protein increasing transformant susceptibility to weak acids and temperature due to cell membrane changes. CONCLUSIONS The integration of the selected genes was proven to increase tolerance to pretreatment inhibitors in synthetic or industrial hydrolysates, but they were limited to the fermentation of glucose. However, some gene combination sequences had a reduced impact on xylose conversion.
Collapse
Affiliation(s)
- Bianca A Brandt
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Maria D P García-Aparicio
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Johann F Görgens
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
13
|
Adegboye MF, Ojuederie OB, Talia PM, Babalola OO. Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:5. [PMID: 33407786 PMCID: PMC7788794 DOI: 10.1186/s13068-020-01853-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/09/2020] [Indexed: 05/17/2023]
Abstract
The issues of global warming, coupled with fossil fuel depletion, have undoubtedly led to renewed interest in other sources of commercial fuels. The search for renewable fuels has motivated research into the biological degradation of lignocellulosic biomass feedstock to produce biofuels such as bioethanol, biodiesel, and biohydrogen. The model strain for biofuel production needs the capability to utilize a high amount of substrate, transportation of sugar through fast and deregulated pathways, ability to tolerate inhibitory compounds and end products, and increased metabolic fluxes to produce an improved fermentation product. Engineering microbes might be a great approach to produce biofuel from lignocellulosic biomass by exploiting metabolic pathways economically. Metabolic engineering is an advanced technology for the construction of highly effective microbial cell factories and a key component for the next-generation bioeconomy. It has been extensively used to redirect the biosynthetic pathway to produce desired products in several native or engineered hosts. A wide range of novel compounds has been manufactured through engineering metabolic pathways or endogenous metabolism optimizations by metabolic engineers. This review is focused on the potential utilization of engineered strains to produce biofuel and gives prospects for improvement in metabolic engineering for new strain development using advanced technologies.
Collapse
Affiliation(s)
- Mobolaji Felicia Adegboye
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa
| | - Omena Bernard Ojuederie
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa
- Department of Biological Sciences, Faculty of Science, Kings University, Ode-Omu, PMB 555, Osun State, Nigeria
| | - Paola M Talia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA CICVyA, CNIA, INTA Castelar, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, 1686) Hurlingham, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Y Tecnológicas (CONICET), Buenos Aires, Provincia de Buenos Aires, Argentina
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa.
| |
Collapse
|
14
|
Xu S, Jiang M, Lu Q, Gao S, Feng J, Wang X, He X, Chen K, Li Y, Ouyang P. Properties of Polyvinyl Alcohol Films Composited With Hemicellulose and Nanocellulose Extracted From Artemisia selengensis Straw. Front Bioeng Biotechnol 2020; 8:980. [PMID: 32984277 PMCID: PMC7477040 DOI: 10.3389/fbioe.2020.00980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/27/2020] [Indexed: 11/17/2022] Open
Abstract
Artemisia selengensis straw is an agricultural residue with great potential as a renewable resource because it is rich in lignocellulose. In this study, A. selengensis straw was used as a source of hemicelluloses (ASH) and cellulose nanocrystals (ASCNC) to produce biodegradable films. Different content levels of ASCNC were used as additives to improve composite films with ASH and polyvinyl alcohol (PVA). Various mechanical and hydrophobic properties of the films were analyzed. The composite films enhanced by ASCNC exhibited greater strength and were more effective as a barrier to water vapor when compared to that of the control ASH/PVA film. The tensile strength of the composite film was increased 80.1% to 36.21 MPa with ASCNC loading exceeding 9%, and the water vapor transmission rate decreased 15.45% when 12% ASCNC was added. Furthermore, the ASCNC-enhanced ASH/PVA composite film reduced a greater amount of light transmission than the control film.
Collapse
Affiliation(s)
- Sheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Mingjun Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Qiuhao Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Siyuan Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jiao Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xun He
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
15
|
Chen H, Li J, Wan C, Fang Q, Bai F, Zhao X. Improvement of inhibitor tolerance in Saccharomyces cerevisiae by overexpression of the quinone oxidoreductase family gene YCR102C. FEMS Yeast Res 2020; 19:5543220. [PMID: 31374572 DOI: 10.1093/femsyr/foz055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
Budding yeast Saccharomyces cerevisiae is widely used for lignocellulosic biorefinery. However, its fermentation efficiency is challenged by various inhibitors (e.g. weak acids, furfural) in the lignocellulosic hydrolysate, and acetic acid is commonly present as a major inhibitor. The effects of oxidoreductases on the inhibitor tolerance of S. cerevisiae have mainly focused on furfural and vanillin, whereas the influence of quinone oxidoreductase on acetic acid tolerance is still unknown. In this study, we show that overexpression of a quinone oxidoreductase-encoding gene, YCR102C, in S. cerevisiae, significantly enhanced ethanol production under acetic acid stress as well as in the inhibitor mixture, and also improved resistance to simultaneous stress of 40°C and 3.6 g/L acetic acid. Increased catalase activities, NADH/NAD+ ratio and contents of several metals, especially potassium, were observed by YCR102C overexpression under acetic acid stress. To our knowledge, this is the first report that the quinone oxidoreductase family protein is related to acid stress tolerance. Our study provides a novel strategy to increase lignocellulosic biorefinery efficiency using yeast cell factory.
Collapse
Affiliation(s)
- Hongqi Chen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chun Wan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing Fang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Fengwu Bai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinqing Zhao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Lamour J, Wan C, Zhang M, Zhao X, Den Haan R. Overexpression of endogenous stress-tolerance related genes in Saccharomyces cerevisiae improved strain robustness and production of heterologous cellobiohydrolase. FEMS Yeast Res 2020; 19:5479884. [PMID: 31073597 DOI: 10.1093/femsyr/foz035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
To enable Saccharomyces cerevisiae to produce renewable fuels from lignocellulose in a consolidated bioprocess, a heterologous cellulase system must be engineered into this yeast. In addition, inherently low secretion titers and sensitivity to adverse environmental conditions must be overcome. Here, two native S. cerevisiae genes related to yeast stress tolerance, YHB1 and SET5, were overexpressed under transcriptional control of the constitutive PGK1 promoter and their effects on heterologous secretion of Talaromyces emersonii cel7A cellobiohydrolase was investigated. Transformants showed increased secreted enzyme activity that ranged from 22% to 55% higher compared to the parental strains and this did not lead to deleterious growth effects. The recombinant strains overexpressing either YHB1 or SET5 also demonstrated multi-tolerant characteristics desirable in bioethanol production, i.e. improved tolerance to osmotic and heat stress. Quantitative reverse transcriptase PCR analysis in these strains showed decreased transcription of secretion pathway genes. However, decreased unfolded protein response was also observed, suggesting novel mechanisms for enhancing enzyme production through stress modulation. Overexpression of YHB1 in an unrelated diploid strain also enhanced stress tolerance and improved ethanol productivity in medium containing acetic acid. To our knowledge, this is the first demonstration that improved heterologous secretion and environmental stress tolerance could be engineered into yeast simultaneously.
Collapse
Affiliation(s)
- Jarryd Lamour
- Department of Biotechnology, University of the Western Cape, Bellville 7530, South Africa
| | - Chun Wan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingming Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Riaan Den Haan
- Department of Biotechnology, University of the Western Cape, Bellville 7530, South Africa
| |
Collapse
|
17
|
Zhang Y, Yang J, Luo L, Wang E, Wang R, Liu L, Liu J, Yuan H. Low-Cost Cellulase-Hemicellulase Mixture Secreted by Trichoderma harzianum EM0925 with Complete Saccharification Efficacy of Lignocellulose. Int J Mol Sci 2020; 21:E371. [PMID: 31936000 PMCID: PMC7014229 DOI: 10.3390/ijms21020371] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 01/07/2023] Open
Abstract
Fermentable sugars are important intermediate products in the conversion of lignocellulosic biomass to biofuels and other value-added bio-products. The main bottlenecks limiting the production of fermentable sugars from lignocellulosic biomass are the high cost and the low saccharification efficiency of degradation enzymes. Herein, we report the secretome of Trichoderma harzianum EM0925 under induction of lignocellulose. Numerously and quantitatively balanced cellulases and hemicellulases, especially high levels of glycosidases, could be secreted by T. harzianum EM0925. Compared with the commercial enzyme preparations, the T. harzianum EM0925 enzyme cocktail presented significantly higher lignocellulolytic enzyme activities and hydrolysis efficiency against lignocellulosic biomass. Moreover, 100% yields of glucose and xylose were obtained simultaneously from ultrafine grinding and alkali pretreated corn stover. These findings demonstrate a natural cellulases and hemicellulases mixture for complete conversion of biomass polysaccharide, suggesting T. harzianum EM0925 enzymes have great potential for industrial applications.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (Y.Z.); (J.Y.); (R.W.); (L.L.); (J.L.)
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (Y.Z.); (J.Y.); (R.W.); (L.L.); (J.L.)
| | - Lijin Luo
- Fujian Institute of Microbiology, Fuzhou 350007, China;
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Ruonan Wang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (Y.Z.); (J.Y.); (R.W.); (L.L.); (J.L.)
| | - Liang Liu
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (Y.Z.); (J.Y.); (R.W.); (L.L.); (J.L.)
| | - Jiawen Liu
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (Y.Z.); (J.Y.); (R.W.); (L.L.); (J.L.)
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (Y.Z.); (J.Y.); (R.W.); (L.L.); (J.L.)
| |
Collapse
|
18
|
Francois JM, Alkim C, Morin N. Engineering microbial pathways for production of bio-based chemicals from lignocellulosic sugars: current status and perspectives. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:118. [PMID: 32670405 PMCID: PMC7341569 DOI: 10.1186/s13068-020-01744-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/01/2020] [Indexed: 05/08/2023]
Abstract
Lignocellulose is the most abundant biomass on earth with an annual production of about 2 × 1011 tons. It is an inedible renewable carbonaceous resource that is very rich in pentose and hexose sugars. The ability of microorganisms to use lignocellulosic sugars can be exploited for the production of biofuels and chemicals, and their concurrent biotechnological processes could advantageously replace petrochemicals' processes in a medium to long term, sustaining the emerging of a new economy based on bio-based products from renewable carbon sources. One of the major issues to reach this objective is to rewire the microbial metabolism to optimally configure conversion of these lignocellulosic-derived sugars into bio-based products in a sustainable and competitive manner. Systems' metabolic engineering encompassing synthetic biology and evolutionary engineering appears to be the most promising scientific and technological approaches to meet this challenge. In this review, we examine the most recent advances and strategies to redesign natural and to implement non-natural pathways in microbial metabolic framework for the assimilation and conversion of pentose and hexose sugars derived from lignocellulosic material into industrial relevant chemical compounds leading to maximal yield, titer and productivity. These include glycolic, glutaric, mesaconic and 3,4-dihydroxybutyric acid as organic acids, monoethylene glycol, 1,4-butanediol and 1,2,4-butanetriol, as alcohols. We also discuss the big challenges that still remain to enable microbial processes to become industrially attractive and economically profitable.
Collapse
Affiliation(s)
- Jean Marie Francois
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Ceren Alkim
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Nicolas Morin
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| |
Collapse
|
19
|
Li JX, Zhang F, Li J, Zhang Z, Bai FW, Chen J, Zhao XQ. Rapid production of lignocellulolytic enzymes by Trichoderma harzianum LZ117 isolated from Tibet for biomass degradation. BIORESOURCE TECHNOLOGY 2019; 292:122063. [PMID: 31473036 DOI: 10.1016/j.biortech.2019.122063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
In this study, Trichoderma harzianum LZ117 was obtained during screening of cellulolytic enzyme producers from samples collected in Tibet. T. harzianum LZ117 exhibits dramatically earlier enzyme induction (48 h) and shorter fermentation time (5 days) during cellulase production when compared with the widely studied strain T. reesei QM9414. Strain LZ117 showed 61% of the maximum cellulase activity at 48 h, whereas only 17% of the maximum cellulase activity was detected in QM9414 at the same culture time. Early induction and rapid production of cellulase were also observed in LZ117 when compared with two other T. harzianum strains. Significantly higher glucose yield was obtained using crude enzyme from strain LZ117 from pretreated corn stover and Jerusalem artichoke stalks when compared with that of T. harzianum reference strain K223452. These results indicate that strain LZ117 is a promising cellulase producer for bioconversion of lignocellulosic biomass.
Collapse
Affiliation(s)
- Jia-Xiang Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Li
- R&D Center, JALA Group. Co., Shanghai 200233, China
| | - Zhang Zhang
- R&D Center, JALA Group. Co., Shanghai 200233, China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
20
|
Zhang MM, Xiong L, Tang YJ, Mehmood MA, Zhao ZK, Bai FW, Zhao XQ. Enhanced acetic acid stress tolerance and ethanol production in Saccharomyces cerevisiae by modulating expression of the de novo purine biosynthesis genes. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:116. [PMID: 31168321 PMCID: PMC6509782 DOI: 10.1186/s13068-019-1456-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/02/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Yeast strains that are tolerant to multiple environmental stresses are highly desired for various industrial applications. Despite great efforts in identifying key genes involved in stress tolerance of budding yeast Saccharomyces cerevisiae, the effects of de novo purine biosynthesis genes on yeast stress tolerance are still not well explored. Our previous studies showed that zinc sulfate addition improved yeast acetic acid tolerance, and key genes involved in yeast stress tolerance were further investigated in this study. RESULTS Three genes involved in de novo purine biosynthesis, namely, ADE1, ADE13, and ADE17, showed significantly increased transcription levels by zinc sulfate supplementation under acetic acid stress, and overexpression of these genes in S. cerevisiae BY4741 enhanced cell growth under various stress conditions. Meanwhile, ethanol productivity was also improved by overexpression of the three ADE genes under stress conditions, among which the highest improvement attained 158.39% by ADE17 overexpression in the presence of inhibitor mixtures derived from lignocellulosic biomass. Elevated levels of adenine-nucleotide pool "AXP" ([ATP] + [ADP] + [AMP]) and ATP content were observed by overexpression of ADE17, both under control condition and under acetic acid stress, and is consistent with the better growth of the recombinant yeast strain. The global intracellular amino acid profiles were also changed by overexpression of the ADE genes. Among the changed amino acids, significant increase of the stress protectant γ-aminobutyric acid (GABA) was revealed by overexpression of the ADE genes under acetic acid stress, suggesting that overexpression of the ADE genes exerts control on both purine biosynthesis and amino acid biosynthesis to protect yeast cells against the stress. CONCLUSION We proved that the de novo purine biosynthesis genes are useful targets for metabolic engineering of yeast stress tolerance. The engineered strains developed in this study with improved tolerance against multiple inhibitors can be employed for efficient lignocellulosic biorefinery to produce biofuels and biochemicals.
Collapse
Affiliation(s)
- Ming-Ming Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Liang Xiong
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068 China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Muhammad Aamer Mehmood
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Zongbao Kent Zhao
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
21
|
Development of Robust Yeast Strains for Lignocellulosic Biorefineries Based on Genome-Wide Studies. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:61-83. [PMID: 30911889 DOI: 10.1007/978-3-030-13035-0_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lignocellulosic biomass has been widely studied as the renewable feedstock for the production of biofuels and biochemicals. Budding yeast Saccharomyces cerevisiae is commonly used as a cell factory for bioconversion of lignocellulosic biomass. However, economic bioproduction using fermentable sugars released from lignocellulosic feedstocks is still challenging. Due to impaired cell viability and fermentation performance by various inhibitors that are present in the cellulosic hydrolysates, robust yeast strains resistant to various stress environments are highly desired. Here, we summarize recent progress on yeast strain development for the production of biofuels and biochemical using lignocellulosic biomass. Genome-wide studies which have contributed to the elucidation of mechanisms of yeast stress tolerance are reviewed. Key gene targets recently identified based on multiomics analysis such as transcriptomic, proteomic, and metabolomics studies are summarized. Physiological genomic studies based on zinc sulfate supplementation are highlighted, and novel zinc-responsive genes involved in yeast stress tolerance are focused. The dependence of host genetic background of yeast stress tolerance and roles of histones and their modifications are emphasized. The development of robust yeast strains based on multiomics analysis benefits economic bioconversion of lignocellulosic biomass.
Collapse
|
22
|
Second Generation Bioethanol Production: On the Use of Pulp and Paper Industry Wastes as Feedstock. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation5010004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Due to the health and environment impacts of fossil fuels utilization, biofuels have been investigated as a potential alternative renewable source of energy. Bioethanol is currently the most produced biofuel, mainly of first generation, resulting in food-fuel competition. Second generation bioethanol is produced from lignocellulosic biomass, but a costly and difficult pretreatment is required. The pulp and paper industry has the biggest income of biomass for non-food-chain production, and, simultaneously generates a high amount of residues. According to the circular economy model, these residues, rich in monosaccharides, or even in polysaccharides besides lignin, can be utilized as a proper feedstock for second generation bioethanol production. Biorefineries can be integrated in the existing pulp and paper industrial plants by exploiting the high level of technology and also the infrastructures and logistics that are required to fractionate and handle woody biomass. This would contribute to the diversification of products and the increase of profitability of pulp and paper industry with additional environmental benefits. This work reviews the literature supporting the feasibility of producing ethanol from Kraft pulp, spent sulfite liquor, and pulp and paper sludge, presenting and discussing the practical attempt of biorefineries implementation in pulp and paper mills for bioethanol production.
Collapse
|
23
|
Fang X, Qu Y. Metabolic Engineering of Fungal Strains for Efficient Production of Cellulolytic Enzymes. FUNGAL CELLULOLYTIC ENZYMES 2018:27-41. [PMCID: PMC7120360 DOI: 10.1007/978-981-13-0749-2_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Filamentous fungi are widely used for production of cellulase and other cellulolytic enzymes. Metabolic engineering of filamentous fungal strains has been applied to improve enzyme production, and rapid progress has been made in the recent years. In this chapter, genetic tools and methods to develop superior enzyme producers are summarized, which includes establishment of genetic modification systems, selection and redesign of promoters, and metabolic engineering using either native transcription factors or artificial ones. In addition, enhancement of cellulase production through morphology engineering was also discussed. Emerging tools including CRISPR-Cas9-based genome editing and synthetic biology are highlighted, which are speeding up mechanisms elucidation and strain development, and will further facilitate economic cellulolytic enzyme production.
Collapse
Affiliation(s)
- Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong China
| |
Collapse
|
24
|
Fan F, Li H, Xu Y, Liu Y, Zheng Z, Kan H. Thermal behaviour of walnut shells by thermogravimetry with gas chromatography-mass spectrometry analysis. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180331. [PMID: 30839760 PMCID: PMC6170593 DOI: 10.1098/rsos.180331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 08/16/2018] [Indexed: 06/01/2023]
Abstract
The present study introduces thermogravimetry with gas chromatography-mass spectrometry (TG-GC-MS) at four different heating rates to investigate the activation energy and thermal degradation behaviour of walnut shell pyrolysis. The distributed activation energy model (DAEM) was applied to investigate the activation energy. According to values of the activation energy and the correlation coefficient by the DAEM, the activation energy (98.69-267.75 kJ mol-1) and correlation coefficient (0.914-0.999) were determined for pyrolysis of walnut shells. GC-MS was performed to investigate the pyrolysis products from walnut shells at different critical temperature points. More than 20 different substances were identified at different temperatures from GC-MS results. With the increasing pyrolysis temperature, furan, furfural, benzene and long chain alkanes were successively identified in different GC-MS experimental results.
Collapse
Affiliation(s)
- Fangyu Fan
- Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, 650224 Kunming, Yunnan, People's Republic of China
- School of Light Industry and Food Engineering, Southwest Forestry University, 650224 Kunming, People's Republic of China
| | - Han Li
- Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, 650224 Kunming, Yunnan, People's Republic of China
- School of Light Industry and Food Engineering, Southwest Forestry University, 650224 Kunming, People's Republic of China
| | - Yuqiao Xu
- Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, 650224 Kunming, Yunnan, People's Republic of China
- School of Light Industry and Food Engineering, Southwest Forestry University, 650224 Kunming, People's Republic of China
| | - Yun Liu
- Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, 650224 Kunming, Yunnan, People's Republic of China
- School of Light Industry and Food Engineering, Southwest Forestry University, 650224 Kunming, People's Republic of China
| | - Zhifeng Zheng
- Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, 650224 Kunming, Yunnan, People's Republic of China
- School of Light Industry and Food Engineering, Southwest Forestry University, 650224 Kunming, People's Republic of China
| | - Huan Kan
- Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, 650224 Kunming, Yunnan, People's Republic of China
- School of Light Industry and Food Engineering, Southwest Forestry University, 650224 Kunming, People's Republic of China
| |
Collapse
|
25
|
Xiong L, Zeng Y, Tang RQ, Alper HS, Bai FW, Zhao XQ. Condition-specific promoter activities in Saccharomyces cerevisiae. Microb Cell Fact 2018; 17:58. [PMID: 29631591 PMCID: PMC5891911 DOI: 10.1186/s12934-018-0899-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/26/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Saccharomyces cerevisiae is widely studied for production of biofuels and biochemicals. To improve production efficiency under industrially relevant conditions, coordinated expression of multiple genes by manipulating promoter strengths is an efficient approach. It is known that gene expression is highly dependent on the practically used environmental conditions and is subject to dynamic changes. Therefore, investigating promoter activities of S. cerevisiae under different culture conditions in different time points, especially under stressful conditions is of great importance. RESULTS In this study, the activities of various promoters in S. cerevisiae under stressful conditions and in the presence of xylose were characterized using yeast enhanced green fluorescent protein (yEGFP) as a reporter. The stresses include toxic levels of acetic acid and furfural, and high temperature, which are related to fermentation of lignocellulosic hydrolysates. In addition to investigating eight native promoters, the synthetic hybrid promoter P3xC-TEF1 was also evaluated. The results revealed that P TDH3 and the synthetic promoter P3xC-TEF1 showed the highest strengths under almost all the conditions. Importantly, these two promoters also exhibited high stabilities throughout the cultivation. However, the strengths of P ADH1 and P PGK1 , which are generally regarded as 'constitutive' promoters, decreased significantly under certain conditions, suggesting that cautions should be taken to use such constitutive promoters to drive gene expression under stressful conditions. Interestingly, P HSP12 and P HSP26 were able to response to both high temperature and acetic acid stress. Moreover, P HSP12 also led to moderate yEGFP expression when xylose was used as the sole carbon source, indicating that this promoter could be used for inducing proper gene expression for xylose utilization. CONCLUSION The results here revealed dynamic changes of promoter activities in S. cerevisiae throughout batch fermentation in the presence of inhibitors as well as using xylose. These results provide insights in selection of promoters to construct S. cerevisiae strains for efficient bioproduction under practical conditions. Our results also encouraged applications of synthetic promoters with high stability for yeast strain development.
Collapse
Affiliation(s)
- Liang Xiong
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Yu Zeng
- State Key Laboratory of Microbial Metabolism (SKLMM), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui-Qi Tang
- State Key Laboratory of Microbial Metabolism (SKLMM), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hal S Alper
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism (SKLMM), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism (SKLMM), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
26
|
Gao J, Zheng C, Tan T, Liu S, Ji H. Enhanced saccharification of rice straw using combined ultra-high pressure and ionic liquid microemulsion pretreatments. 3 Biotech 2018; 8:208. [PMID: 29623250 DOI: 10.1007/s13205-018-1216-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/14/2018] [Indexed: 10/17/2022] Open
Abstract
Energy efficiency ratio is significant in completely estimating lignocellulosic biomass pretreatment. In this work, rice straw (RS) was pretreated by ultra-high pressure (UHP), ionic liquid microemulsion (ILM), and a combination of UHP and ILM (ILM + UHP) at mild temperature. The chemical composition, crystalline structure, surface morphology, and enzymatic hydrolysis of untreated and pretreated RS samples were compared. After ILM pretreatment ([Emim]Ac/cyclohexane/Triton X-100/n-butanol = 0.25/0.15/0.45/0.15) at 500 MPa, 50 °C for 4 h, the cellulose content of the regenerated RS increased by 62.5, 66.2% of the lignin was removed, 37.3% of crystallinity index decreased, and the reducing sugar yield of 89.6% was achieved. All results show that the ILM + UHP pretreatments were more effective than sole UHP or ILM treatment at low temperature.
Collapse
|
27
|
Cheng C, Tang RQ, Xiong L, Hector RE, Bai FW, Zhao XQ. Association of improved oxidative stress tolerance and alleviation of glucose repression with superior xylose-utilization capability by a natural isolate of Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:28. [PMID: 29441126 PMCID: PMC5798184 DOI: 10.1186/s13068-018-1018-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Saccharomyces cerevisiae wild strains generally have poor xylose-utilization capability, which is a major barrier for efficient bioconversion of lignocellulosic biomass. Laboratory adaption is commonly used to enhance xylose utilization of recombinant S. cerevisiae. Apparently, yeast cells could remodel the metabolic network for xylose metabolism. However, it still remains unclear why natural isolates of S. cerevisiae poorly utilize xylose. Here, we analyzed a unique S. cerevisiae natural isolate YB-2625 which has superior xylose metabolism capability in the presence of mixed-sugar. Comparative transcriptomic analysis was performed using S. cerevisiae YB-2625 grown in a mixture of glucose and xylose, and the model yeast strain S288C served as a control. Global gene transcription was compared at both the early mixed-sugar utilization stage and the latter xylose-utilization stage. RESULTS Genes involved in endogenous xylose-assimilation (XYL2 and XKS1), gluconeogenesis, and TCA cycle showed higher transcription levels in S. cerevisiae YB-2625 at the xylose-utilization stage, when compared to the reference strain. On the other hand, transcription factor encoding genes involved in regulation of glucose repression (MIG1, MIG2, and MIG3) as well as HXK2 displayed decreased transcriptional levels in YB-2625, suggesting the alleviation of glucose repression of S. cerevisiae YB-2625. Notably, genes encoding antioxidant enzymes (CTT1, CTA1, SOD2, and PRX1) showed higher transcription levels in S. cerevisiae YB-2625 in the xylose-utilization stage than that of the reference strain. Consistently, catalase activity of YB-2625 was 1.9-fold higher than that of S. cerevisiae S288C during the xylose-utilization stage. As a result, intracellular reactive oxygen species levels of S. cerevisiae YB-2625 were 43.3 and 58.6% lower than that of S288C at both sugar utilization stages. Overexpression of CTT1 and PRX1 in the recombinant strain S. cerevisiae YRH396 deriving from S. cerevisiae YB-2625 increased cell growth when xylose was used as the sole carbon source, leading to 13.5 and 18.1%, respectively, more xylose consumption. CONCLUSIONS Enhanced oxidative stress tolerance and relief of glucose repression are proposed to be two major mechanisms for superior xylose utilization by S. cerevisiae YB-2625. The present study provides insights into the innate regulatory mechanisms underlying xylose utilization in wild-type S. cerevisiae, which benefits the rapid development of robust yeast strains for lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Cheng Cheng
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Rui-Qi Tang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Liang Xiong
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Ronald E. Hector
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL USA
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
28
|
Zhang F, Zhao X, Bai F. Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1. BIORESOURCE TECHNOLOGY 2018; 247:676-683. [PMID: 30060399 DOI: 10.1016/j.biortech.2017.09.126] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 05/05/2023]
Abstract
Trichoderma reesei is a widely used cellulase producer, and development of robust strains for improved cellulase production is of great interest. In this study, the gene Trvib-1 encoding a putative transcription factor was overexpressed in T. reesei Rut-C30, and effects on cellulase production by the manipulation as well as corn stover degradation by the crude enzyme were investigated. Cellulase production and protein secretion were significantly improved in the culture of the recombinant T. reesei Vib-1, which were 200% and 219%, respectively, higher than that produced by the parent strain. Cellulase induction was enhanced in the presence of pure cellulose as well as various soluble inducers. Glucose released from the pretreated corn stover hydrolyzed by the crude enzyme in the recombinant strain was improved 40%. These results indicate that the overexpression of Trvib-1 is a feasible strategy for producing cellulase to enhance bioconversion efficiency of lignocellulosic biomass.
Collapse
Affiliation(s)
- Fei Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Fengwu Bai
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Khatun MM, Yu X, Kondo A, Bai F, Zhao X. Improved ethanol production at high temperature by consolidated bioprocessing using Saccharomyces cerevisiae strain engineered with artificial zinc finger protein. BIORESOURCE TECHNOLOGY 2017; 245:1447-1454. [PMID: 28554523 DOI: 10.1016/j.biortech.2017.05.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 05/28/2023]
Abstract
In this work, the consolidated bioprocessing (CBP) yeast Saccharomyces cerevisiae MNII/cocδBEC3 was transformed by an artificial zinc finger protein (AZFP) library to improve its thermal tolerance, and the strain MNII-AZFP with superior growth at 42°C was selected. Improved degradation of acid swollen cellulose by 45.9% led to an increase in ethanol production, when compared to the control strain. Moreover, the fermentation of Jerusalem artichoke stalk (JAS) by MNII-AZFP was shortened by 12h at 42°C with a concomitant improvement in ethanol production. Comparative transcriptomics analysis suggested that the AZFP in the mutant exerted beneficial effect by modulating the expression of multiple functional genes. These results provide a feasible strategy for efficient ethanol production from JAS and other cellulosic biomass through CBP based-fermentation at elevated temperatures.
Collapse
Affiliation(s)
- M Mahfuza Khatun
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Xinshui Yu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Fengwu Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
30
|
Zhang M, Zhang K, Mehmood MA, Zhao ZK, Bai F, Zhao X. Deletion of acetate transporter gene ADY2 improved tolerance of Saccharomyces cerevisiae against multiple stresses and enhanced ethanol production in the presence of acetic acid. BIORESOURCE TECHNOLOGY 2017; 245:1461-1468. [PMID: 28606754 DOI: 10.1016/j.biortech.2017.05.191] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 05/24/2023]
Abstract
The aim of this work was to study the effects of deleting acetate transporter gene ADY2 on growth and fermentation of Saccharomyces cerevisiae in the presence of inhibitors. Comparative transcriptome analysis revealed that three genes encoding plasma membrane carboxylic acid transporters, especially ADY2, were significantly downregulated under the zinc sulfate addition condition in the presence of acetic acid stress, and the deletion of ADY2 improved growth of S. cerevisiae under acetic acid, ethanol and hydrogen peroxide stresses. Consistently, a concomitant increase in ethanol production by 14.7% in the presence of 3.6g/L acetic acid was observed in the ADY2 deletion mutant of S. cerevisiae BY4741. Decreased intracellular acetic acid, ROS accumulation, and plasma membrane permeability were observed in the ADY2 deletion mutant. These findings would be useful for developing robust yeast strains for efficient ethanol production.
Collapse
Affiliation(s)
- Mingming Zhang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Keyu Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Aamer Mehmood
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Zongbao Kent Zhao
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fengwu Bai
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
31
|
Li Y, Zhang X, Xiong L, Mehmood MA, Zhao X, Bai F. On-site cellulase production and efficient saccharification of corn stover employing cbh2 overexpressing Trichoderma reesei with novel induction system. BIORESOURCE TECHNOLOGY 2017; 238:643-649. [PMID: 28486197 DOI: 10.1016/j.biortech.2017.04.084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 05/05/2023]
Abstract
Although on-site cellulase production offers cost-effective saccharification of lignocellulosic biomass, low enzyme titer is still a barrier for achieving robustness. In the present study, a strain of T. reesei was developed for enhanced production of cellulase via overexpression of Cellobiohydrolase II. Furthermore, optimum enzyme production was achieved using a novel inducer mixture containing synthesized glucose-sophorose (MGD) and alkali pre-treated corn stover (APCS). Within 60h, a remarkably higher cellulase productivity and activity were achieved in the fed-batch fermentation using the optimized ratio of MGD and APCS in the inducer mixture, compared to those reported using cellulosic biomass as the sole inducer. After the enzyme production, APCS was added directly into the fermentation broth at 20% solid loading, which produced 122.5g/L glucose and 40.21g/L xylose, leading to the highest yield reported so far. The improved enzyme titers during on-site cellulase production would benefit cost-competitive saccharification of lignocellulosic biomass.
Collapse
Affiliation(s)
- Yonghao Li
- State Key Laboratory of Microbial Metabolism & School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116023, China.
| | - Xiaoyue Zhang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116023, China.
| | - Liang Xiong
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116023, China.
| | - Muhammad Aamer Mehmood
- State Key Laboratory of Microbial Metabolism & School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism & School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Fengwu Bai
- State Key Laboratory of Microbial Metabolism & School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116023, China.
| |
Collapse
|
32
|
Development of Synthetic Microbial Platforms to Convert Lignocellulosic Biomass to Biofuels. ADVANCES IN BIOENERGY 2017. [DOI: 10.1016/bs.aibe.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
33
|
Overexpression of smORF YNR034W-A/EGO4 in Saccharomyces cerevisiae increases the fermentative efficiency of Agave tequilana Weber must. ACTA ACUST UNITED AC 2017; 44:63-74. [DOI: 10.1007/s10295-016-1871-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Abstract
Fermentative processes are widely used to produce food, beverages and biofuels. Saccharomyces cerevisiae is an efficient ethanol-producing microorganism. However, a concentration of high ethanol and other metabolites can affect yeast viability and decrease the ethanol yield. Many studies have focused on improving the fermentative efficiency, mostly through the genetic engineering of genes that have a direct impact on specific metabolic pathways. In the present study, we characterized a small open reading frame encoding a protein with an unknown function and biological role termed YNR034W-A. We analyzed the expression profile of the YNR034W-A gene during growth and glucose treatment, finding that it is expressed during the diauxic shift and stationary phase and is negatively regulated by glucose. We overexpressed the YNR034W-A gene in the BY4741 laboratory strain and a wild-type yeast strain (AR5) isolated during the Tequila fermentation process. Transformant derivatives of the AR5 strain showed an improved fermentative efficiency during fermentation of Agave tequilana Weber juice. We suggest that the improved fermentative efficiency is the result of a higher stress tolerance response in the YNR034W-A overexpressing transformant.
Collapse
|
34
|
Zhang F, Bai F, Zhao X. Enhanced cellulase production from Trichoderma reesei Rut-C30 by engineering with an artificial zinc finger protein library. Biotechnol J 2016; 11:1282-1290. [PMID: 27578229 DOI: 10.1002/biot.201600227] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 01/03/2023]
Abstract
Trichoderma reesei Rut-C30 is a well-known cellulase producer, and improvement of its cellulase production is of great interest. An artificial zinc finger protein (AZFP) library is constructed for expression in T. reesei Rut-C30, and a mutant strain T. reesei U3 is selected based on its enhanced cellulase production. The U3 mutant shows a 55% rise in filter paper activity and 8.1-fold increased β-glucosidase activity, when compared to the native strain T. reesei Rut-C30. It is demonstrated that enhanced β-glucosidase activity was due to elevated transcription level of β-glucosidase gene in the U3 mutant. Moreover, significant elevation in transcription levels of several putative Azfp-U3 target genes is detected in the U3 mutant, including genes encoding hypothetical transcription factors and a putative glycoside hydrolase. Furthermore, U3 cellulase shows 115% higher glucose yield from pretreated corn stover, when compared to the cellulase of T. reesei Rut-C30. These results demonstrate that AZFP can be used to improve cellulase production in T. reesei Rut-C30. Our current work offers the establishment of an alternative strategy to develop fungal cell factories for improved production of high value industrial products.
Collapse
Affiliation(s)
- Fei Zhang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Fengwu Bai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China.,State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
35
|
Cheng C, Zhang M, Xue C, Bai F, Zhao X. Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: New aspects from cell flocculation and zinc supplementation. J Biosci Bioeng 2016; 123:141-146. [PMID: 27576171 DOI: 10.1016/j.jbiosc.2016.07.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/29/2016] [Indexed: 10/21/2022]
Abstract
Budding yeast Saccharomyces cerevisiae is widely studied for the production of biofuels from lignocellulosic biomass. However, economic production is currently challenged by the repression of cell growth and compromised fermentation performance of S. cerevisiae strains in the presence of various environmental stresses, including toxic level of final products, inhibitory compounds released from the pretreatment of cellulosic feedstocks, high temperature, and so on. Therefore, it is important to improve stress tolerance of S. cerevisiae to these stressful conditions to achieve efficient and economic production. In this review, the latest advances on development of stress tolerant S. cerevisiae strains are summarized, with the emphasis on the impact of cell flocculation and zinc addition. It was found that cell flocculation affected ethanol tolerance and acetic acid tolerance of S. cerevisiae, and addition of zinc to a suitable level improved stress tolerance of yeast cells to ethanol, high temperature and acetic acid. Further studies on the underlying mechanisms by which cell flocculation and zinc status affect stress tolerance will not only enrich our knowledge on stress response and tolerance mechanisms of S. cerevisiae, but also provide novel metabolic engineering strategies to develop robust yeast strains for biofuels production.
Collapse
Affiliation(s)
- Cheng Cheng
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Mingming Zhang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Chuang Xue
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Fengwu Bai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|